Skip to main content

Fuzzy and Neuro-Fuzzy Models

  • Chapter
Nonlinear System Identification

Abstract

This chapter introduces fuzzy systems and how they can be cast into neuro-fuzzy system, which can be learned from data. It discusses how prior knowledge can be incorporated and how knowledge can be extracted from a data-driven neuro-fuzzy model. Different kinds of fuzzy systems are analyzed where the Takagi-Sugeno variant already builds bridges to the subsequent chapters on local linear modeling approaches. Different learning schemes for neuro-fuzzy models are discussed, and their principal ideas highlighted. The role of “defuzzification” or normalization in the context of learning and interpretability is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alander, J.T.: An indexed bibliography of genetic algorithms and fuzzy systems. In: Pedrycz, W. (ed.) Fuzzy Evolutionary Computation, chapter 3.1, pp. 299–318. Kluwer Academic Publishers, Boston (1997). ftp: ftp.uwasa.fi, directory: /cs/report94-1, file: gaFUZZYbib.ps.Z

    Google Scholar 

  2. Babuška, R.: Fuzzy Modeling and Identification. Ph.D. thesis, Dept. of Control Engineering, Delft University of Technology, Delft, The Netherlands (1996)

    Google Scholar 

  3. Babuška, R., Verbruggen, H.B.: An overview of fuzzy modeling for control. Control Eng. Pract. 4(11), 1593–1606 (1996)

    Article  Google Scholar 

  4. Bertram, T., Svaricek, F., Böhm, T., Kiendl, H., Pfeiffer, B.-M., Weber, M.: Fuzzy-Control. Zusammenstellung und Beschreibung wichtiger Begriffe. Automatisierungstechnik 42(7), 322–326 (1994)

    Google Scholar 

  5. Bossley, K.M.: Neurofuzzy Construction Algorithms. ISIS Technical Report ISIS-TR1, Department of Electronics and Computer Science, University of Southampton, Southampton, UK (1995)

    Google Scholar 

  6. Bossley, K.M.: Neurofuzzy Modelling Approaches in System Identification. Ph.D. thesis, Department of Electronics and Computer Science, University of Southampton, Southampton, UK (1997)

    Google Scholar 

  7. Bossley, K.M., Brown, M., Gunn, S.R., Harris, C.J.: Intelligent data modelling using neurofuzzy algorithms. In: IEE Colloquium on Industrial Applications of Intelligent Control, pp. 1–6, London, UK (1997)

    Google Scholar 

  8. Bothe, H.-H.: Fuzzy Logic: Einführung in Theorie und Anwendungen. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  9. Branch, M.A., Grace, A.: MATLAB Optimization Toolbox User’s Guide, Version 1.5. The MATHWORKS Inc., Natick, MA (1998)

    Google Scholar 

  10. Brown, M., Harris, C.J.: Neurofuzzy Adaptive Modelling and Control. Prentice Hall, New York (1994)

    Google Scholar 

  11. Cordón, O., Herrera, F., Lozano, M.: A Classified Review on the Combination Fuzzy Logic: Genetic Algorithms Bibliography. Technical report, Department of Computer Science and Artificial Intelligence, Spain (1996)

    Google Scholar 

  12. Davis, L.: Handbook of Genetic Algorithms. van Nostrand Reinhold, New York (1991)

    Google Scholar 

  13. Driankov, D., Hellendoorn, H., Reinfrank, M.: An Introduction to Fuzzy Control. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  14. Dubios, D., Prade, H.: Fuzzy Sets and Systems. Theory and Applications. Academic Press, New York (1980)

    Google Scholar 

  15. Halgamuge, S., Glesner, M.: Fuzzy neural fusion techniques for industrial applications. In: ACM Symposium on Applied Computing, Phoenix, USA (1994)

    Google Scholar 

  16. Hartman, E., Keeler, J.D.: Predicting the future: advantages of semilocal units. Neural Comput. 3(4), 566–578 (1991)

    Article  Google Scholar 

  17. Herrera, F., Lozano, M., Verdegay, J.L.: A Learning for Fuzzy Control Rules Using Genetic Algorithms. Technical Report DECSAI-95108, Department of Computer Science and Artificial Intelligence, Spain (1995)

