Skip to main content

Computational Challenges for Simulating Strongly Elastic Flows in Biology

  • Chapter
  • First Online:
Complex Fluids in Biological Systems

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Understanding the behavior of complex fluids in biology presents mathematical, modeling, and computational challenges not encountered in classical fluid mechanics, particularly in the case of fluids with large elastic forces that interact with immersed elastic structures. We discuss some of the characteristics of strongly elastic flows and introduce different models and methods designed for these types of flows. We describe contributions from analysis that motivate numerical methods and illustrate their performance on different models in a simple test problem. Biological problems often involve the coupled dynamics of active elastic structures and the surrounding fluid. The immersed boundary method has been used extensively for such problems involving Newtonian fluids, and the methodology extends naturally to complex fluids in conjunction with the algorithms described earlier in this chapter. We focus on implicit-time methods because the large elastic stresses in complex fluids necessitate high spatial resolution and long time simulations. As an example to highlight some of the challenges of strongly elastic flows, we use the immersed boundary method to simulate an undulatory swimmer in a viscoelastic fluid using a data-based model for the prescribed shape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    When derived from the kinetic theory of dumbbells [2, 27] there is polymer stress diffusion; however the stress diffusion coefficient is proportional to the square of the ratio of the bead diameter (or polymer radius of gyration) to the flow length scale, and even in the context of micro-fluidics, it is minute, \(\mathcal{O}(10^{-9}),\) and is typically ignored.

  2. 2.

    The data are kindly provided by Paulo Arratia and Xiaoning Shen.

References

  1. J. Oldroyd, Proceedings of the Royal Society of London. Series A. Math. Phys. Sci. 200(1063), 523 (1950)

    MATH  MathSciNet  ADS  Google Scholar 

  2. R.B. Bird, O. Hassager, R. Armstrong, C. Curtiss, Dynamics of Polymeric Liquids, Vol. 2: Kinetic Theory (John Wiley and Sons, London 1980)

