Skip to main content

Flow Process Models for Pipeline Diagnosis

  • Chapter
  • First Online:
Automatic Control, Robotics, and Information Processing

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 296))

  • 517 Accesses

Abstract

This chapter examines the problem of modeling and parameterization of the transmission pipeline flow process. First, the base model for discrete time is presented, which is a reference for other developed models. Then, the diagonal approximation (AMDA) method is proposed, in which the tridiagonal sub-matrices of the recombination matrix are approximated by their diagonal counterparts, which allows for a simple determination of the explicit form of the inverse matrix. Another suggestion is the Thomas model (ATM), in which the basic model is reformulated to a form to which the Thomas algorithm applies, at which the computational complexity of the order \(\mathcal {O}(N)\) can be obtained. The fourth suggestion is a steady state analytical model (AMSS), characterizing the steady state after transient processes. In addition, the parameterization of the discrete models in space and time is analyzed, proposing a method ensuring the maximum margin of numerical stability. This model is verified by means of simulation tests. Finally, the developed model is compared with the basic model, taking into account the accuracy and time of calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. API RP 1130: Computational Pipeline Monitoring for Liquid Pipelines. Recommended Practice from the American Petroleum Institute (2007)

    Google Scholar 

  2. Banda, M.K., Seaid, M.: Higher-order relaxation schemes for hyperbolic systems of conservation laws. J. Numer. Math. 13(3), 171–196 (2005). https://doi.org/10.1515/156939505774286102

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauer, A.L., Loubére, R., Wendroff, B.: On stability of staggered schemes. SIAM J. Numer. Anal. 46(2), 996–1011 (2008)

    Article  MathSciNet  Google Scholar 

  4. Besançon, G., Georges, D., Begovich, O., Verde, C., Aldana, C.: Direct observer design for leak detection and estimation in pipelines, In: 2007 European Control Conference (ECC), pp. 5666–5670 (2007)

    Google Scholar 

  5. Billmann, L., Isermann, R.: Leak detection methods for pipelines. Automatica 23(3), 381–385 (1987)

    Article  Google Scholar 

  6. Bonzanini, A., Picchi, D., Poesio, P.: Simplified 1D incompressible two-fluid model with artificial diffusion for slug flow capturing in horizontal and nearly horizontal pipes. Energies 10, 1372 (2017)

    Article  Google Scholar 

  7. Bridson, R.: Fluid Simulation for Computer Graphics, 2nd edn. CRC Press (2015)

    Google Scholar 

  8. Brogan, W.: Modern Control Theory, 3rd edn. Prentice Hall (1991)

    Google Scholar 

  9. Capuano, F., Mastellone, A., Angelis, E.D.: A conservative overlap method for multi-block parallelization of compact finite-volume schemes. Comput. Fluids 159, 327–337 (2017)

    Article  MathSciNet  Google Scholar 

  10. Chatzigeorgiou, D., Youcef-Toumi, K., Ben-Mansour, R.: Design of a Novel In-Pipe Reliable Leak Detector. IEEE/ASME Trans. Mechatron. 20, 824–833 (2015). https://doi.org/10.1109/TMECH.2014.2308145

    Article  Google Scholar 

  11. Chen, Z., Zhang, J.: An unconditionally stable 3-D ADI-MRTD method free of the CFL stability condition. IEEE Microwave Wireless Comp. Lett. 11(8), 349–351 (2001)

    Article  Google Scholar 

  12. Conte, S.D., de Boor, C.: Elementary Numerical Analysis: An Algorithmic Approach, 3rd edn. McGraw-Hill (1980)

    Google Scholar 

  13. Courant, R., Friedrichs, K., Lewy, H.: On the partial difference equations of mathematical physics. IBM J. Res. Dev. 11(2), 215–234 (1967)

    Article  MathSciNet  Google Scholar 

  14. Czernous, W.: Numerical method of characteristics for semilinear partial functional differential systems. J. Num. Math. 16(1), 1–21 (2008). https://doi.org/10.1515/jnum.2008.001

    Article  MathSciNet  MATH  Google Scholar 

  15. Delgado-Aguiñaga, J.A., Besançon, G., Begovich, O., Carvajal, J.E.: Multi-leak diagnosis in pipelines based on extended Kalman filter. Control Eng. Prac. 49, 139–148 (2016). https://doi.org/10.1016/j.conengprac.2015.10.008

    Article  Google Scholar 

  16. Demirci, S., Yigit, E., Eskidemir, I.H., Ozdemir, C.: Ground penetrating radar imaging of water leaks from buried pipes based on back-projection method. NDT E-Int. 47, 35–42 (2012). https://doi.org/10.1016/j.ndteint.2011.12.008

    Article  Google Scholar 

  17. Duquette, J., Rowe, A., Wild, P.: Thermal performance of a steady state physical pipe model for simulating district heating grids with variable flow. Appl. Energy 178, 383–393 (2016)

