Skip to main content

Targeting Cancer with Genetically Engineered TCR T Cells

  • Chapter
  • First Online:
Current Immunotherapeutic Strategies in Cancer

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 214))

Abstract

The adoptive cell transfer (ACT) of genetically engineered T cell receptor (TCR) T cells is one of the burgeoning fields of immunotherapy, with promising results in current clinical trials. Presently, clinicaltrials.gov has over 200 active trials involving adoptive cell therapy. The ACT of genetically engineered T cells not only allows the ability to select for TCRs with desired properties such as high-affinity receptors and tumor reactivity but to further enhance those receptors allowing for better targeting and killing of cancer cells in patients. Moreover, the addition of genetic material, including cytokines and cytokine receptors, can increase the survival and persistence of the T cell allowing for complete and sustained remission of cancer targets. The potential for improvement in adoptive cell therapy is limitless, with genetic modifications targeting to improve weaknesses of ACT and to thus enhance receptor affinity and functional avidity of the genetically engineered T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander-Miller MA, Leggatt GR, Berzofsky JA (1996) Selective expansion of high- or low-avidity cytotoxic T lymphocytes and efficacy for adoptive immunotherapy. Proc Natl Acad Sci U S A 93(9):4102–4107. PubMed PMID: 8633023. Pubmed Central PMCID: 39494

    Article  CAS  Google Scholar 

  • Baier PK, Wimmenauer S, Hirsch T, von Specht BU, von Kleist S, Keller H et al (1998) Analysis of the T cell receptor variability of tumor-infiltrating lymphocytes in colorectal carcinomas. Tumour Biol 19(3):205-212. PubMed PMID: 9591047

    Article  CAS  PubMed  Google Scholar 

  • Barth RJ Jr, Mule JJ, Spiess PJ, Rosenberg SA (1991) Interferon gamma and tumor necrosis factor have a role in tumor regressions mediated by murine CD8+ tumor-infiltrating lymphocytes. J Exp Med 173(3):647–658. PubMed PMID: 1900079. Pubmed Central PMCID: 2118834

    Article  CAS  PubMed  Google Scholar 

  • Bendle GM, Linnemann C, Hooijkaas AI, Bies L, de Witte MA, Jorritsma A et al (2010) Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat Med 16(5):565–570

    Article  CAS  PubMed  Google Scholar 

  • Benlalam H, Vignard V, Khammari A, Bonnin A, Godet Y, Pandolfino MC et al (2007) Infusion of Melan-A/Mart-1 specific tumor-infiltrating lymphocytes enhanced relapse-free survival of melanoma patients. Cancer Immunol Immunother 56(4):515–526. PubMed PMID: 16874485

    Article  PubMed  CAS  Google Scholar 

  • Blank C, Kuball J, Voelkl S, Wiendl H, Becker B, Walter B et al (2006) Blockade of PD-L1 (B7-H1) augments human tumor-specific T cell responses in vitro. Int J Cancer 119(2):317–327. PubMed PMID: 16482562

    Article  CAS  PubMed  Google Scholar 

  • Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L et al (1997) HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276(5319):1719–1724

    Article  CAS  PubMed  Google Scholar 

  • Butcher EC, Picker LJ (1996) Lymphocyte homing and homeostasis. Science 272(5258):60–66. PubMed PMID: 8600538

    Article  CAS  PubMed  Google Scholar 

  • Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA et al (1990) Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60(3):509–520. PubMed PMID: 2154335

    Article  CAS  PubMed  Google Scholar 

  • Callender GG, Rosen HR, Roszkowski JJ, Lyons GE, Li M, Moore T et al (2006) Identification of a hepatitis C virus-reactive T cell receptor that does not require CD8 for target cell recognition. Hepatology 43(5):973–981. PubMed PMID: 16628627

    Article  CAS  PubMed  Google Scholar 

  • Cameron BJ, Gerry AB, Dukes J, Harper JV, Kannan V, Bianchi FC et al (2013) Identification of a Titin-derived HLA-A1–presented peptide as a cross-reactive target for engineered MAGE A3–directed T cells. Sci Transl Med 5(197):197ra03

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang HC, Bao Z, Yao Y, Tse AG, Goyarts EC, Madsen M et al (1994) A general method for facilitating heterodimeric pairing between two proteins: application to expression of alpha and beta T-cell receptor extracellular segments. Proc Natl Acad Sci U S A 91(24):11408–11412. PubMed PMID: 7972074. Pubmed Central PMCID: 45240

    Article  CAS  Google Scholar 

  • Chatterjee S, Daenthanasanmak A, Chakraborty P, Wyatt MW, Dhar P, Selvam SP et al (2017) CD38-NAD(+) axis regulates immunotherapeutic anti-tumor T cell response. Cell Metab. PubMed PMID: 29129787

    Google Scholar 

  • Cherkasova E, Weisman Q, Childs RW (2013) Endogenous retroviruses as targets for antitumor immunity in renal cell cancer and other tumors. Front Oncol

