Skip to main content

Optimal Sensor Selection for Estimation of Distributed Parameter Systems

  • Chapter
  • First Online:
Automatic Control, Robotics, and Information Processing

Abstract

This chapter is focused on spatial sensor location for maximization of identification accuracy of distributed parameter systems. The following problem formulation, in terms of optimum experimental design, is adopted, in which the optimality criterion is a convex function defined on the Fisher information matrix associated with estimated parameters. The locations of a given number of sensors are selected from among a fixed, but possibly very large, set of candidate locations. A systematic procedure is presented for finding optimal solutions through a relaxation of the original combinatorial problem, which boils down to determining an optimum spatial density of sensors instead of the actual locations. Thus a convex optimization problem with linear constraints is obtained. Its form makes it suitable for a solution using an extremely efficient algorithm of simplicial decomposition yielding an additional reduction in problem dimensionality. A technique is also discussed to post-process the computed optimal sensor density in order to get an equivalent form with minimal spatial support. The work is complemented with a numerical example and a discussion of various variants of the basic problem, which illustrates the generality and flexibility of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexanderian, A., Gloor, P.J., Ghattas, O.: On Bayesian A- and D-optimal experimental designs in infinite dimensions. Bayesian Anal. 11(3), 671–695 (2016). https://doi.org/10.1214/15-BA969

    Article  MathSciNet  MATH  Google Scholar 

  2. Alexanderian, A., Petra, N., Stadler, G., Ghattas, O.: A-optimal design of experiments for infinite-dimensional Bayesian linear inverse problems with regularized \(\ell _0\)-sparsification. SIAM J. Sci. Comput. 36(5), A2122–A2148 (2014). https://doi.org/10.1137/130933381

    Article  MATH  Google Scholar 

  3. Alexanderian, A., Petra, N., Stadler, G., Ghattas, O.: A fast and scalable method for A-optimal design of experiments for infinite-dimensional Bayesian nonlinear inverse problems. SIAM J. Sci. Comput. 38(1), A243–A272 (2016). https://doi.org/10.1137/140992564

    Article  MathSciNet  MATH  Google Scholar 

  4. Atkinson, A.C., Donev, A.N., Tobias, R.D.: Optimum Experimental Designs, with SAS. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  5. Banks, H.T., Fitzpatrick, B.G.: Statistical methods for model comparison in parameter estimation problems for distributed systems. J. Math. Biol. 28, 501–527 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Banks, H.T., Hu, S., Clayton Thompson, W.: Modeling and Inverse Problems in the Presence of Uncertainty. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL (2014)

    Book  MATH  Google Scholar 

  7. Banks, H.T., Kunisch, K.: Estimation Techniques for Distributed Parameter Systems. Systems & Control: Foundations & Applications. Birkhäuser, Boston (1989)

    Google Scholar 

  8. Bernstein, D.S.: Matrix Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory. Princeton University Press, Princeton, NJ (2005)

    Google Scholar 

  9. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Optimization and Computation Series. Athena Scientific, Belmont, MA (1999)

    Google Scholar 

  10. Bertsekas, D.P.: Convex Optimization Algorithms. Athena Scientific, Belmont, MA (2015)

    MATH  Google Scholar 

  11. Cacuci, D.G., Navon, I.M., Ionescu-Bujor, M.: Computational Methods for Data Evaluation and Assimilation. CRC Press, Boca Raton, FL (2014)

    MATH  Google Scholar 

  12. Chepuri, S.P.: Sparse sensing for statistical inference: Theory, algorithms, and applications. Ph.D. thesis, Technische Universiteit Delft, Delft, The Netherlands (2016)

    Google Scholar 

  13. Chepuri, S.P., Leus, G.: Sparsity-promoting sensor selection for non-linear measurement models. IEEE Transactions on Signal Processing 63(3), 684–698 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cook, D., Fedorov, V.: Constrained optimization of experimental design. Statistics 26, 129–178 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Curtain, R.F., Zwart, H.: An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics. Springer, New York (1995)

    MATH  Google Scholar 

  16. Dashti, M., Stuart, A.M.: The Bayesian approach to inverse problems. In: Ghanem, R., Higdon, D., Owhadi, H. (eds.) Handbook of Uncertainty Quantification, pp. 311–428. Springer, Cham (2017)