    Article  Google Scholar 

  18. Kamga, J.A., Desprs, B.: CFL condition and boundary conditions for DGM approximation of convection diffusion. SIAM J. Num. Anal. 44(6), 2245–2269 (2006). https://doi.org/10.1137/050633159

    Article  MathSciNet  MATH  Google Scholar 

  19. Gunawickrama, K.: Leak detection methods for transmission pipelines. Ph.D. Thesis, supervised by Z. Kowalczuk. Gdansk University of Technology, Gdańsk (2001)

    Google Scholar 

  20. Kornhaas, M., Schäfer, M., Sternel, D.C.: Efficient numerical simulation of aeroacoustics for low mach number flows interacting with structures. Comput. Mech. 55(6), 1143–1154 (2015). https://doi.org/10.1007/s00466-014-1114-1

    Article  MATH  Google Scholar 

  21. Kowalczuk, Z., Gunawickrama, K.: Model-based cross-correlation method for leak detection in pipelines. Pomiary Automatyka Kontrola 4, 140–146 (1998)

    Google Scholar 

  22. Kowalczuk, Z., Gunawickrama, K.: Detection and localization of leaks in transmission pipelines. In: Korbicz, J., Kościelny, J.M., Kowalczuk, Z., Cholewa, W. (eds.) Fault Diagnosis. Models, Artificial Intelligence, Applications, pp. 821–864. Springer, Berlin, Heidelberg, New York (2004)

    Google Scholar 

  23. Kowalczuk, Z., Tatara, M.: Analytical modeling of flow processes: Analysis of computability of a state-space model. In: XI International Conference on Diagnostics of Processes and Systems, pp. 74.1–12. Łagów Lubuski (2013)

    Google Scholar 

  24. Kowalczuk, Z., Tatara, M.: Approximate models and parameter analysis of the flow process in transmission pipelines. In: Kowalczuk, Z. (ed.) Advanced and Intelligent Computations in Diagnosis and Control, vol. 386, pp. 209–220. Springer IP, Switzerland (2016). https://doi.org/10.1007/978-3-319-23180-8_17

  25. Kowalczuk, Z., Tatara, M.: Numerical issues and approximated models for the diagnosis of transmission pipelines. In: Advances in the Diagnosis of Faults in Pipeline Networks, pp. 1–24. Springer, Berlin, Heidelberg (2017)

    Google Scholar 

  26. Kowalczuk, Z., Tatara, M., Stefański, T.: Reduction of computational complexity in simulations of the flow process in transmission pipelines. In: Kościelny, J.M., Syfert, M., Sztyber, A. (eds.) Advanced Solutions in Diagnostics and Fault Tolerant Control, pp. 241–252. Springer, Cham (2018)

    Chapter  Google Scholar 

  27. Kowalczuk, Z. Tatara, M.: Analytical steady-state model of the pipeline flow process. In 23rd International Conference on Methods and Models in Automation and Robotics, pp. 182–187. Miedzyzdroje, Poland, IEEE Xplore 2018; ISSN: 978-1-5386-4325-9/18 (2018). https://doi.org/10.1109/MMAR.2018.8486066

  28. Kowalczuk, Z., Tatara, M.: Analytical ’steady-state’-based derivation and clarification of the Courant-Friedrichs-Lewy condition for pipe flow (internal report prepared for publication) (2019)

    Google Scholar 

  29. Li, S., Wen, Y., Li, P., Yang, J., Dong, X., Mu, Y.: Leak location in gas pipelines using cross-time-frequency spectrum of leakage-induced acoustic vibrations. J. Sound Vibration 333(17), 3889–3903 (2014). https://doi.org/10.1016/j.jsv.2014.04.018

    Article  Google Scholar 

  30. Li, S., Zhang, J., Yan, D., Wang, P., Huang, Q., Zhao, X., Cheng, Y., Zhou, Q., Xiang, N., Dong, T.: Leak detection and location in gas pipelines by extraction of cross spectrum of single non-dispersive guided wave modes. J. Loss Prevent. Process Ind. 44, 255–262 (2016). https://doi.org/10.1016/j.jlp.2016.09.021

    Article  Google Scholar 

  31. Lyra, P.R.M., Morgan, K.: A review and comparative study of upwind biased schemes for compressible flow computation. Part I: 1—D first—order schemes. Arch. Comput. Methods Eng. 7(1), 19–55 (2000). https://doi.org/10.1007/BF02736185

  32. Mandal, S.K., Chan, F.T.S., Tiwari, M.K.: Leak detection of pipeline: An integrated approach of rough set theory and artificial bee colony trained SVM. Exp. Syst. Appl. 39(3), 3071–3080 (2012). https://doi.org/10.1016/j.eswa.2011.08.170

