Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 821))

Abstract

In recent times, one can observe the increasing development of multimedia technologies and their rising dominance in life and business. Society is becoming more eager to use new solutions as they facilitate life, primarily by simplifying contact and accelerating the exchange of experience with others, what was not encountered on such a large scale many years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aghdam, M.H., Heidari, S.: Feature selection using particle swarm optimization in text categorization. J. Artif. Intell. Soft Comput. Res. 5(4), 231–238 (2015)

    Article  Google Scholar 

  2. Akusok, A., Miche, Y., Karhunen, J., Bjork, K.M., Nian, R., Lendasse, A.: Arbitrary category classification of websites based on image content. Comput. Intell. Mag. IEEE 10(2), 30–41 (2015). https://doi.org/10.1109/MCI.2015.2405317

    Article  Google Scholar 

  3. Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: Fast retina keypoint. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 510–517. IEEE (2012)

    Google Scholar 

  4. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  5. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In: Computer vision–ECCV 2006, pp. 404–417. Springer (2006)

    Google Scholar 

  6. Bazarganigilani, M.: Optimized image feature selection using pairwise classifiers. J. Artif. Intell. Soft Comput. Res. 1(2), 147–153 (2011)

    Google Scholar 

  7. Calonder, M., Lepetit, V., Fua, P.: Keypoint signatures for fast learning and recognition. In: European Conference on Computer Vision, pp. 58–71. Springer (2008)

    Google Scholar 

  8. Chang, O., Constante, P., Gordon, A., Singana, M.: A novel deep neural network that uses space-time features for tracking and recognizing a moving object. J. Artif. Intell. Soft Comput. Res. 7(2), 125–136 (2017)

    Article  Google Scholar 

  9. Chang, T., Kuo, C.C.: Texture analysis and classification with tree-structured wavelet transform. Image Process. IEEE Trans. 2(4), 429–441 (1993). https://doi.org/10.1109/83.242353

    Article  Google Scholar 

  10. Chang, Y., Wang, Y., Chen, C., Ricanek, K.: Improved image-based automatic gender classification by feature selection. J. Artif. Intell. Soft Comput. Res. 1(3), 241–253 (2011)

    Google Scholar 

  11. Daniel Carlos Guimaraes Pedronette, J.A., da S. Torres, R.: A scalable re-ranking method for content-based image retrieval. Inf. Sci. 265(0), 91–104 (2014). https://doi.org/10.1016/j.ins.2013.12.030

  12. Francos, J., Meiri, A., Porat, B.: A unified texture model based on a 2-d wold-like decomposition. Signal Process. IEEE Trans. 41(8), 2665–2678 (1993). https://doi.org/10.1109/78.229897

    Article  MATH  Google Scholar 

  13. Grabner, M., Grabner, H., Bischof, H.: Learning features for tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007 CVPR 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  14. Hare, S., Saffari, A., Torr, P.H.: Efficient online structured output learning for keypoint-based object tracking. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1894–1901. IEEE (2012)

    Google Scholar 

  15. Huang, J., Kumar, S., Mitra, M., Zhu, W.J., Zabih, R.: Image indexing using color correlograms. In: Proceedings of 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997, pp. 762–768 (1997). https://doi.org/10.1109/CVPR.1997.609412

  16. Jagadish, H.V.: A retrieval technique for similar shapes. SIGMOD Rec. 20(2), 208–217 (1991)

    Article  Google Scholar 

  17. Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using gabor filters. Pattern Recogn. 24(12), 1167–1186 (1991)

    Article  Google Scholar 

  18. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3304–3311. IEEE (2010)

    Google Scholar 

  19. Jégou, H., Perronnin, F., Douze, M., Sanchez, J., Perez, P., Schmid, C.: Aggregating local image descriptors into compact codes. Pattern Anal. Mach. Intell. IEEE Trans. 34(9), 1704–1716 (2012)

    Article  Google Scholar 

  20. Kanimozhi, T., Latha, K.: An integrated approach to region based image retrieval using firefly algorithm and support vector machine. Neurocomputing 151, Part 3(0), 1099–1111 (2015)

    Google Scholar 

  21. Karakasis, E., Amanatiadis, A., Gasteratos, A., Chatzichristofis, S.: Image moment invariants as local features for content based image retrieval using the bag-of-visual-words model. Pattern Recogn. Lett. 55, 22–27 (2015)

    Article  Google Scholar 

  22. Karimi, B., Krzyzak, A.: A novel approach for automatic detection and classification of suspicious lesions in breast ultrasound images. J. Artif. Intell. Soft Comput. Res. 3(4), 265–276 (2013)

    Article  Google Scholar 

  23. Kauppinen, H., Seppanen, T., Pietikainen, M.: An experimental comparison of autoregressive and fourier-based descriptors in 2d shape classification. Pattern Anal. Mach. Intell. IEEE Trans. 17(2), 201–207 (1995). https://doi.org/10.1109/34.368168

    Article  Google Scholar 

  24. Ke, Y., Sukthankar, R.: Pca-sift: A more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004. , vol. 2, pp. II–II. IEEE (2004)

    Google Scholar 

  25. Kiranyaz, S., Birinci, M., Gabbouj, M.: Perceptual color descriptor based on spatial distribution: a top-down approach. Image Vision Comput. 28(8), 1309–1326 (2010)

    Article  Google Scholar 

  26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst., 1097–1105 (2012)

    Google Scholar 

  27. Leutenegger, S., Chli, M., Siegwart, R.Y.: Brisk: Binary robust invariant scalable keypoints. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2548–2555. IEEE (2011)

    Google Scholar 

  28. Lin, C.H., Chen, H.Y., Wu, Y.S.: Study of image retrieval and classification based on adaptive features using genetic algorithm feature selection. Expert Syst. Appl. 41(15), 6611–6621 (2014)