    Google Scholar 

  • Chodon T, Comin-Anduix B, Chmielowski B, Koya RC, Wu Z, Auerbach M et al (2014) Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin Cancer Res: An Official Journal of the American Association for Cancer Research 20(9):2457–2465. PubMed PMID: 24634374. Pubmed Central PMCID: 4070853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clay TM, Custer MC, Spiess PJ, Nishimura MI (1999a) Potential use of T cell receptor genes to modify hematopoietic stem cells for the gene therapy of cancer. Pathol Oncol Res 5(1):3–15. PubMed PMID: 10079371

    Article  CAS  Google Scholar 

  • Clay TM, Custer MC, Sachs J, Hwu P, Rosenberg SA, Nishimura MI (1999b) Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. J Immunol 163(1):507–513

    CAS  PubMed  Google Scholar 

  • Clemente CG, Mihm MC, Jr., Bufalino R, Zurrida S, Collini P, Cascinelli N (1996) Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77(7):1303–1310. PubMed PMID: 8608507

    Google Scholar 

  • Cohen CJ, Zhao Y, Zheng Z, Rosenberg SA, Morgan RA (2006) Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res 66(17):8878–8886. PubMed PMID: 16951205. Pubmed Central PMCID: 2147082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen CJ, Li YF, El-Gamil M, Robbins PF, Rosenberg SA, Morgan RA (2007) Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res 67(8):3898–3903. PubMed PMID: 17440104. Pubmed Central PMCID: 2147081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen CJ, Gartner JJ, Horovitz-Fried M, Shamalov K, Trebska-McGowan K, Bliskovsky VV et al (2015) Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. J Clin Invest 125(10):3981–3991. PubMed PMID: 26389673. Pubmed Central PMCID: 4607110

    Article  PubMed  PubMed Central  Google Scholar 

  • Cole DJ, Weil DP, Shilyansky J, Custer M, Kawakami Y, Rosenberg SA et al (1995) Characterization of the functional specificity of a cloned T-cell receptor heterodimer recognizing the MART-1 melanoma antigen. Cancer Res 55(4):748–752. PubMed PMID: 7531614

    Google Scholar 

  • de Vries JE, Yssel H, Spits H (1989) Interplay between the TCR/CD3 complex and CD4 or CD8 in the activation of cytotoxic T lymphocytes. Immunol Rev 109:119–141. PubMed PMID: 2527803

    Article  PubMed  Google Scholar 

  • Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C et al (2011) Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 365(18):1673–1683. PubMed PMID: 22047558. Pubmed Central PMCID: 3236370

    Article  CAS  PubMed  Google Scholar 

  • Dietrich K, Theobald M (2015) [Immunological tumor therapy]. Internist (Berl) 56(8):907–916; quiz 17. PubMed PMID: 26187335. Immunologische Tumortherapie

    Article  CAS  PubMed  Google Scholar 

  • Dudley ME, Wunderlich JR, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL et al (2002) A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma. J Immunother 25(3):243–251. PubMed PMID: 12000866. Pubmed Central PMCID: 2413438

    Article  CAS  PubMed  Google Scholar 

  • Dudley ME, Wunderlich JR, Shelton TE, Even J, Rosenberg SA (2003) Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother 26(4):332–342. PubMed PMID: 12843795. Pubmed Central PMCID: 2305721

    Article  PubMed  Google Scholar 

  • Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP et al (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol: Official Journal of the American Society of Clinical Oncology 23(10):2346–2357. PubMed PMID: 15800326. Pubmed Central PMCID: 1475951

    Article  CAS  PubMed  Google Scholar 

  • Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U et al (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol: Official Journal of the American Society of Clinical Oncology 26(32):5233–5239. PubMed PMID: 18809613. Pubmed Central PMCID: 2652090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fefer A (1969) Immunotherapy and chemotherapy of Moloney sarcoma virus-induced tumors in mice. Cancer Res 29(12):2177–2183. PubMed PMID: 5369675

    Google Scholar 

  • Fisher KJ, Jooss K, Alston J, Yang Y, Haecker SE, High K et al (1997) Recombinant adeno-associated virus for muscle directed gene therapy. Nat Med 3(3):306–312. PubMed PMID: 9055858

    Article  CAS  PubMed  Google Scholar 

  • Foley KC, Spear TT, Murray DC, Nagato K, Garrett-Mayer E, Nishimura MI (2017) HCV T cell receptor chain modifications to enhance expression, pairing, and antigen recognition in T cells for adoptive transfer. Mol Ther Oncolytics 5:105–115. PubMed PMID: 28573185. Pubmed Central PMCID: 5447397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Bellantuono I, Elsasser A, Marley SB, Gordon MY, Goldman JM et al (2000) Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood 95(7):2198–2203. PubMed PMID: 10733485

    Google Scholar 

  • Garraway LA, Lander ES (2013) Lessons from the cancer genome. Cell 153(1):17–37. PubMed PMID: 23540688