    Google Scholar 

  3. M. Mendelson, P.W. Yeh, R. Brown, R. Armstrong, J. Non-Newtonian Fluid Mech. 10(1), 31 (1982)

    MATH  Google Scholar 

  4. R. Brown, R. Armstrong, A. Beris, P. Yeh, Comput. Meth. Appl. Mech. Eng. 58(2), 201 (1986)

    MATH  Google Scholar 

  5. R.G. Owens, T.N. Phillips, Computational Rheology, vol 2 (World Scientific, Singapore 2002)

    MATH  Google Scholar 

  6. G.H. McKinley, R.C. Armstrong, R.A. Brown, Philos. Trans. R. Soc. Lond. Ser. A: Phys. Eng. Sci. 344(1671), 265 (1993)

    ADS  Google Scholar 

  7. M. Chilcott, J. Rallison, J. Non-Newtonian Fluid Mech. 29, 381 (1988)

    MATH  Google Scholar 

  8. A.W. Liu, D.E. Bornside, R.C. Armstrong, R.A. Brown, J. Non-Newtonian Fluid Mech. 77(3), 153 (1998)

    MATH  Google Scholar 

  9. M. Alves, F. Pinho, P. Oliveira, J. Non-Newtonian Fluid Mech. 97(2), 207 (2001)

    MATH  Google Scholar 

  10. M.A. Hulsen, R. Fattal, R. Kupferman, J. Non-Newtonian Fluid Mech. 127(1), 27 (2005)

    MATH  Google Scholar 

  11. H.S. Dou, N. Phan-Thien, Chem. Eng. Sci. 62(15), 3909 (2007)

    Google Scholar 

  12. S. Claus, T. Phillips, J. Non-Newtonian Fluid Mech. 200, 131 (2013)

    Google Scholar 

  13. H. Nguyen, D. Boger, J. Non-Newtonian Fluid Mech. 5, 353 (1979)

    Google Scholar 

  14. D. Boger, Annual Rev. Fluid Mech. 19(1), 157 (1987)

    ADS  Google Scholar 

  15. G.H. McKinley, W.P. Raiford, R.A. Brown, R.C. Armstrong, J. Fluid Mech. 223, 411 (1991)

    ADS  Google Scholar 

  16. S.C. Xue, N. Phan-Thien, R. Tanner, J. Non-Newtonian Fluid Mech. 74(1), 195 (1998)

    MATH  Google Scholar 

  17. M.A. Alves, P.J. Oliveira, F.T. Pinho, J. Non-Newtonian Fluid Mech. 122(1), 117 (2004)

    MATH  Google Scholar 

  18. M. Webster, H. Tamaddon-Jahromi, M. Aboubacar, J. Non-Newtonian Fluid Mech. 118(2), 83 (2004)

    MATH  Google Scholar 

  19. D. Trebotich, P. Colella, G. Miller, J. Comput. Phys. 205(1), 315 (2005)

    MATH  MathSciNet  ADS  Google Scholar 

  20. D.D. Joseph, Fluid Dynamics of Viscoelastic Liquids, vol. 84 (Springer, New York, 1990)

    MATH  Google Scholar 

  21. M. Renardy, Mathematical Analysis of Viscoelastic Flows, vol 73 (SIAM, Philadelphia, 2000)

    MATH  Google Scholar 

  22. M.J. Crochet, Rubber Chem. Technol. 62(3), 426 (1989)

    Google Scholar 

  23. F. PT Baaijens, J. Non-Newtonian Fluid Mech. 79(2), 361 (1998)

    MATH  Google Scholar 

  24. R. Keunings, in Proceedings of the XIIIth International Congress on Rheology, vol 1 (British Soc. Rheol, 2000), vol 1, pp. 7–14

    Google Scholar 

  25. R. Keunings, Rheology Rev. pp. 167–196 (2003)

    Google Scholar 

  26. R. Keunings, Rheology Rev. pp. 67–98 (2004)

    Google Scholar 

  27. A.W. El-Kareh, L.G. Leal, J. Non-Newton. Fluid Mech. 33, 257 (1989)

    MATH  Google Scholar 

  28. J.T. Beale, T. Kato, A. Majda, Comm. Math. Phys. 94(1), 61 (1984)

    MATH  MathSciNet  ADS  Google Scholar 

  29. J.Y. Chemin, N. Masmoudi, SIAM J. Math. Anal. 33(1), 84 (2001)

    MATH  MathSciNet  Google Scholar 

  30. R. Kupferman, C. Mangoubi, E.S. Titi, arXiv preprint arXiv:0709.1455 (2007)

    Google Scholar 

  31. F.H. Lin, C. Liu, P. Zhang, Comm. Pure Appl. Math. 58(11), 1437 (2005)

    MATH  MathSciNet  Google Scholar 

  32. T.C. Sideris, B. Thomases, Comm. Pure Appl. Math. 58(6), 750 (2005)

    MATH  MathSciNet  Google Scholar 

  33. P. Constantin, Remarks on complex fluid models. Mathematical aspects of fluid mechanics. London Mathematical Society Lecture Note Series (No. 402) (Cambridge University Press, Cambridge, 2012), pp. 70–87

