Skip to main content

Eigenfunctions of the Linear Canonical Transform

  • Chapter
Linear Canonical Transforms

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 198))

Abstract

In this chapter, the eigenfunctions and the eigenvalues of the linear canonical transform are discussed. The style of the eigenfunctions of the LCT is closely related to the parameters {a, b, c, d} of the LCT. When |a + d| < 2, the LCT eigenfunctions are the scaling and chirp multiplication of Hermite–Gaussian functions. When |a + d| = 2 and b = 0, the eigenfunctions are the impulse trains. When |a + d| = 2 and b ≠ 0, the eigenfunctions are the chirp multiplications of periodic functions. When |a + d| > 2, the eigenfunctions are the chirp convolution and chirp multiplication of scaling-invariant functions, i.e., fractals. Moreover, the linear combinations of the LCT eigenfunctions with the same eigenvalue are also the eigenfunctions of the LCT. Furthermore, the two-dimensional case is also discussed. The eigenfunctions of the LCT are helpful for analyzing the resonance phenomena in the radar system and the self-imaging phenomena in optics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.B. Wolf, Construction and properties of linear canonical transforms, in Integral Transforms in Science and Engineering, Ch. 9 (Plenum, New York, 1979)

    Google Scholar 

  2. M. Moshinsky, C. Quesne, Linear canonical transformations and their unitary representations. J. Math. Phys. 12(8), 1772–1783 (1971)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. S. Abe, J.T. Sheridan, Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation: an operator approach. J. Phys. A 27, 4179–4187 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. L.M. Bernardo, ABCD matrix formalism of fractional Fourier optics. Opt. Eng. 35(3), 732–740 (1996)

    Article  ADS  Google Scholar 

  5. J.J. Healy, B.M. Hennelly, J.T. Sheridan, Additional sampling criterion for the linear canonical transform. Opt. Lett. 33, 2599–2601 (2008)

    Article  ADS  Google Scholar 

  6. J.J. Healy, J.T. Sheridan, Fast linear canonical transform. J. Opt. Soc. Am. A 27, 21–30 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  7. V. Namias, The fractional order Fourier transform and its application to quantum mechanics. J. Inst. Math. Appl. 25, 241–265 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  8. H.M. Ozaktas, Z. Zalevsky, M.A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, New York, 2000)

    Google Scholar 

  9. K. Paiorski, The self-imaging phenomenon and its applications, in Progress in Optics, ed. by E. Wolf, vol. 27, part 1 (North-Holland, Amsterdam, 1989)

    Google Scholar 

  10. J.T. Winthrop, C.R. Worthington, Theory of Fresnel images. 1. Plane periodic objects in monochromatic light. J. Opt. Soc. Am. 55, 373–381 (1965)

    Article  ADS  Google Scholar 

  11. A.W. Lohmann, An array illuminator based on the Talbot effect. Optik (Stuttgart) 79, 41–45 (1988)

    Google Scholar 

  12. J. Leger, G.J. Swanson, Efficient array illuminator using binary-optics phase plates as fractional Talbot planes. Opt. Lett. 15, 288–290 (1990)

    Article  ADS  Google Scholar 

  13. J.W. Goodman, Introduction to Fourier Optics, 3rd edn. (Roberts & Co., Englewood, 2005)

    Google Scholar 

  14. G.W. Wronell, Signal Processing with Fractals (Prentice-Hall, Upper Saddle River, 1996)

    Google Scholar 

  15. S.C. Pei, J.J. Ding, Eigenfunctions of linear canonical transform. IEEE Trans. Signal Process. 50(1), 11–26 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  16. D.F.V. James, G.S. Agarwal, The generalized Fresnel transform and its applications to optics. Opt. Commun. 126, 207–212 (1996)

    Article  ADS  Google Scholar 

  17. M.J. Caola, Self-Fourier functions. J. Phys. A: Math. Gen. 24, 1143–1144 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  18. G. Cincotti, F. Gori, M. Santarsiero, Generalized self-Fourier functions. J. Phys. A: Math. Gen. 25, 1191–1194 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  19. D. Mendlovic, H.M. Ozaktas, A.W. Lohmann, Self Fourier functions and fractional Fourier transform. Opt. Commun. 105, 36–38 (1994)

    Article  ADS  Google Scholar 

  20. T. Alieva, On the self-fractional Fourier functions. J. Phys. A: Math. Gen. 29, 377–379 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  21. T. Alieva, A.M. Barbe, Self-fractional Fourier functions and selection of modes. J. Phys. A: Math. Gen. 30, 211–215 (1997)

    Article  ADS  Google Scholar 

  22. T. Alieva, A.M. Barbe, Self-imaging in fractional Fourier transform systems. Opt. Commun. 152, 11–15 (1998)

    Article  ADS  Google Scholar 

  23. M.J. Bastiaans, T. Alieva, Classification of lossless first order optical systems and the linear canonical transformation. J. Opt. Soc. Am. A 24, 1053–1062 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  24. J.J. Ding, S.C. Pei, Eigenfunctions and self-imaging phenomena of the two dimensional nonseparable linear canonical transform. J. Opt. Soc. Am. A 28(2), 82–95 (2011)

    Article  ADS  Google Scholar 

  25. G.B. Folland, Harmonic Analysis in Phase Space (Princeton University Press, Princeton, 1989)

    MATH  Google Scholar 

  26. A. Koç, H.M. Ozaktas, L. Hesselink, Fast and accurate computation of two-dimensional non-separable quadratic-phase integrals. J. Opt. Soc. Am. A 27, 1288–1302 (2010)

    Article  ADS  Google Scholar 

  27. S.C. Pei, J.J. Ding, Properties, digital implementation, applications, and self image phenomena of the Gyrator transform, in European Signal Processing Conference (August 2009), pp. 441–445

    Google Scholar 

  28. S.C. Pei, J.J. Ding, Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms. J. Opt. Soc. Am. A 20(3), 522–532 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  29. M.J. Bastiaans, Propagation laws for the second-order moments of the Wigner distribution function in first-order optical systems. Optik (Stuttgart) 82, 173–181 (1989)

    Google Scholar 

  30. H.M. Ozaktas, D. Mendlovic, Fractional Fourier optics. J. Opt. Soc. Am. A 12, 743–751 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  31. P. Pellat-Finet, G. Bonnet, Fractional order Fourier transform and Fourier optics. Opt. Commun. 111, 141–154 (1994)

    Article  ADS  Google Scholar 

  32. D. Mendlovic, H.M. Ozaktas, A.W. Lohmann, Gradedindex fibers, Wigner distribution and the fractional Fourier transform. Appl. Opt. 33, 6188–6193 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Jiun Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pei, SC., Ding, JJ. (2016). Eigenfunctions of the Linear Canonical Transform. In: Healy, J., Alper Kutay, M., Ozaktas, H., Sheridan, J. (eds) Linear Canonical Transforms. Springer Series in Optical Sciences, vol 198. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3028-9_3

Download citation

Publish with us

Policies and ethics