    Article  Google Scholar 

  29. Liu, G.H., Yang, J.Y.: Content-based image retrieval using color difference histogram. Pattern Recogn. 46(1), 188–198 (2013)

    Article  Google Scholar 

  30. Liu, L., Shao, L., Li, X.: Evolutionary compact embedding for large-scale image classification. Inf. Sci. 316, 567–581 (2015)

    Article  Google Scholar 

  31. Liu, S., Bai, X.: Discriminative features for image classification and retrieval. Pattern Recogn. Lett. 33(6), 744–751 (2012)

    Article  Google Scholar 

  32. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  33. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004). British Machine Vision Computing 2002

    Google Scholar 

  34. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004)

    Article  Google Scholar 

  35. Murata, M., Ito, S., Tokuhisa, M., Ma, Q.: Order estimation of japanese paragraphs by supervised machine learning and various textual features. J. Artif. Intell. Soft Comput. Res. 5(4), 247–255 (2015)

    Article  Google Scholar 

  36. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 2, CVPR ’06, pp. 2161–2168. IEEE Computer Society, Washington, DC, USA (2006)

    Google Scholar 

  37. Ogiela, M.R., Tadeusiewicz, R.: Syntactic reasoning and pattern recognition for analysis of coronary artery images. Artif. Intell. Med. 26(1), 145–159 (2002)

    Article  Google Scholar 

  38. Ogiela, M.R., Tadeusiewicz, R.: Nonlinear processing and semantic content analysis in medical imaging-a cognitive approach. Instrum. Measurement IEEE Trans. 54(6), 2149–2155 (2005)

    Article  Google Scholar 

  39. Pass, G., Zabih, R.: Histogram refinement for content-based image retrieval. In: Proceedings 3rd IEEE Workshop on Applications of Computer Vision, 1996. WACV 1996, pp. 96–102 (1996). https://doi.org/10.1109/ACV.1996.572008

  40. Pass, G., Zabih, R., Miller, J.: Comparing images using color coherence vectors. In: Proceedings of the fourth ACM international conference on Multimedia, pp. 65–73. ACM (1997)

    Google Scholar 

  41. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: A simultaneous feature adaptation and feature selection method for content-based image retrieval systems. Knowl. Based Syst. 39, 85–94 (2013)

    Article  Google Scholar 

  42. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: An efficient alternative to sift or surf. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571 (2011). https://doi.org/10.1109/ICCV.2011.6126544

  43. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to sift or surf. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571. IEEE (2011)

    Google Scholar 

  44. Shrivastava, N., Tyagi, V.: Content based image retrieval based on relative locations of multiple regions of interest using selective regions matching. Inf. Sci. 259, 212–224 (2014). https://doi.org/10.1016/j.ins.2013.08.043

    Article  Google Scholar 

  45. Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: Proceedings of Ninth IEEE International Conference on Computer Vision, 2003, pp. 1470–1477 vol. 2 (2003)

    Google Scholar 

  46. Śmietański, J., Tadeusiewicz, R., Łuczyńska, E.: Texture analysis in perfusion images of prostate cancera case study. Int. J. Appl. Math. Comput. Sci. 20(1), 149–156 (2010)

    Article  Google Scholar 

  47. Sünderhauf, N., Protzel, P.: Brief-gist-closing the loop by simple means. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1234–1241. IEEE (2011)

    Google Scholar 

  48. Tsai, G.: Histogram of oriented gradients. Univ. Mich. 1(1), 1–17 (2010)

    Google Scholar 

  49. Veltkamp, R.C., Hagedoorn, M.: State of the art in shape matching. In: Lew, M.S. (ed.) Principles of Visual Information Retrieval, pp. 87–119. Springer, London, UK, UK (2001)

    Google Scholar 

  50. Wang, X.Y., Yang, H.Y., Li, Y.W., Li, W.Y., Chen, J.W.: A new svm-based active feedback scheme for image retrieval. Eng. Appl. Artif. Intell. 37, 43–53 (2015)

    Article  Google Scholar 

  51. Wu, J., Shen, H., Li, Y.D., Xiao, Z.B., Lu, M.Y., Wang, C.L.: Learning a hybrid similarity measure for image retrieval. Pattern Recogn. 46(11), 2927–2939 (2013)

    Article  MATH  Google Scholar 

  52. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 1794–1801 (2009). https://doi.org/10.1109/CVPR.2009.5206757

  53. Yu, J., Qin, Z., Wan, T., Zhang, X.: Feature integration analysis of bag-of-features model for image retrieval. Neurocomputing 120(0), 355–364 (2013). Image Feature Detection and Description

    Google Scholar 

  54. Žemgulys, J., Raudonis, V., Maskeliūnas, R., Damaševičius, R.: Recognition of basketball referee signals from videos using histogram of oriented gradients (hog) and support vector machine (svm). Procedi. Comput. Sci. 130, 953–960 (2018)

    Article  Google Scholar 

  55. Zhao, W.L., Ngo, C.W.: Scale-rotation invariant pattern entropy for keypoint-based near-duplicate detection. IEEE Trans. Image Process. 18(2), 412–423 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zitnick, C., Dollar, P.: Edge boxes: Locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., (eds.) Computer Vision ECCV 2014, Lecture Notes in Computer Science, vol. 8693, pp. 391–405. Springer International Publishing (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał Scherer .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scherer, R. (2020). Introduction. In: Computer Vision Methods for Fast Image Classification and Retrieval. Studies in Computational Intelligence, vol 821. Springer, Cham. https://doi.org/10.1007/978-3-030-12195-2_1

Download citation

Publish with us

Policies and ethics