    Article  CAS  PubMed  Google Scholar 

  • Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ et al (2005) Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 202(7):907–912. PubMed PMID: 16203864. Pubmed Central PMCID: 1397916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillis S, Smith KA (1977) Long term culture of tumour-specific cytotoxic T cells. Nature 268(5616):154–156. PubMed PMID: 145543

    Article  CAS  PubMed  Google Scholar 

  • Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S et al (2016) Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med 22(4):433–438. PubMed PMID: 26901407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harada M, Kobayashi K, Matsueda S, Nakagawa M, Noguchi M, Itoh K (2003) Prostate-specific antigen-derived epitopes capable of inducing cellular and humoral responses in HLA-A24+ prostate cancer patients. Prostate 57(2):152–159. PubMed PMID: 12949939

    Article  CAS  PubMed  Google Scholar 

  • Hinrichs CS, Restifo NP (2013) Reassessing target antigens for adoptive T-cell therapy. Nature Biotechnol 31(11):999–1008. PubMed PMID: 24142051. Pubmed Central PMCID: 4280065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiyama E, Hiyama K, Yokoyama T, Shay JW (2001) Immunohistochemical detection of telomerase (hTERT) protein in human cancer tissues and a subset of cells in normal tissues. Neoplasia 3(1):17–26. PubMed PMID: 11326312. Pubmed Central PMCID: 1505023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723. PubMed PMID: 20525992

    Article  CAS  PubMed  Google Scholar 

  • Hughes MS, Yu YY, Dudley ME, Zheng Z, Robbins PF, Li Y et al (2005) Transfer of a TCR gene derived from a patient with a marked antitumor response conveys highly active T-cell effector functions. Hum Gene Ther 16(4):457–472. PubMed PMID: PMC1476695

    Article  CAS  PubMed  Google Scholar 

  • Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS et al (2009) Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114(3):535–546. PubMed PMID: 19451549. Pubmed Central PMCID: 2929689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorritsma A, Gomez-Eerland R, Dokter M, van de Kasteele W, Zoet YM, Doxiadis II et al (2007) Selecting highly affine and well-expressed TCRs for gene therapy of melanoma. Blood 110(10):3564–3572. PubMed PMID: 17660381

    Article  CAS  PubMed  Google Scholar 

  • Kamta J, Chaar M, Ande A, Altomare DA, Ait-Oudhia S (2017) Advancing cancer therapy with present and emerging immuno-oncology approaches. Front Oncol 7:64. 01/13/received 03/20/accepted. PubMed PMID: PMC5394116

    Google Scholar 

  • Kedl RM, Rees WA, Hildeman DA, Schaefer B, Mitchell T, Kappler J et al (2000) T cells compete for access to antigen-bearing antigen-presenting cells. J Exp Med 192(8):1105–1113. PubMed PMID: 11034600. Pubmed Central PMCID: 2195874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerkar SP, Muranski P, Kaiser A, Boni A, Sanchez-Perez L, Yu Z et al (2010) Tumor-specific CD8+ T cells expressing IL-12 eradicate established cancers in lymphodepleted hosts. Cancer Res 70(17):6725–6734. PubMed PMID: PMC2935308

    Google Scholar 

  • Kerkar SP, Goldszmid RS, Muranski P, Chinnasamy D, Yu Z, Reger RN et al (2011) IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J Clin Investig 121(12):4746–4757. 05/02/received 09/28/accepted. PubMed PMID: PMC3226001

    Google Scholar 

  • Kershaw MH, Wang G, Westwood JA, Pachynski RK, Tiffany HL, Marincola FM et al (2002) Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum Gene Ther 13(16):1971–1980. PubMed PMID: 12427307

    Article  CAS  PubMed  Google Scholar 

  • Kessler PD, Podsakoff GM, Chen X, McQuiston SA, Colosi PC, Matelis LA et al (1996) Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci U S A 93(24):14082–14087. PubMed PMID: 8943064. Pubmed Central PMCID: 19498

    Article  CAS  Google Scholar 

  • Klebanoff CA, Finkelstein SE, Surman DR, Lichtman MK, Gattinoni L, Theoret MR et al (2004) IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8(+) T cells. Proc Natl Acad Sci U S A 101(7):1969–1974. PubMed PMID: PMC357036

    Google Scholar 

  • Knies D, Klobuch S, Xue SA, Birtel M, Echchannaoui H, Yildiz O et al (2016) An optimized single chain TCR scaffold relying on the assembly with the native CD3-complex prevents residual mispairing with endogenous TCRs in human T-cells. Oncotarget 7(16):21199–21221. PubMed PMID: 27028870. Pubmed Central PMCID: 5008279

    Google Scholar 

  • Knipping F, Osborn MJ, Petri K, Tolar J, Glimm H, von Kalle C et al (2017) Genome-wide specificity of highly efficient TALENs and CRISPR/Cas9 for T cell receptor modification. Mol Ther Methods Clin Dev 4:213–224. PubMed PMID: 28345006. Pubmed Central PMCID: 5363317