    Article  Google Scholar 

  33. Namiki, T., Ito, K.: A new FDTD algorithm free from the CFL condition restraint for a 2D-TE wave. In: IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010), vol. 1, pp. 192–195 (1999)

    Google Scholar 

  34. Ostapkowicz, P., Bratek, A.: Leak detection in liquid transmission pipelines during transient state related to a change of operating point. In: Kowalczuk, Z. (ed.) Advanced and Intelligent Computations in Diagnosis and Control, vol. 386, pp. 253–265. Springer IP, Switzerland (2016). https://doi.org/10.1007/978-3-319-23180-8

  35. Sandberg, C., Holmes, J., Mccoy, K., Koppitsch, H.: The application of a continuous leak detection system to pipelines and associated equipment. IEEE Trans. Ind. Appl. 25(5), 906–909 (1989)

    Article  Google Scholar 

  36. Al-Shidhani, I., Beck, S., Staszewski, W.: Leak monitoring in pipeline networks uing wavelet analysis. Key Eng. Mater. 245–246, 51–58 (2003)

    Article  Google Scholar 

  37. Stefański, T., Drysdale, T.D.: Parallel adi-bor-fdtd algorithm. IEEE Microwave Wireless Comp. Lett. 18(11), 722–724 (2008)

    Article  Google Scholar 

  38. Thomas, L.H.: Elliptic Problems in Linear Difference Equations Over a Network. Watson Sci. Comput. Lab. Rept., Columbia University, New York (1949)

    Google Scholar 

  39. Thanh, M.D.: Building fast well-balanced two-stage numerical schemes for a model of two-phase flows. Commun. Nonlinear Sci. Num. Simul. 19(6), 1836–1858 (2014). https://doi.org/10.1016/j.cnsns.2013.10.017

    Article  MathSciNet  MATH  Google Scholar 

  40. Thomas, J.W.: Numerical Partial Differential Equations: Finite Difference Methods, Texts in Applied Mathematics, vol. 22. Springer, New York, NY (1995)

    Book  Google Scholar 

  41. Verde, C., Visairo, N., Gentil, S.: Two leaks isolation in a pipeline by transient response. Adv. Water Resourc. 30, 1711–1721 (2007)

    Article  Google Scholar 

  42. Verde, C., Molina, L., Torres, L.: Parameterized transient model of a pipeline for multiple leaks location. J. Loss Preven. Process Ind. 29, 177–185 (2014)

    Article  Google Scholar 

  43. Verde, C., Torres, L.: Referenced model based observers for leaks’ location in a branched pipeline In: The 9th International Federation of Automatic Control (IFAC) Symposium SAFEPROCESS-2015. Paris, France (2015)

    Google Scholar 

  44. Waleed, D., Mustafa, S.H., Mukhopadhyay, S., Abdel-Hafez, M.F., Jaradat, M.A.K., Dias, K.R., Arif, F., Ahmed, J.I.: An in-pipe leak detection robot with a neural-network-based leak verification system. IEEE Sens. J. 19(3), 1153–1165 (2019)

    Article  Google Scholar 

  45. Wang, P., Ho, M.T., Wu, L., Guo, Z., Zhang, Y.: A comparative study of discrete velocity methods for low-speed rarefied gas flows. Comput. Fluids 161, 33–46 (2018). https://doi.org/10.1016/j.compfluid.2017.11.006

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, X.J., Lambert, M.F., Simpson, A.R., Liggett, J.A., Vitkovský, J.P.: Leak detection in pipelines using the damping of fluid transients. J. Hydraulic Eng. 128(7), 697–711 (2002)

    Article  Google Scholar 

  47. Wang, X.Y.: A Summary of the Space-Time Conservation Element and Solution Element. CESE) Method, NASA Report (2015)

    Google Scholar 

  48. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)

    Article  MathSciNet  Google Scholar 

  49. Yabe, T., Ogata, Y.: Conservative semi-lagrangian cip technique for the shallow water equations. Comput. Mech. 46(1), 125–134 (2010). https://doi.org/10.1007/s00466-009-0438-8

    Article  MathSciNet  MATH  Google Scholar 

  50. Yeung, P.K., Sreenivasan, K.R., Pope, S.B.: Effects of finite spatial and temporal resolution in direct numerical simulations of incompressible isotropic turbulence. Phys. Rev. Fluids 3(6) (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdzisław Kowalczuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kowalczuk, Z., Tatara, M.S. (2021). Flow Process Models for Pipeline Diagnosis. In: Kulczycki, P., Korbicz, J., Kacprzyk, J. (eds) Automatic Control, Robotics, and Information Processing. Studies in Systems, Decision and Control, vol 296. Springer, Cham. https://doi.org/10.1007/978-3-030-48587-0_2

Download citation

Publish with us

Policies and ethics