    Google Scholar 

  34. P. Constantin, M. Kliegl, ARMA 206(1), 725 (2012)

    MATH  MathSciNet  ADS  Google Scholar 

  35. R. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, Oxford, 1998)

    Google Scholar 

  36. R. Sureshkumar, A.N. Beris, J. Non-Newtonian Fluid Mech. 60, 53 (1995)

    Google Scholar 

  37. B. Thomases, J. Non-Newt. Fluid Mech. 166, 1221 (2011)

    MATH  Google Scholar 

  38. C.D. Dimitropoulos, R. Sureshkumar, A.N. Beris, J. Non-Newt. Fluid Mech. 79, 433 (1998)

    MATH  Google Scholar 

  39. K.D. Housiadas, A.N. Beris, Phys. Fluids 15, 2369 (2003)

    ADS  Google Scholar 

  40. B. Thomases, M. Shelley, Phys. Fluids 19, 103103 (2007)

    ADS  Google Scholar 

  41. R.G. Larson, The structure and rheology of complex fluids, vol. 2 (Oxford university press, New York, 1999)

    Google Scholar 

  42. J.M. Rallison, E.J. Hinch, J. Non-Newt Fluid Mech. 29, 37 (1988)

    Google Scholar 

  43. M. Renardy, J. Non-Newt. Fluid Mech. 138, 204 (2006)

    MATH  Google Scholar 

  44. A.N. Brooks, T.J. Hughes, Comput. Meth. Appl. Mech. Eng. 32(1), 199 (1982)

    MATH  MathSciNet  ADS  Google Scholar 

  45. M.D. Gunzburger, Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms (Elsevier, Amsterdam, 2012)

    Google Scholar 

  46. J. Marchal, M. Crochet, J. Non-Newtonian Fluid Mech. 26(1), 77 (1987)

    MATH  Google Scholar 

  47. M. Fortin, A. Fortin, J. Non-Newtonian Fluid Mech. 32(3), 295 (1989)

    MATH  MathSciNet  Google Scholar 

  48. H.P. Baaijens, G.W. Peters, F.P. Baaijens, H.E. Meijer, J. Rheol. (1978–present) 39(6), 1243 (1995)

    Google Scholar 

  49. B. Cockburn, G.E. Karniadakis, C.W. Shu, The Development of Discontinuous Galerkin Methods (Springer, NewYork 2000)

    Google Scholar 

  50. D. Rajagopalan, R.C. Armstrong, R.A. Brown, J. Non-Newtonian Fluid Mech. 36, 159 (1990)

    MATH  Google Scholar 

  51. F. Baaijens, J. Non-Newtonian Fluid Mech. 75(2), 119 (1998)

    MATH  Google Scholar 

  52. H. Matallah, P. Townsend, M. Webster, J. Non-Newtonian Fluid Mech. 75(2), 139 (1998)

    MATH  Google Scholar 

  53. R.C. King, M.R. Apelian, R.C. Armstrong, R.A. Brown, J. Non-Newtonian Fluid Mech. 29, 147 (1988)

    MATH  Google Scholar 

  54. R. Guénette, M. Fortin, J. Non-Newtonian Fluid Mech. 60(1), 27 (1995)

    Google Scholar 

  55. I. Keshtiban, F. Belblidia, M. Webster, J. Non-Newtonian Fluid Mech. 126(2), 123 (2005)

    MATH  Google Scholar 

  56. C.W. Shu, S. Osher, J. Comput. Phys. 77(2), 439 (1988)

    MATH  MathSciNet  ADS  Google Scholar 

  57. H.D. Ceniceros, J.E. Fisher, J. Non-Newtonian Fluid Mech. 171, 31 (2012)

    Google Scholar 

  58. R. Fattal, R. Kupferman, J. Non-Newtonian Fluid Mech. 123(2), 281 (2004)

    MATH  Google Scholar 

  59. R. Fattal, R. Kupferman, J. Non-Newtonian Fluid Mech. 126(1), 23 (2005).

    MATH  Google Scholar 

  60. A. Afonso, M. Alves, F. Pinho, P. Oliveira, in 3rd Annual European Rheology Conference (2006), pp. 27–29

    Google Scholar 

  61. A. Afonso, P. Oliveira, F. Pinho, M. Alves, J. Non-Newtonian Fluid Mech. 157(1), 55 (2009)