    Google Scholar 

  18. Hohensohn, J., Mendel, J.M.: Two-pass orthogonal least-squares algorithm to train and reduce fuzzy logic systems. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 696–700, Orlando, USA (1994)

    Google Scholar 

  19. Homaifar, A., McCormick, E.: Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms. IEEE Trans. Fuzzy Syst. 3(2), 129–139 (1995)

    Article  Google Scholar 

  20. Hunt, K.J., Haas, R., Murray-Smith, R.: Extending the functional equivalence of radial basis functions networks and fuzzy inference systems. IEEE Trans. Neural Netw. 7(3), 776–781 (1996)

    Article  Google Scholar 

  21. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Construction of fuzzy classification systems with rectangular fuzzy rules using genetic algorithms. Fuzzy Sets Syst. 65, 237–253 (1994)

    Article  MathSciNet  Google Scholar 

  22. Jager, R.: Fuzzy Logic in Control. Ph.D. thesis, Deft University of Technology, Delft, The Netherlands (1995)

    Google Scholar 

  23. Jang, J.-S.R., Sun, C.-T.: Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Trans. Neural Netw. 4(1), 156–159 (1993)

    Article  Google Scholar 

  24. Kahlert, J., Frank, H.: Fuzzy-Logik und Fuzzy-Control. Vieweg, Braunschweig (1993)

    Book  MATH  Google Scholar 

  25. Kavli, T.: ASMOD: an algorithm for adaptive spline modeling of observation data. Int. J. Control 58(4), 947–967 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kecman, V., Pfeiffer, B.-M.: Exploiting the structural equivalence of learning fuzzy systems and radial basis function networks. In: European Congress on Intelligent Techniques and Soft Computing (EUFIT), pp. 58–66, Aachen, Germany (1994)

    Google Scholar 

  27. Kiendl, H.: Fuzzy-Control methodenorientiert. Oldenbourg, München (1997)

    Book  Google Scholar 

  28. Kortmann, P.: Fuzzy-Modelle zur Systemidentifikation. Reihe 8: Mess-, Steuerungs- und Regelungstechnik, Nr. 647. VDI-Verlag, Düsseldorf (1997)

    Google Scholar 

  29. Kosko, B.: Fuzzy systems as universal approximators. IEEE Trans. Comput. 43, 1329–1333 (1994)

    Article  MATH  Google Scholar 

  30. Kroll, A.: Fuzzy-Systeme zur Modellierung und Regelung komplexer technischer Systeme. Reihe 8: Mess-, Steuerungs- und Regelungstechnik, Nr. 612. VDI-Verlag, Düsseldorf (1997)

    Google Scholar 

  31. Kruse, R., Gebhardt, J., Klawonn, F.: Foundations of Fuzzy Systems. John Wiley & Sons, Chichester (1994)

    MATH  Google Scholar 

  32. Lee, C.C.: Fuzzy logic in control systems: fuzzy logic controller – part I. IEEE Trans. Syst. Man Cybern. 20(2), 404–418 (1990)

    Article  MATH  Google Scholar 

  33. Lee, C.C.: Fuzzy logic in control systems: fuzzy logic controller – part II. IEEE Trans. Syst. Man Cybern. 20(2), 419–435 (1990)

    Article  MATH  Google Scholar 

  34. Lindskog, P.: Methods, Algorithms and Tools for System Identification Based on Prior Knowledge. Ph.D. thesis, Linköping University, Linköping, Sweden (1996)

    Google Scholar 

  35. Linkens, D.A., Nyongesa, H.O.: A hierachical multivariable fuzzy controller for learning with genetic algorithms. Int. J. Control 63(5), 865–883 (1996)

    Article  MATH  Google Scholar 

  36. Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice Hall, Englewood Cliffs (1999)

    Google Scholar 

  37. Mamdani, E.H.: Application of fuzzy logic to approximate reasoning using linguistic systems. Fuzzy Sets Syst. 26, 1182–1191 (1977)

    MATH  Google Scholar 

  38. Mendel, J.M.: Fuzzy logic systems for engineering: a tutorial. Proc. IEEE 83(3), 345–377 (1995)

    Article  Google Scholar 

  39. Nelles, O.: GA-based generation of fuzzy rules. In: Pedrycz, W. (ed.) Fuzzy Evolutionary Computation, chapter 2.9, pp. 269–295. Kluwer Academic Publishers, Boston, USA (1997)

    Google Scholar 

  40. Nelles, O., Ayoubi, M.: Learning the relevance of symtoms in fault trees. In: European Congress on Intelligent Techniques and Soft Computing (EUFIT), pp. 1148–1152, Aachen, Germany (1994)

    Google Scholar 

  41. Nelles, O., Fischer, M., Müller, B.: Fuzzy rule extraction by a genetic algorithm and constrained nonlinear optimization of membership functions. In: International IEEE Conference on Fuzzy Systems (FUZZ-IEEE), pp. 213–219, New Orleans, USA (1996)

    Google Scholar 

  42. Park, D., Kandel, A., Langholz, G.: Genetic-based new fuzzy reasoning models with application to fuzzy control. IEEE Trans. Syst. Man Cybern. 24(1), 39–47 (1994)

    Article  MATH  Google Scholar 

  43. Pedrycz, W.: Fuzzy Control and Fuzzy Systems, 2nd edn. John Wiley & Sons, New York (1993)

    MATH  Google Scholar 

  44. Pfeiffer, B.-M.: Identification von Fuzzy-Regeln aus Lerndaten. In: Workshop des GMA-UA 1.4.2 “Fuzzy-Control”, pp. 238–250, Dortmund, Germany (1995)

    Google Scholar 

  45. Pfeiffer, B.-M., Isermann, R.: Criteria for successful applications of fuzzy control. Eng. Appl. Artif. Intell. 7(3), 245–253 (1994)

    Article  Google Scholar 

  46. Preuss, H.P.: Fuzzy-Control: Heuristische Regelung mittels unscharfer Logik. Automatisierungstechnik 34(5), 239–246 (1992)

    Google Scholar 

  47. Preuss, H.P., Tresp, V.: Neuro-Fuzzy. Automatisierungstechnische Praxis 36(5), 10–24 (1994)

    Google Scholar 

  48. Raju, G.V.S., Zhou, J.: Adaptive hierarchical fuzzy controller. IEEE Trans. Syst. Man Cybern. 23(4), 973–980 (1993)

    Article  Google Scholar 

  49. Runkler, T.A.: Automatische Selektion signifikanter scharfer Werte in unscharfen regelbasierten Systemen der Informations- und Automatisierungstechnik. Reihe 10, Nr. 417. VDI-Verlag, Düsseldorf (1996)

    Google Scholar 

  50. Setnes, M., Babuška, R., Verbruggen, H.B.: Rule-based modeling: precision and transparency. IEEE Trans. Syst. Man Cybern. Part C 28(1), 165–169 (1998)

    Article  Google Scholar 

  51. Shorten, R., Murray-Smith, R.: Side-effects of normalising basis functions in local model networks. In: Murray-Smith, R., Johansen, T.A. (eds.) Multiple Model Approaches to Modelling and Control, chapter 8, pp. 211–229. Taylor & Francis, London (1997)

    Google Scholar 

  52. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  53. Vanderplaats, G.N.: Numerical Optimization Techniques for Engineering Design. Series in Mechanical Engineering. McGraw-Hill, New York (1984)

    Google Scholar 

  54. Wang, L.-X.: Adaptive fuzzy systems and control. design and stability analysis. Prentice Hall, Englewood Cliffs (1994)

    Google Scholar 

  55. Wang, L.-X., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. Neural Netw. 3(5), 807–814 (1992)

    Article  Google Scholar 

  56. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  57. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. 1, 28–44 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zimmermann, H.-J.: Fuzzy Set Theory and its Application, 2nd edn. Kluwer Academic Publishers, Boston (1991)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter

Nelles, O. (2020). Fuzzy and Neuro-Fuzzy Models. In: Nonlinear System Identification. Springer, Cham. https://doi.org/10.1007/978-3-030-47439-3_12

Download citation

Publish with us

Policies and ethics