    Chapter  Google Scholar 

  17. Fattorini, H.O.: Infinite Dimensional Optimization and Control Theory. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  18. Fedorov, V.V.: Optimal design with bounded density: optimization algorithms of the exchange type. J. Stat. Plann. Infer. 22, 1–13 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fedorov, V.V., Leonov, S.L.: Optimal Design for Nonlinear Response Models. CRC Press, Boca Raton, FL (2014)

    MATH  Google Scholar 

  20. Fung, G.M., Mangasarian, O.L.: Equivalence of minimal \(\ell _0\)- and \(\ell _p\)-norm solutions of linear equalities, inequalities and linear programs for sufficiently small \(p\). J. Optim. Theory Appl. 151(1), 1–10 (2011). https://doi.org/10.1007/s10957-011-9871-x

    Article  MathSciNet  MATH  Google Scholar 

  21. Gejadze, I.Y., Le Dimet, F.X., Shutyaev, V.: On optimal solution error covariances in variational data assimilation problems. J. Comput. Phys. 229(6), 2159–2178 (2010). https://doi.org/10.1016/j.jcp.2009.11.028

    Article  MathSciNet  MATH  Google Scholar 

  22. Gejadze, I.Y., Shutyaev, V.: On computation of the design function gradient for the sensor-location problem in variational data assimilation. SIAM J. Sci. Comput. 34(2), B127–B147 (2012). https://doi.org/10.1137/110825121

    Article  MathSciNet  MATH  Google Scholar 

  23. Haber, E., Horesh, L., Tenorio, L.: Numerical methods for experimental design of large-scale linear ill-posed inverse problems. Inverse Prob.24(5), 055,012 (2008). https://doi.org/10.1088/0266-5611/24/5/055012

  24. Haber, E., Horesh, L., Tenorio, L.: Numerical methods for the design of large-scale nonlinear discrete ill-posed inverse problems. Inverse Prob. 26(2), 025,002 (2010). https://doi.org/10.1088/0266-5611/26/2/025002

  25. Haber, E., Magnant, Z., Lucero, C., Tenorio, L.: Numerical methods for A-optimal designs with a sparsity constraint for ill-posed inverse problems. Comput. Optim. Appl. 52(1), 293–314 (2012). https://doi.org/10.1007/s10589-011-9404-4

    Article  MathSciNet  MATH  Google Scholar 

  26. Hansen, P.C.: Discrete Inverse Problems: Insight and Algorithms. Fundamentals of Algorithms. Society for Industrial and Applied Mathematics, Philadelphia (2010)

    Google Scholar 

  27. Herzog, R., Riedel, I., Uciński, D.: Optimal sensor placement for joint parameter and state estimation problems in large-scale dynamical systems with applications to thermo-mechanics. Optim. Eng., pp. 591–627. (2018). https://doi.org/10.1007/s11081-018-9391-8

    Chapter  Google Scholar 

  28. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Springer (2009)

    Google Scholar 

  29. Jokar, S., Pfetsch, M.E.: Exact and approximate sparse solutions of underdetermined linear equations. SIAM J. Sci. Comput. 31(1), 23–44 (2008). https://doi.org/10.1137/070686676

    Article  MathSciNet  MATH  Google Scholar 

  30. Joshi, S., Boyd, S.: Sensor selection via convex optimization. IEEE Trans. Signal Process. 57(2), 451–462 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Khapalov, A.Y.: Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations. Springer, Cham (2017)

    Book  MATH  Google Scholar 

  32. Kubrusly, C.S., Malebranche, H.: Sensors and controllers location in distributed systems—a survey. Automatica 21(2), 117–128 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Encyclopedia of Mathematics and Its Applications, vol. I and II. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  34. Law, K., Stuart, A., Zygalakis, K.: Data Assimilation: A Mathematical Introduction. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  35. Lions, J.L.: Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Études mathématiques. Dunod, Paris (1968)

    Google Scholar 

  36. Lu, Z., Pong, T.K.: Computing optimal experimental designs via interior point method. SIAM J. Matrix Anal. Appl. 34(4), 1556–1580 (2013). https://doi.org/10.1137/120895093