    Article  CAS  Google Scholar 

  • Kryczek I, Zhao E, Liu Y, Wang Y, Vatan L, Szeliga W et al (2011) Human TH17 cells are long-lived effector memory cells. Sci Transl Med 3(104):104ra0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuball J, Schuler M, Antunes Ferreira E, Herr W, Neumann M, Obenauer-Kutner L et al (2002) Generating p 53-specific cytotoxic T lymphocytes by recombinant adenoviral vector-based vaccination in mice, but not man. Gene Therapy 9:833

    Article  CAS  PubMed  Google Scholar 

  • Kuball J, Schmitz FW, Voss RH, Ferreira EA, Engel R, Guillaume P et al (2005) Cooperation of human tumor-reactive CD4+ and CD8+ T cells after redirection of their specificity by a high-affinity p 53A2.1-specific TCR. Immunity 22(1):117–129. PubMed PMID: 15664164

    Article  CAS  PubMed  Google Scholar 

  • Kuball J, Dossett ML, Wolfl M, Ho WY, Voss RH, Fowler C et al (2007) Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood 109(6):2331–2338. PubMed PMID: 17082316. Pubmed Central PMCID: 1852191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyte JA, Gaudernack G, Faane A, Lislerud K, Inderberg EM, Brunsvig P et al (2016) T-helper cell receptors from long-term survivors after telomerase cancer vaccination for use in adoptive cell therapy. Oncoimmunology 5(12):e1249090. 06/27/received 09/28/revised 10/12/accepted. PubMed PMID: PMC5214348

    Google Scholar 

  • Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R et al (2006) Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol: Official Journal of the American Society of Clinical Oncology 24(13):e20–e22. PubMed PMID: 16648493

    Article  PubMed  Google Scholar 

  • Legler DF, Johnson-Leger C, Wiedle G, Bron C, Imhof BA (2004) The alpha v beta 3 integrin as a tumor homing ligand for lymphocytes. Eur J Immunol 34(6):1608–1616. PubMed PMID: 15162430

    Google Scholar 

  • Leisegang M, Engels B, Meyerhuber P, Kieback E, Sommermeyer D, Xue SA et al (2008) Enhanced functionality of T cell receptor-redirected T cells is defined by the transgene cassette. J Mol Med (Berl) 86(5):573–583. PubMed PMID: 18335188

    Article  CAS  PubMed  Google Scholar 

  • Leisegang M, Turqueti-Neves A, Engels B, Blankenstein T, Schendel DJ, Uckert W et al (2010) T-cell receptor gene-modified T cells with shared renal cell carcinoma specificity for adoptive T-cell therapy. Clin Cancer Res: An Official Journal of the American Association for Cancer Research 16(8):2333–2343. PubMed PMID: 20371691

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Moysey R, Molloy PE, Vuidepot AL, Mahon T, Baston E et al (2005) Directed evolution of human T-cell receptors with picomolar affinities by phage display. Nat Biotechnol 23(3):349–354. PubMed PMID: 15723046

    Article  CAS  PubMed  Google Scholar 

  • Liao W, Lin J-X, Leonard WJ (2013) Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38(1):13–25. PubMed PMID: PMC3610532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L et al (2013) Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122(6):863–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Rosenberg SA (2001) Transduction of an IL-2 gene into human melanoma-reactive lymphocytes results in their continued growth in the absence of exogenous IL-2 and maintenance of specific antitumor activity. J Immunol (Baltimore, Md: 1950) 167(11):6356–6365. PubMed PMID: PMC2430884

    Article  CAS  PubMed  Google Scholar 

  • Lustgarten J, Theobald M, Labadie C, LaFace D, Peterson P, Disis ML et al (1997) Identification of Her-2/Neu CTL epitopes using double transgenic mice expressing HLA-A2.1 and human CD.8. Hum Immunol 52(2):109–118. PubMed PMID: 9077559

    Article  CAS  PubMed  Google Scholar 

  • Lyons GE, Moore T, Brasic N, Li M, Roszkowski JJ, Nishimura MI (2006) Influence of human CD8 on antigen recognition by T-cell receptor-transduced cells. Cancer Res 66(23):11455–11461. PubMed PMID: 17145893

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Gomes EM, Lo AS, Junghans RP (2014) Advanced generation anti-prostate specific membrane antigen designer T cells for prostate cancer immunotherapy. Prostate 74(3):286–296. PubMed PMID: 24174378

    Article  CAS  PubMed  Google Scholar 

  • Machlenkin A, Paz A, Bar Haim E, Goldberger O, Finkel E, Tirosh B et al (2005) Human CTL epitopes prostatic acid phosphatase-3 and six-transmembrane epithelial antigen of prostate-3 as candidates for prostate cancer immunotherapy. Cancer Res 65(14):6435–6442. PubMed PMID: 16024648

