Skip to main content

Phonon Polaritons

  • Chapter
  • First Online:
Semiconductor Optics 1

Part of the book series: Graduate Texts in Physics ((GTP))

  • 2262 Accesses

Abstract

So far we have discussed the optical properties of a system of model oscillators and the basics of lattice vibrations in semiconductors. We will now demonstrate that the optical properties of phonons in semiconductors are well explained in the framework of the polariton model of Chap. 8. We will discuss the optical properties related to phonon polaritons like the phonon stop band and how to determine them via Fourier transform infrared spectroscopy. We will further describe the phonon-polartion dispersion and its experimental identification by Raman and Brillouin scattering as well as attenuated total reflection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.H. Henry, J.J. Hopfield, Phys. Rev. Lett. 15, 964 (1965)

    Article  ADS  Google Scholar 

  2. R.M. Martin, T.C. Damen, Phys. Rev. Lett. 26, 86 (1971)

    Article  ADS  Google Scholar 

  3. A.S. Barber Jr., R. Loudon, Phys. Rev. 44, 18 (1972)

    Google Scholar 

  4. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972)

    Google Scholar 

  5. N. Marschall, B. Fischer, Phys. Rev. Lett. 28, 811 (1972)

    Article  ADS  Google Scholar 

  6. G. Borstl, H.J. Falge, A. Otto, Surface and Bulk Phonon Modes Observed by Attenuated Total Reflection. Springer Tracts in Modern Physics, vol 74 (Springer, Berlin, 1974)

    Google Scholar 

  7. R. Claus, L. Merten, J. Brandmüller, Light Scattering by Phonon-Polaritons. Springer Tracts Modern Physics, vol. 75 (Springer, Berlin, 1975)

    Google Scholar 

  8. R.L. Schmidt et al., Phys. Rev. B 20, 3345 (1979)

    Article  ADS  Google Scholar 

  9. R. Claus, Phys. Status Solidi (b) 100, 9 (1980)

    Article  ADS  Google Scholar 

  10. O. Madelung, Introduction to Solid State Theory. Springer Series in Solid State Sciences, vol. 2 (Springer, Berlin, 1981)

    Google Scholar 

  11. O. Madelung, U. Rössler (ed.), Landolt–Börnstein. New Series, Group III, vol. 17 a to i, 22 a and b, 41 A to D (Springer, Berlin, 1982–2001)

    Google Scholar 

  12. C. Thomsen, H.T. Grahn, H.J. Maris, J. Tauc, Phys. Rev. B 34, 4129 (1986)

    Article  ADS  Google Scholar 

  13. B. Zhang et al., Semicond. Sci. Technol. 6, 822 (1991)

    Article  ADS  Google Scholar 

  14. W. Kütt, Festkörperprobleme/Adv. Solid State Phys. 32, 133 (1992)

    Google Scholar 

  15. W.A. Kütt, W. Albrecht, H. Kurz, IEEE J. Quantum Electron. 28, 2434 (1992)

    Article  ADS  Google Scholar 

  16. M.P. Chamberlain, C. Trallero-Giner, M. Cardona, Phys. Rev. B 50, 1611 (1994)

    Article  ADS  Google Scholar 

  17. M. Göppert, Diplom thesis, Universität Karlsruhe (TH) (1997)

    Google Scholar 

  18. R. Merlin, Solid State Commun. 102, 207 (1997)

    Article  ADS  Google Scholar 

  19. R.V. Velasco, F. Garcia-Moliner, Surf. Sci. Rep. 28, 123 (1997)

    Article  ADS  Google Scholar 

  20. H.J. Bakker, S. Hunsche, H. Kurz, Rev. Mod. Phys. 70, 523 (1998)

    Article  ADS  Google Scholar 

  21. M. Göppert et al., Phys. Rev. B 57, 13068 (1998)

    Article  ADS  Google Scholar 

  22. T. Ruf, Phonon Raman Scattering in Semiconductors Quantum Wells and Superlattices. Springer Tracts in Modern Physics, vol. 142 (Springer, Berlin, 1998)

    Google Scholar 

  23. M. Tani et al., J. Appl. Phys. 83, 2473 (1998)

    Article  ADS  Google Scholar 

  24. V. Romero-Rochin et al., J. Chem. Phys. 111, 3559 (1999)

    Article  ADS  Google Scholar 

  25. T. Watanuki et al., J. Phys. Soc. Jpn. 70, 2784 (2001)

    Article  ADS  Google Scholar 

  26. T.F. Crimmins, N.S. Stoyanov, K.A. Nelson, J. Chem. Phys. 117, 2882 (2002)

    Article  ADS  Google Scholar 

  27. U. Haboeck et al., Phys. Status Solidi C 0 (6), 1710 (2003)

    Google Scholar 

  28. J. Serrano et al., Phys. Status Solidi B 235, 260 (2003)

    Article  ADS  Google Scholar 

  29. J.K. Wahlstrand, R. Merlin, Phys. Rev. B 68, 13 (2003)

    Article  Google Scholar 

  30. K.C. Agarwal et al., Phys. Rev. B 73, 045211 (2006)

    Article  ADS  Google Scholar 

  31. M. Först , T. Dekorsy , in Coherent Vibrational Spectroscopy, ed. by S. de Silvestri, G. Cerullo, G. Lanzani (2008), p. 129

    Google Scholar 

  32. Y. Xu et al., Phys. Status Solidi C 5, 2632 (2008)

    Article  ADS  Google Scholar 

  33. VYu. Davidov et al., Phys. Rev. B 80, 081204(R) (2009)

    Article  ADS  Google Scholar 

  34. H. Kuzmany, Solid State Spectroscopy, 2nd edn. (Springer, Berlin, 2009)

    Google Scholar 

  35. J. Geurts, in Zinc Oxide: From Fundamental Properties Towards Novel Applications. Springer Series in Materials Science, vol 120 (Springer, Heidelberg, 2010), p. 7

    Chapter  Google Scholar 

  36. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, 4th edn. (Springer, Heidelberg, 2010)

    Google Scholar 

  37. P. Ruello, V.E. Gusev, Ultrasonics 56, 21 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Kalt .

Problems

Problems

12.1

Try to find more reflection spectra like that in Fig. 12.1b in the literature. Deduce \(\hbar \omega _\text {T}\), \(\Delta _\text {LT}\), \(\varepsilon _\text {s}\) and \(\varepsilon _\text {b}\) from these spectra and compare with values in the literature.

12.2

Show that the (eventually only weak) dependence of \(\omega \) on \(\varvec{k}\) is important to explain the experimental fact that the TO and LO phonon modes can be followed through the whole Brillouin zone by neutron scattering. Compare for the explanation with Fig. 8.1 for vanishing and finite damping.

12.3

Why is the phonon spectrum of high \(T_{{\text {c}}}\) superconductors so complex?

12.4

Which trend would you expect for the zone boundary LA and TA phonons when going from ZnO via ZnS and ZnSe to ZnTe. Compare with data in the literature. What do you expect for zone center optical phonons?

12.5

Can you give qualitative arguments for why the optical phonons in CdS\(_{1-x}\)Se\(_{x}\) and Zn\(_{1-y}\)Cd\(_{y}\)S are of the persistent and amalgamation type, respectively? Consider the atomic masses of the oscillating atoms.

12.6

Find out why phonon data for CdS and CdSe obtained by neutron scattering are relatively rare?

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalt, H., Klingshirn, C.F. (2019). Phonon Polaritons. In: Semiconductor Optics 1. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-24152-0_12

Download citation

Publish with us

Policies and ethics