    Article  MathSciNet  MATH  Google Scholar 

  37. Patan, M.: Optimal Sensor Networks Scheduling in Identification of Distributed Parameter Systems. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  38. Patan, M., Uciński, D.: Configuring a sensor network for fault detection in distributed parameter systems. Int. J. Appl. Math. Comput. Sci. 18(4), 513–524 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Patan, M., Uciński, D.: Cost-constrained D-optimum node activation for large-scale monitoring networks. In: 2016 American Control Conference (ACC), pp. 1643–1648 (2016). https://doi.org/10.1109/ACC.2016.7525152

  40. Patan, M., Uciński, D.: D-optimal spatio-temporal sampling design for identification of distributed parameter systems. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 3985–3990 (2016). https://doi.org/10.1109/CDC.2016.7798872

  41. Patan, M., Uciński, D.: A sparsity-enforcing method for optimal node activation in parameter estimation of spatiotemporal processes. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 3089–3094 (2017). https://doi.org/10.1109/CDC.2017.8264110

  42. Patriksson, M.: Simplicial decomposition algorithms. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, vol. 5, pp. 205–212. Kluwer Academic Publishers, Dordrecht, The Netherlands (2001)

    Google Scholar 

  43. Pollard, D.: A User’s Guide to Measure Theoretic Probability. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  44. Pronzato, L., Pàzman, A.: Design of Experiments in Nonlinear Models. Optimality Criteria amd Small-Sample Properties. Springer, New York, Asymptotic Normality (2013)

    Google Scholar 

  45. Pukelsheim, F.: Optimal Design of Experiments. Probability and Mathematical Statistics. Wiley, New York (1993)

    MATH  Google Scholar 

  46. Quereshi, Z.H., Ng, T.S., Goodwin, G.C.: Optimum experimental design for identification of distributed parameter systems. Int. J. Control 31(1), 21–29 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rafajłowicz, E.: Design of experiments for eigenvalue identification in distributed-parameter systems. Int. J. Control 34(6), 1079–1094 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rafajłowicz, E.: Choice of Optimum Input Signals in Linear Distributed-Parameter Systems Identification Monographs. Technical University Press, Wrocław (1986). (In Polish)

    Google Scholar 

  49. Rafajłowicz, E.: Optimum choice of moving sensor trajectories for distributed parameter system identification. Int. J. Control 43(5), 1441–1451 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  50. Rafajłowicz, E.: Optimal Input Signal Design for Parameter Estimation in Linear Systems with Spatiotemporal Dynamics. De Gruyter, Berlin (2020). (in preparation)

    Google Scholar 

  51. Reich, S., Cotter, C.: Probabilistic Forecasting and Bayesian Data Assimilation. Cambridge University Press, Cambridge (2015)

    Book  MATH  Google Scholar 

  52. Shectman, J.P., Sahinidis, N.V.: A finite algorithm for global minimization of separable concave programs. J. Global Optim. 12(1), 1–36 (1998). https://doi.org/10.1023/A:1008241411395

    Article  MathSciNet  MATH  Google Scholar 

  53. Song, Z., Chen, Y., Sastry, C.R., Tas, N.C.: Optimal Observation for Cyber-physical Systems: A Fisher-information-matrix-based Approach. Springer, London (2009)

    Book  MATH  Google Scholar 

  54. Stuart, A.M.: Inverse problems: aBayesian perspective. Acta Numerica 19, 451–559 (2010). https://doi.org/10.1017/S0962492910000061

    Article  MathSciNet  MATH  Google Scholar 

  55. Sun, N.Z.: Inverse Problems in Groundwater Modeling. Theory and Applications of Transport in Porous Media. Kluwer Academic Publishers, Dordrecht, The Netherlands (1994)

    Google Scholar 

  56. Sun, N.Z., Sun, A.: Model Calibration and Parameter Estimation For Environmental and Water Resource Systems. Springer, New York (2015)

    Book  MATH  Google Scholar 

  57. Sun, X., Zheng, X., Li, D.: Recent advances in mathematical programming with semi-continuous variables and cardinality constraint. J. Oper. Res. Soc. China 1(1), 55–77 (2013). https://doi.org/10.1007/s40305-013-0004-0

    Article  MATH  Google Scholar 

  58. Tricaud, C., Chen, Y.: Optimal Mobile Sensing and Actuation Policies in Cyber-physical Systems. Springer, London (2012)

    Book  Google Scholar 

  59. Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory Methods and Applications. American Mathematical Society, Providence, Rhode Island (2010)