    Article  CAS  PubMed  Google Scholar 

  • Moore TV, Lyons GE, Brasic N, Roszkowski JJ, Voelkl S, Mackensen A et al (2009) Relationship between CD8-dependent antigen recognition, T cell functional avidity, and tumor cell recognition. Cancer Immunol Immunother 58(5):719–728. PubMed PMID: 18836717. Pubmed Central PMCID: 2773431

    Article  PubMed  CAS  Google Scholar 

  • Moore T, Wagner CR, Scurti GM, Hutchens KA, Godellas C, Clark AL et al (2017) Clinical and immunologic evaluation of three metastatic melanoma patients treated with autologous melanoma-reactive TCR-transduced T cells. Cancer Immunol Immunother. PubMed PMID: 29052782

    Google Scholar 

  • Morgan DA, Ruscetti FW, Gallo R (1976) Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193(4257):1007–1008. PubMed PMID: 181845

    Article  CAS  PubMed  Google Scholar 

  • Morgan RA, Chinnasamy N, Abate-Daga DD, Gros A, Robbins PF, Zheng Z et al (2013) Cancer regression and neurologic toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother (Hagerstown, Md: 1997) 36(2):133–151. PubMed PMID: PMC3581823

    Google Scholar 

  • Morgenroth A, Cartellieri M, Schmitz M, Gunes S, Weigle B, Bachmann M et al (2007) Targeting of tumor cells expressing the prostate stem cell antigen (PSCA) using genetically engineered T-cells. Prostate 67(10):1121–1131. PubMed PMID: 17492652

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Tinder TL, Basu GD, Pathangey LB, Chen L, Gendler SJ (2004) Therapeutic efficacy of MUC1-specific cytotoxic T lymphocytes and CD137 co-stimulation in a spontaneous breast cancer model. Breast Dis 20:53–63. PubMed PMID: 15687707

    Article  CAS  PubMed  Google Scholar 

  • Mule JJ, Shu S, Schwarz SL, Rosenberg SA (1984) Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. Science 225(4669):1487–1489. PubMed PMID: 6332379

    Article  CAS  PubMed  Google Scholar 

  • Murphy KM, Stockinger B (2010) Effector T cell plasticity: flexibility in the face of changing circumstances. Nat Immunol 11(8):674–680. PubMed PMID: PMC3249647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura MI, Avichezer D, Custer MC, Lee CS, Chen C, Parkhurst MR et al (1999) MHC class I-restricted recognition of a melanoma antigen by a human CD4+ tumor infiltrating lymphocyte. Cancer Res 59(24):6230–6238. PubMed PMID: 10626817

    Google Scholar 

  • Nishimura MI, Roszkowski JJ, Moore TV, Brasic N, McKee MD, Clay TM (2005) Antigen recognition and T-cell biology. Cancer Treat Res 123:37–59. PubMed PMID: 16211865

    Google Scholar 

  • Ochi T, Fujiwara H, Okamoto S, An J, Nagai K, Shirakata T et al (2011) Novel adoptive T-cell immunotherapy using a WT1-specific TCR vector encoding silencers for endogenous TCRs shows marked antileukemia reactivity and safety. Blood 118(6):1495–1503. PubMed PMID: 21673345

    Article  CAS  PubMed  Google Scholar 

  • Okamoto S, Mineno J, Ikeda H, Fujiwara H, Yasukawa M, Shiku H et al (2009) Improved expression and reactivity of transduced tumor-specific TCRs in human lymphocytes by specific silencing of endogenous TCR. Cancer Res 69(23):9003–9011. PubMed PMID: 19903853

    Article  CAS  PubMed  Google Scholar 

  • Page DB, Postow MA, Callahan MK, Allison JP, Wolchok JD (2014) Immune modulation in cancer with antibodies. Annu Rev Med 65:185–202. PubMed PMID: 24188664

    Article  CAS  PubMed  Google Scholar 

  • Palmer DC, Chan C-C, Gattinoni L, Wrzesinski C, Paulos CM, Hinrichs CS et al (2008) Effective tumor treatment targeting a melanoma/melanocyte-associated antigen triggers severe ocular autoimmunity. Proc Natl Acad Sci 105(23):8061–8066

    Article  CAS  Google Scholar 

  • Papewalis C, Ehlers M, Schott M (2010) Advances in cellular therapy for the treatment of thyroid cancer. J Oncol. 09/02/received

    Google Scholar 

  • Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. PubMed PMID: 22437870. Pubmed Central PMCID: 4856023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkhurst MR, Joo J, Riley JP, Yu Z, Li Y, Robbins PF et al (2009) Characterization of genetically modified T-cell receptors that recognize the CEA:691–699 peptide in the context of HLA-A2.1 on human colorectal cancer cells. Clin Cancer Res: An Official Journal of the American Association for Cancer Research 15(1):169–180. PubMed PMID: 19118044. Pubmed Central PMCID: 3474199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan D-AN, Feldman SA et al (2011) T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 19(3):620–626. 10/14/received 11/08/accepted. PubMed PMID: PMC3048186

    Google Scholar 

  • Pasetto A, Frelin L, Aleman S, Holmstrom F, Brass A, Ahlen G et al (2012) TCR-redirected human T cells inhibit hepatitis C virus replication: hepatotoxic potential is linked to antigen specificity and functional avidity. J Immunol 189(9):4510–4519. PubMed PMID: 23024278

    Article  CAS  PubMed  Google Scholar 

  • Provasi E, Genovese P, Lombardo A, Magnani Z, Liu PQ, Reik A et al (2012) Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat Med 18(5):807–815. PubMed PMID: 22466705. Pubmed Central PMCID: 5019824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT, Lacey SF et al (2015) NY-ESO-1 specific TCR engineered T-cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med 21(8):914–921. PubMed PMID: PMC4529359

    Google Scholar 

  • Richman SA, Healan SJ, Weber KS, Donermeyer DL, Dossett ML, Greenberg PD et al (2006) Development of a novel strategy for engineering high-affinity proteins by yeast display. Protein Eng Des Sel 19(6):255–264. PubMed PMID: 16549400

    Article  CAS  Google Scholar 

  • Robbins PF, El-Gamil M, Li YF, Kawakami Y, Loftus D, Appella E et al (1996) A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med 183(3):1185–1192

    Article  CAS  PubMed  Google Scholar 

  • Robbins PF, Li YF, El-Gamil M, Zhao Y, Wargo JA, Zheng Z et al (2008) Single and dual amino acid substitutions in TCR CDRs can enhance antigen-specific T cell functions. J Immunol 180(9):6116–6131

    Article  CAS  PubMed  Google Scholar 

  • Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME et al (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol: Official Journal of the American Society of Clinical Oncology 29(7):917–924. PubMed PMID: 21282551. Pubmed Central PMCID: 3068063

    Google Scholar 

  • Rosenberg SA (2010) Of mice, not men: no evidence for graft-versus-host disease in humans receiving T-cell receptor–transduced autologous T cells. Mol Ther 18(10):1744–1745. PubMed PMID: PMC2951571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg SA, White DE (1996) Vitiligo in patients with melanoma: normal tissue antigens can be targets for cancer immunotherapy. J Immunother Emphasis Tumor Immunol 19(1):81–84. PubMed PMID: 8859727

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE et al (1985) Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. New Engl J Med 313(23):1485–1492. PubMed PMID: 3903508

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA, Spiess P, Lafreniere R (1986) A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233(4770):1318–1321. PubMed PMID: 3489291

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S et al (1987) A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med. 316(15):889–897. PubMed PMID: 3493432

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST et al (1988) Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 319(25):1676–1680. PubMed PMID: 3264384

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R et al (1990) Gene transfer into humans–immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 323(9):570–578. PubMed PMID: 2381442

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA, Lotze MT, Yang JC, Topalian SL, Chang AE, Schwartzentruber DJ et al (1993) Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. JNCI: J Natl Cancer Inst 85(8):622–632

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR et al (1994) Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA 271(12):907–913. PubMed PMID: 8120958

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8:299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roszkowski JJ, Yu DC, Rubinstein MP, McKee MD, Cole DJ, Nishimura MI (2003) CD8-independent tumor cell recognition is a property of the T cell receptor and not the T cell. J Immunol 170(5):2582–2589. PubMed PMID: 12594285

    Article  CAS  PubMed  Google Scholar 

  • Roszkowski JJ, Lyons GE, Kast WM, Yee C, Van Besien K, Nishimura MI (2005) Simultaneous generation of CD8+ and CD4+ melanoma-reactive T cells by retroviral-mediated transfer of a single T-cell receptor. Cancer Res 65(4):1570–1576. PubMed PMID: 15735047

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein MP, Cloud CA, Garrett TE, Moore CJ, Schwartz KM, Johnson CB et al (2012) Ex vivo interleukin-12-priming during CD8(+) T cell activation dramatically improves adoptive T cell transfer antitumor efficacy in a lymphodepleted host. J Am Coll Surg 214(4):700–707; discussion 7–8. PubMed PMID: 22360982. Pubmed Central PMCID: 3429131

    Article  PubMed  PubMed Central  Google Scholar 

  • Sang M, Lian Y, Zhou X, Shan B (2011) MAGE-A family: attractive targets for cancer immunotherapy. Vaccine 29(47):8496–8500. PubMed PMID: 21933694

    Article  CAS  PubMed  Google Scholar 

  • Schmitt TM, Aggen DH, Stromnes IM, Dossett ML, Richman SA, Kranz DM et al (2013) Enhanced-affinity murine T-cell receptors for tumor/self-antigens can be safe in gene therapy despite surpassing the threshold for thymic selection. Blood 122(3):348–356. 01/11/received 05/03/accepted. PubMed PMID: PMC3716200