    MATH  Google Scholar 

  62. H. Damanik, J. Hron, A. Ouazzi, S. Turek, J. Non-Newtonian Fluid Mech. 165(19), 1105 (2010)

    MATH  Google Scholar 

  63. N. Balci, B. Thomases, M. Renardy, C. Doering, J. Non-Newt. Fluid Mech. (2011)

    Google Scholar 

  64. M. Laso, H. Öttinger, J. Non-Newtonian Fluid Mech. 47, 1 (1993)

    MATH  Google Scholar 

  65. A. Lozinski, C. Chauvière, J. Comput. Phys. 189(2), 607 (2003)

    MATH  MathSciNet  ADS  Google Scholar 

  66. H. Giesekus, J. Non-Newtonian Fluid Mech. 11(1), 69 (1982)

    MATH  Google Scholar 

  67. N.P. Thien, R.I. Tanner, J. Non-Newtonian Fluid Mech. 2(4), 353 (1977)

    MATH  Google Scholar 

  68. H.R. Warner Jr, Ind. Eng. Chem. Fundamentals 11(3), 379 (1972)

    MathSciNet  Google Scholar 

  69. M. Chilcott, J. Rallison, J. Non-Newtonian Fluid Mech. 29, 381 (1988)

    MATH  Google Scholar 

  70. G. Lielens, P. Halin, I. Jaumain, R. Keunings, V. Legat, J. Non-Newtonian Fluid Mech. 76(1), 249 (1998)

    MATH  Google Scholar 

  71. G. Lielens, R. Keunings, V. Legat, J. Non-Newtonian Fluid Mech. 87(2), 179 (1999)

    MATH  Google Scholar 

  72. Q. Du, C. Liu, P. Yu, Multiscale Modeling and Simulation 4(3), 709 (2005)

    MATH  MathSciNet  Google Scholar 

  73. A. Peterlin, J. Polymer Sci. Part B: Polymer Lett. 4(4), 287 (1966)

    ADS  Google Scholar 

  74. C. Sulem, P.L. Sulem, H. Frisch, J. Comput. Phys. 50(1), 138 (1983)

    MATH  MathSciNet  ADS  Google Scholar 

  75. R. Krasny, J. Fluid Mech. 167, 65 (1986)

    MATH  MathSciNet  ADS  Google Scholar 

  76. M. Shelley, J. Fluid Mech. 244(1), 493 (1992)

    MATH  MathSciNet  ADS  Google Scholar 

  77. R. Peyret, Spectral Methods for Incompressible Viscous Flow, vol 148 (Springer, Newyork, 2002)

    MATH  Google Scholar 

  78. T.Y. Hou, R. Li, J. Comput. Phys. 226(1), 379 (2007)

    MATH  MathSciNet  ADS  Google Scholar 

  79. C.S. Peskin, Acta Numer. 11(-1), 479 (2002)

    Google Scholar 

  80. C.S. Peskin, J. Comput. Phys. 25(3), 220 (1977)

    MATH  MathSciNet  ADS  Google Scholar 

  81. J. Chrispell, L. Fauci, Math. Modelling of Nat. Phenomena 6(05), 67 (2011)

    MATH  MathSciNet  Google Scholar 

  82. J.C. Chrispell, L.J. Fauci, M. Shelley, Phys. Fluids 25(1), 013103 (2013)

    ADS  Google Scholar 

  83. J. Teran, L. Fauci, M. Shelley, Phys. Rev. Lett. 104, 038101 (2010).

    ADS  Google Scholar 

  84. J. Du, J.P. Keener, R.D. Guy, A.L. Fogelson, Phys. Rev. E 85, 036304 (2012)

    ADS  Google Scholar 

  85. J.M. Stockie, B.R. Wetton, J. Comput. Phys. 154(1), 41 (1999)

    MATH  ADS  Google Scholar 

  86. E.P. Newren, A.L. Fogelson, R.D. Guy, R.M. Kirby, J. Comput. Phys. 222(2), 702 (2007)

    MATH  MathSciNet  ADS  Google Scholar 

  87. Z. Gong, H. Huang, C. Lu, Commun. Comput. Phys. 3, 704 (2008)

    MATH  MathSciNet  Google Scholar 

  88. C. Tu, C.S. Peskin, SIAM J. Sci. Stat. Comput. 13(6), 1361 (1992).

    MATH  MathSciNet  Google Scholar 

  89. A.A. Mayo, C.S. Peskin, in Fluid Dynamics in Biology (Seattle, WA, 1991), Contemp. Math., vol. 141 (Amer. Math. Soc., Providence, RI, 1993), pp. 261–277