    MATH  Google Scholar 

  60. Tucsnak, M., Weiss, G.: Observation and Control for Operator Semigroups. Birkhäuser, Basel (2009)

    Book  MATH  Google Scholar 

  61. Uciński, D.: Optimal sensor location for parameter estimation of distributed processes. Int. J. Control 73(13), 1235–1248 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  62. Uciński, D.: Optimal Measurement Methods for Distributed-Parameter System Identification. CRC Press, Boca Raton, FL (2005)

    MATH  Google Scholar 

  63. Uciński, D.: An algorithm to configure a large-scale monitoring network for parameter estimation of distributed systems. In: Proceedings of the European Control Conference 2007, Kos, Greece, July 2–5 (2007). Published on CD-ROM

    Google Scholar 

  64. Uciński, D.: D-optimum sensor activity scheduling for distributed parameter systems. In: Preprints of the 15th IFAC Symposium on System Identification, Saint-Malo, France, July 6–8, (2009). Published on CD-ROM

    Google Scholar 

  65. Uciński, D.: Sensor network scheduling for identification of spatially distributed processes. Int. J. Appl. Math. Comput. Sci. 21(1), 25–40 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  66. Uciński, D.: An optimal scanning sensor activation policy for parameter estimation of distributed systems. In: H.G. Bock, T. Carraro, W. Jäger, S. Körkel, R. Rannacher, J.P. Schlöder (eds.) Model Based Parameter Estimation: Theory and Applications, pp. 89–124. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-30367-8_4

  67. Uciński, D.: D-optimum scanning node activation for large-scale monitoring networks. In: A. van der Schaft, H. Trentelman, J. Scherpen, C. De Persis (eds.) Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, Groningen, The Netherlands, 7–11 July 2014, pp. 116–123 (2014). Paper MoA05.1, ISBN 978-90-367-6321-9

    Google Scholar 

  68. Uciński, D., Chen, Y.: Time-optimal path planning of moving sensors for parameter estimation of distributed systems. In: Proc. 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, Seville, Spain (2005). Published on CD-ROM

    Google Scholar 

  69. Uciński, D., Chen, Y.: Sensor motion planning in distributed parameter systems using Turings measure of conditioning. In: Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA (2006). Published on CD-ROM

    Google Scholar 

  70. Uciński, D., Korbicz, J.: Optimal sensor allocation for parameter estimation in distributed systems. J. Inverse Ill-Posed Prob. 9(3), 301–317 (2001)

    MathSciNet  MATH  Google Scholar 

  71. Uciński, D., Patan, M.: D-Optimal design of a monitoring network for parameter estimation of distributed systems. J. Global Optim. 39, 291–322 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  72. Uciński, D., Patan, M.: Sensor network design for the estimation of spatially distributed processes. Int. J. Appl. Math. Comput. Sci. 20(3), 459–481 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  73. Uciński, D., Patan, M.: Constrained mobile sensor routing for parameter estimation of spatiotemporal processes. IFAC Proceedings Volumes 45(16), 1317–1322 (2012). https://doi.org/10.3182/20120711-3-BE-2027.00363. 16th IFAC Symposium on System Identification

  74. Uspenskii, A.B., Fedorov, V.V.: Computational Aspects of the Least-Squares Method in the Analysis and Design of Regression Experiments. Moscow University Press, Moscow (1975). (In Russian)

    Google Scholar 

  75. Vogel, C.R.: Computational Methods for Inverse Problems. Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    Google Scholar 

  76. Yu, Y.: Monotonic convergence of a general algorithm for computing optimal designs. Ann. Stat. 38(3), 1593–1606 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  77. Zhao, F., Guibas, L.J.: Wireless Sensor Networks: An Information Processing Approach. Morgan Kaufmann Publishers, Amsterdam (2004)

    Google Scholar 

  78. Ziba, T., Uciński, D.: Mobile sensor routing for parameter estimation of distributed systems using the parallel tunneling method. Int. J. Appl. Math. Comput. Sci. 18(3), 307–318 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Uciński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uciński, D., Patan, M. (2021). Optimal Sensor Selection for Estimation of Distributed Parameter Systems. In: Kulczycki, P., Korbicz, J., Kacprzyk, J. (eds) Automatic Control, Robotics, and Information Processing. Studies in Systems, Decision and Control, vol 296. Springer, Cham. https://doi.org/10.1007/978-3-030-48587-0_11

Download citation

Publish with us

Policies and ethics