    Google Scholar 

  • Schmitt TM, Stromnes IM, Chapuis AG, Greenberg PD (2015) New strategies in engineering T-cell receptor gene-modified T cells to more effectively target malignancies. Clin Cancer Res: An Official Journal of the American Association for Cancer Research 21(23):5191–5197. PubMed PMID: 26463711. Pubmed Central PMCID: 4746077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholten KBJ, Kramer D, Kueter EWM, Graf M, Schoedl T, Meijer CJLM et al (2006) Codon modification of T cell receptors allows enhanced functional expression in transgenic human T cells. Clin Immunol 119(2):135–145

    Article  CAS  PubMed  Google Scholar 

  • Scholten KB, Turksma AW, Ruizendaal JJ, van den Hende M, van der Burg SH, Heemskerk MH et al (2011) Generating HPV specific T helper cells for the treatment of HPV induced malignancies using TCR gene transfer. J Transl Med 9:147. PubMed PMID: 21892941. Pubmed Central PMCID: 3176193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommermeyer D, Uckert W (2010) Minimal amino acid exchange in human TCR constant regions fosters improved function of TCR gene-modified T cells. J Immunol 184(11):6223–6231

    Article  CAS  PubMed  Google Scholar 

  • Sommermeyer D, Neudorfer J, Weinhold M, Leisegang M, Engels B, Noessner E et al (2006) Designer T cells by T cell receptor replacement. Eur J Immunol 36(11):3052–3059. PubMed PMID: 17051621

    Article  CAS  PubMed  Google Scholar 

  • Spear TT, Nagato K, Nishimura MI (2016a) Strategies to genetically engineer T cells for cancer immunotherapy. Cancer Immunol Immunother 65(6):631–649. PubMed PMID: 27138532. Pubmed Central PMCID: 5424608

    Article  CAS  PubMed  Google Scholar 

  • Spear TT, Riley TP, Lyons GE, Callender GG, Roszkowski JJ, Wang Y et al (2016b) Hepatitis C virus-cross-reactive TCR gene-modified T cells: a model for immunotherapy against diseases with genomic instability. J Leukoc Biol 100(3):545–557. PubMed PMID: 26921345. Pubmed Central PMCID: 4982612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su EW, Moore CJ, Suriano S, Johnson CB, Songalia N, Patterson A et al (2015) IL-2Rα mediates temporal regulation of IL-2 signaling and enhances immunotherapy. Sci Transl Med 7(311):311ra170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan MP, Dolton GM, Gerry AB, Brewer JE, Bennett AD, Pumphrey NJ et al (2017) Human leucocyte antigen class I-redirected anti-tumour CD4(+) T cells require a higher T cell receptor binding affinity for optimal activity than CD8(+) T cells. Clin Exp Immunol 187(1):124–137. PubMed PMID: 27324616. Pubmed Central PMCID: 5167017

    Article  CAS  Google Scholar 

  • Theobald M, Offringa R (2003) Anti-p53-directed immunotherapy of malignant disease. Expert Rev Mol Med 5(11):1–13. PubMed PMID: 14987396

    Article  PubMed  CAS  Google Scholar 

  • Theobald M, Biggs J, Dittmer D, Levine AJ, Sherman LA (1995) Targeting p 53 as a general tumor antigen. Proc Natl Acad Sci U S A 92(26):11993–11997. PubMed PMID: 8618830. Pubmed Central PMCID: 40282

    Article  CAS  Google Scholar 

  • Topalian SL, Muul LM, Solomon D, Rosenberg SA (1987) Expansion of human tumor infiltrating lymphocytes for use in immunotherapy trials. J Immunol Methods 102(1):127–141. PubMed PMID: 3305708

    Article  CAS  PubMed  Google Scholar 

  • Townsend A, Bodmer H (1989) Antigen recognition by class I-restricted T lymphocytes. Annu Rev Immunol 7(1):601–624. PubMed PMID: 2469442

    Article  CAS  PubMed  Google Scholar 

  • Uckun FM, Jaszcz W, Ambrus JL, Fauci AS, Gajl-Peczalska K, Song CW et al (1988) Detailed studies on expression and function of CD19 surface determinant by using B43 monoclonal antibody and the clinical potential of anti-CD19 immunotoxins. Blood 71(1):13–29. PubMed PMID: 3257143

    Google Scholar 

  • Ueno T, Fujiwara M, Tomiyama H, Onodera M, Takiguchi M (2004) Reconstitution of anti-HIV effector functions of primary human CD8 T lymphocytes by transfer of HIV-specific alphabeta TCR genes. Eur J Immunol 34(12):3379–3388. PubMed PMID: 15517606

    Google Scholar 

  • van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B et al (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254(5038):1643–1647. PubMed PMID: 1840703

    Article  CAS  PubMed  Google Scholar 

  • van Loenen MM, de Boer R, Amir AL, Hagedoorn RS, Volbeda GL, Willemze R et al (2010) Mixed T cell receptor dimers harbor potentially harmful neoreactivity. Proc Natl Acad Sci U S A 107(24):10972–10977. PubMed PMID: 20534461. Pubmed Central PMCID: 2890759