    Google Scholar 

  90. L. Lee, R.J. LeVeque, SIAM J. Sci. Comput. 25(3), 832 (2003).

    MATH  MathSciNet  Google Scholar 

  91. E.P. Newren, A.L. Fogelson, R.D. Guy, R.M. Kirby, Comput. Methods Appl. Mech. Engrg. 197(25–28), 2290 (2008).

    MATH  MathSciNet  ADS  Google Scholar 

  92. T.Y. Hou, Z. Shi, J. Comput. Phys. 227(20), 8968 (2008)

    MATH  MathSciNet  ADS  Google Scholar 

  93. T.Y. Hou, Z. Shi, J. Comput. Phys. 227(21), 9138 (2008)

    MATH  MathSciNet  ADS  Google Scholar 

  94. H.D. Ceniceros, J.E. Fisher, A.M. Roma, J. Comput. Phys. 228(19), 7137 (2009).

    MATH  MathSciNet  ADS  Google Scholar 

  95. Y. Mori, C.S. Peskin, Comput. Methods Appl. Mech. Engrg. 197(25–28), 2049 (2008).

    MATH  MathSciNet  ADS  Google Scholar 

  96. D. Le, J. White, J. Peraire, K. Lim, B. Khoo, J. Comput. Phys. 228(22), 8427 (2009).

    MATH  MathSciNet  ADS  Google Scholar 

  97. H.D. Ceniceros, J.E. Fisher, J. Comput. Phys. 230(12), 5133 (2011).

    MATH  MathSciNet  ADS  Google Scholar 

  98. E. Lauga, T. Powers, Rep. Prog. Phys. 72, 096601 (2009)

    MathSciNet  ADS  Google Scholar 

  99. T. Normand, E. Lauga, Phys. Rev. E 78, 061907 (2008)

    ADS  Google Scholar 

  100. E. Lauga, Phys. Fluids 19, 083104 (2007)

    ADS  Google Scholar 

  101. H.C. Fu, T.R. Powers, C.W. Wolgemuth, Phys. Rev. Lett. 99, 258101 (2007)

    ADS  Google Scholar 

  102. E. Lauga, Europhys. Lett. 86, 64001 (2009)

    ADS  Google Scholar 

  103. A.M. Leshansky, Phys. Rev. E 80, 051911 (2009)

    ADS  Google Scholar 

  104. H. Fu, V. Shenoy, T. Powers, Europhys. Lett. 91, 24002 (2010)

    ADS  Google Scholar 

  105. S.E. Spagnolie, B. Liu, T.R. Powers, Phys. Rev. Lett. 111(6), 068101 (2013)

    ADS  Google Scholar 

  106. B. Thomases, R.D. Guy, Phys. Rev. Lett. 113(9), 098102 (2014)

    ADS  Google Scholar 

  107. X.N. Shen, P.E. Arratia, Phys. Rev. Lett. 106(20), 208101 (2011)

    ADS  Google Scholar 

  108. M. Backholm, W.S. Ryu, K. Dalnoki-Veress, Proc. Natl. Acad. Sci. 110(12), 4528 (2013)

    ADS  Google Scholar 

  109. R.D. Guy, B. Philip, Commun. Comput. Phys. 12, 378 (2012)

    MathSciNet  Google Scholar 

  110. C. Kelley, Iterative Methods for Linear and Nonlinear Equations (SIAM, Philadelphia, 1995)

    MATH  Google Scholar 

  111. J. Nocedal, S.J. Wright, Numerical Optimization (Springer, New York, 1999)

    MATH  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Lisa Fauci and Michael Shelley for interesting discussions and suggestions on this work. We also acknowledge Paulo Arratia and Xiaoning Shen for allowing us to use their data. This work was supported in part by NSF grants DMS-1160438 and DMS-1226386 to RDG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Guy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guy, R.D., Thomases, B. (2015). Computational Challenges for Simulating Strongly Elastic Flows in Biology. In: Spagnolie, S. (eds) Complex Fluids in Biological Systems. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2065-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2065-5_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2064-8

  • Online ISBN: 978-1-4939-2065-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics