Skip to main content

Semiconductor Bandstructure

  • Chapter
  • First Online:
Semiconductor Optics 1

Part of the book series: Graduate Texts in Physics ((GTP))

  • 2229 Accesses

Abstract

In order to understand the electronic and related optical properties of semiconductors one needs to analyze the details of their bandstructure. We will give a short review of some basic approaches to theoretically treat the bandstructure starting, e.g., from free electrons or from atomic orbitals, including the basic concepts of \(\varvec{k}\cdot \varvec{p}\) perturbation theory. With this understanding of the general properties of bandstructures we then take a look at some prominent substances. We will derive the detailed properties of the highest valence bands and lowest conduction band in GaAs, Si and other cubic semiconductors with tetrahedral coordination of the atoms/ions. This is followed by a discussion of wurtzite-type semiconductors like ZnO and GaN. We will close this chapter with some properties of further semiconductors, which have important applications in devices like narrow-gap semiconductors, oxides and new absorber materials for thin-film solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.C. von der Lage, H.A. Bethe, Phys. Rev. 71, 612 (1947)

    Article  ADS  Google Scholar 

  2. E.O. Kane, J. Phys. Chem. Solid 1, 249 (1957)

    Google Scholar 

  3. M. Cardona, J. Phys. Chem. Solid 24, 1543 (1963); Phys. Rev. 129, 69 (1963)

    Google Scholar 

  4. K. Shindo, A. Morita, H. Kamimura, J. Phys. Soc. Jpn. 20, 2054 (1965)

    Article  ADS  Google Scholar 

  5. E.O. Kane, The \(k \cdot p\) method, in Physics of III-V Compounds, Volume 1 of Semiconductors and Semimetals, ed. by R.K. Willardson, A.C. Beer (Academic, New York, 1966), pp. 75–100

    Google Scholar 

  6. U. Rössler, Phys. Rev. 184, 733 (1969)

    Article  ADS  Google Scholar 

  7. O. Madelung, Grundlagen der Halbleiterphysik. Heidelberger Taschenbücher, vol. 71 (Springer, Berlin, 1970)

    Google Scholar 

  8. O.  Madelung, Festkörpertheorie I: Elementare Anregungen (Springer, Berlin, 1972)

    Google Scholar 

  9. J.L. Shay, B. Tell, Surf. Sci. 37, 748 (1973)

    Google Scholar 

  10. J. Jaffe, A. Zunger, Phys. Rev. B 28, 5822 (1983)

    Article  ADS  Google Scholar 

  11. U. Rössler, Solid State Commun. 49, 943 (1984)

    Google Scholar 

  12. M. Cohen, J.R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors. Springer Series in Solid-State Sciences, vol. 75 (Springer, Berlin, 1988)

    Google Scholar 

  13. A.L. Efros, Phys. Rev. B 46, 7448 (1992)

    Article  ADS  Google Scholar 

  14. H. Kalt, Optical Properties of III–V Semiconductors: The Influence of Multi-valley Band Structures. Springer Series in Solid-State Sciences, vol. 120 (Springer, Berlin, 1996)

    Book  Google Scholar 

  15. S. Richard, F. Aniel, G. Fishman, Phys. Rev. B 70, 1–6 (2004)

    Google Scholar 

  16. P. Erhart et al., Phys. Rev. B 75, 153205 (2007)

    Google Scholar 

  17. H. Ibach, H. Lüth, Solid State Physics (Springer, Berlin, 2009)

    Google Scholar 

  18. U. Rössler, Solid State Theory: An Introduction, 2nd edn. (Springer, Berlin, 2009)

    Google Scholar 

  19. C. Klingshirn et al., Phys. Status Solidi B 247, 1424 (2010)

    Google Scholar 

  20. C. Klingshirn, B.K. Meyer, A. Waag, A. Hoffmann, J. Geurts, Zinc Oxide: From Fundamental Properties Towards Novel Applications. Springer Series in Materials Science, vol. 120 (Springer, Berlin, 2010)

    Book  Google Scholar 

  21. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors, 4th edn. (Springer, Berlin, 2010)

    Google Scholar 

  22. R. Scheer, H.-W. Schock, Chalcogenide Photovoltaics (Wiley-VCH, Weinheim, 2011)

    Google Scholar 

  23. J. Even et al., Phys. Rev. B 86, 205301 (2012)

    Google Scholar 

  24. M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photonics 8, 506 (2014)

    Google Scholar 

  25. N.W. Ashcroft, N.D. Mermin, D. Wei, Solid State Physics, Revised edn. (Cengage Learning Asia, Singapore, 2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Kalt .

Problems

Problems

15.1

Find out about the electron configuration of valence electrons in the atoms Si, Ge, Ga, In, Al, Zn, Cd, Cu, As, Se, S, O, N, Cl ... and determine the orbitals forming the \(\Gamma \)-point valence and conduction bands in the related semiconductors (Si, Ge, GaAs, GaN, ZnSe, Cu\(_2\)O, ...).

15.2

Make a sketch of surfaces of constant energy in a two- (or even three-) dimensional \(\varvec{k}\)-space for spherical, simple cubic, and hexagonal (plane \(\varvec{k}\bot \varvec{c}\)) symmetries. Is spherical symmetry compatible with cubic and hexagonal symmetry?

15.3

Show that the wave vectors for which the scattered waves interfere constructively in one- and two-dimensional square lattices in the concept of nearly free electrons are just the borders of the Brillouin zones.

15.4

Verify that (15.2a) fulfils the Bloch criterion, i.e., that the wave function is transformed onto itself under a translation \(\varvec{R}_{i}\) apart from a phase factor.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalt, H., Klingshirn, C.F. (2019). Semiconductor Bandstructure. In: Semiconductor Optics 1. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-24152-0_15

Download citation

Publish with us

Policies and ethics