    Google Scholar 

  • Verginis P, Stanford MM, Carayanniotis G (2002) Delineation of five thyroglobulin T cell epitopes with pathogenic potential in experimental autoimmune thyroiditis. J Immunol 169(9):5332–5337

    Article  PubMed  Google Scholar 

  • Voelkl S, Moore TV, Rehli M, Nishimura MI, Mackensen A, Fischer K (2009) Characterization of MHC class-I restricted TCRalphabeta+ CD4− CD8− double negative T cells recognizing the gp100 antigen from a melanoma patient after gp100 vaccination. Cancer Immunol Immunother 58(5):709–718. PubMed PMID: 18836718. Pubmed Central PMCID: 2832593

    Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310. PubMed PMID: 11099028

    Article  CAS  PubMed  Google Scholar 

  • Voss RH, Thomas S, Pfirschke C, Hauptrock B, Klobuch S, Kuball J et al (2010) Coexpression of the T-cell receptor constant alpha domain triggers tumor reactivity of single-chain TCR-transduced human T cells. Blood 115(25):5154–5163. PubMed PMID: 20378753

    Article  CAS  PubMed  Google Scholar 

  • Wang QJ, Yu Z, Griffith K, Hanada K, Restifo NP, Yang JC (2016) Identification of T-cell receptors targeting KRAS-mutated human tumors. Cancer Immunol Res 4(3):204–214. PubMed PMID: 26701267. Pubmed Central PMCID: 4775432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weiss VL, Lee TH, Song H, Kouo TS, Black CM, Sgouros G et al (2012) Trafficking of high avidity HER-2/neu-specific T cells into HER-2/neu-expressing tumors after depletion of effector/memory-like regulatory T cells. PloS one 7(2):e31962. PubMed PMID: 22359647. Pubmed Central PMCID: 3281086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilde S, Sommermeyer D, Leisegang M, Frankenberger B, Mosetter B, Uckert W et al (2012) Human antitumor CD8+ T cells producing Th1 polycytokines show superior antigen sensitivity and tumor recognition. J Immunol 189(2):598–605

    Article  CAS  PubMed  Google Scholar 

  • Xue BH, Zhang Y, Sosman JA, Peace DJ (1997) Induction of human cytotoxic T lymphocytes specific for prostate-specific antigen. Prostate 30(2):73–78. PubMed PMID: 9051144

    Article  CAS  PubMed  Google Scholar 

  • Yannelli JR, Hyatt C, McConnell S, Hines K, Jacknin L, Parker L et al (1996) Growth of tumor-infiltrating lymphocytes from human solid cancers: summary of a 5-year experience. Int J Cancer 65(4):413–421. PubMed PMID: 8621219

    Google Scholar 

  • Yarchoan M, Johnson BA, 3rd, Lutz ER, Laheru DA, Jaffee EM (2017) Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 17(9):569. PubMed PMID: 28835723

    Article  CAS  PubMed  Google Scholar 

  • Yee C, Thompson JA, Roche P, Byrd DR, Lee PP, Piepkorn M et al (2000) Melanocyte destruction after antigen-specific immunotherapy of melanoma. Direct evidence of T cell-mediated vitiligo. J Exp Med 192(11):1637–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoong KF, Adams DH (1996) Tumour infiltrating lymphocytes: insights into tumour immunology and potential therapeutic implications. Clin Mol Pathol 49(5):M256–M67. PubMed PMID: 16696086. Pubmed Central PMCID: 408070

    Article  CAS  Google Scholar 

  • Yron I, Wood TA, Spiess PJ, Rosenberg SA (1980) In vitro growth of murine T cells. V. The isolation and growth of lymphoid cells infiltrating syngeneic solid tumors. J Immunol 125(1):238–245

    Google Scholar 

  • Zeh HJ, Perry-Lalley D, Dudley ME, Rosenberg SA, Yang JC (1999) High avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy. J Immunol 162(2):989–994

    CAS  PubMed  Google Scholar 

  • Zheng Y, Parsonage G, Zhuang X, Machado LR, James CH, Salman A et al (2015) Human leukocyte antigen (HLA) A*1101-restricted Epstein-Barr virus-specific T-cell receptor gene transfer to target nasopharyngeal carcinoma. Cancer Immunol Res 3(10):1138–1147. PubMed PMID: 25711537. Pubmed Central PMCID: 4456157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, Cuss SM, Singh V, Gurusamy D, Shoe JL, Leighty R et al (2015) CD4+ T cell help selectively enhances high-avidity tumor antigen-specific CD8+ T cells. J Immunol 195(7):3482–3489. PubMed PMID: 26320256

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Smith Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, T.W., Nishimura, M.I. (2020). Targeting Cancer with Genetically Engineered TCR T Cells . In: Theobald, M. (eds) Current Immunotherapeutic Strategies in Cancer. Recent Results in Cancer Research, vol 214. Springer, Cham. https://doi.org/10.1007/978-3-030-23765-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-23765-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-23764-6

  • Online ISBN: 978-3-030-23765-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics