Skip to main content

Non-Gaussian Noise Reduction in Measurement Signal Processing

  • Chapter
  • First Online:
Automatic Control, Robotics, and Information Processing

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 296))

  • 555 Accesses

Abstract

The currently available computational power of machines allows for the modelling and analysis of nonlinear processes measured in the presence of non-Gaussian disturbances. This work gives an overview of methods useful for the analysis and reduction of the noise that can be met when using modern sensors. In order to obtain reliable estimates of the measured values, the noise reduction method should be chosen according to the type of process being measured (linear or nonlinear) and the characteristics of the noise (Gaussian or non-Gaussian). We focused on filters belonging to the Kalman family i.e.: original Kalman filter, extended Kalman filter, unscented Kalman filter, particle filter and ensemble Kalman filter. The key ideas behind the design of these filters were explained and their theoretical properties were described. Importantly, recommendations were made regarding their applicability in various types of measuring systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ades, M., Van Leeuwen, P.J.: The equivalent-weights particle filter in a high-dimensional system. Q. J. R. Meteorolog. Soc. 141(687), 484–503 (2015)

    Article  Google Scholar 

  2. Allan, D.W.: Should the classical variance be used as a basic measure in standards metrology? IEEE Trans. Instrument. Measure. 1001(2), 646–654 (1987a)

    Article  Google Scholar 

  3. Allan, D.W.: Time and frequency(time-domain) characterization, estimation, and prediction of precision clocks and oscillators. IEEE Trans. Ultrason. Erroelect. Freq. Control 34(6), 647–654 (1987b)

    Article  Google Scholar 

  4. Anderson, J.L.: Ensemble Kalman filters for large geophysical applications. IEEE Control Syst. Magazine 29(3), 66–82 (2009)

    Article  MathSciNet  Google Scholar 

  5. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  6. Aydemir, G.A., Saranlı, A.: Characterization and calibration of mems inertial sensors for state and parameter estimation applications. Measurement 45(5), 1210–1225 (2012)

    Article  Google Scholar 

  7. Bendat, J.S., Piersol, A.G., Dudziewicz, J., Białobrzeski, R.: Metody analizy i pomiaru sygnałów losowych. Państwowe Wydawnictwo Naukowe (1976)

    Google Scholar 

  8. Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.: Quantum probes for the spectral properties of a classical environment. Phys. Rev. A 89(3), 032114 (2014)

    Article  Google Scholar 

  9. Chen, Z.: Bayesian filtering: From Kalman filters to particle filters, and beyond. Statistics 182(1), 1–69 (2003)

    Article  Google Scholar 

  10. Djurić, Z.: Mechanisms of noise sources in microelectromechanical systems. Microelectron. Reliabil. 40(6), 919–932 (2000)

    Article  Google Scholar 

  11. Djurić, P.M., Kotecha, J.H., Zhang, J., Huang, Y., Ghirmai, T., Bugallo, M.F., Miguez, J.: Particle filtering. IEEE Signal Process. Magazine 20(5), 19–38 (2003)

    Article  Google Scholar 

  12. Doyle, J.A., Evans, A.C.: What colour is neural noise? arXiv:1806.03704 (2018)

  13. D’Alessandro, A., Vitale, G., Scudero, S., D’Anna, R., Costanza, A., Fagiolini, A., Greco, L.: Characterization of MEMS accelerometer self-noise by means of PSD and allan variance analysis. In: 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), pp. 159–164 (2017)

    Google Scholar 

  14. El-Sheimy, N., Hou, H., Niu, X.: Analysis and modeling of inertial sensors using allan variance. IEEE Trans. Instrument. Measure. 57(1), 140–149 (2008)

    Article  Google Scholar 

  15. Evensen, G.: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn. 53(4), 343–367 (2003)

    Article  Google Scholar 

  16. Faragher, R.: Understanding the basis of the Kalman filter via a simple and intuitive derivation. IEEE Signal Process. Magazine 29(5), 128–132 (2012)

    Article  Google Scholar 

  17. Gucma, M., Montewka, J.: Podstawy morskiej nawigacji inercyjnej (in polish). Maritime University of Szczecin (2006)

    Google Scholar 

  18. Gustafsson, F.: Particle filter theory and practice with positioning applications. IEEE Aerosp. Elect. Syst. Magazine 25(7), 53–82 (2010)

    Article  Google Scholar 

  19. Hasse, L., Spiralski, L.: Szumy elementów i układów elektronicznych (in polish). Polish Scientific Publishers (1981)

    Google Scholar 

  20. Haykin, S.: Signal processing in a nonlinear, nongaussian, and nonstationary world. In: Nonlinear Speech Modeling and Applications, pp. 43–53. Springer (2005)

    Google Scholar 

  21. Hou, H.: Modeling inertial sensors errors using Allan variance. University of Calgary, Department of Geomatics Engineering (2004)

    Google Scholar 

  22. Jerath, K., Brennan, S., Lagoa, C.: Bridging the gap between sensor noise modeling and sensor characterization. Measurement 116, 350–366 (2018)

    Article  Google Scholar 

  23. Julier, S.J., Uhlmann, J.K.: New extension of the Kalman filter to nonlinear systems. In: International Society for Optics and Photonics Signal processing, sensor fusion, and target recognition VI, vol. 3068, pp. 182–194 (1997)

    Google Scholar 

  24. Katzfuss, M., Stroud, J.R., Wikle, C.K.: Understanding the ensemble Kalman filter. Am. Stat. 70(4), 350–357 (2016)

    Article  MathSciNet  Google Scholar 

  25. Keesman, K.J.: System Identification: An Introduction. Springer Science & Business Media (2011)

    Google Scholar 

  26. Kenfack, L.T., Martin, T., Fai, L.C.: Classification of classical non-gaussian noises with respect to their detrimental effects on the evolution of entanglement using a system of three-qubit as probe (2017)

    Google Scholar 

  27. Kiani, M., Pourtakdoust, S.H., Sheikhy, A.A.: Consistent calibration of magnetometers for nonlinear attitude determination. Measurement 73, 180–190 (2015)

    Article  Google Scholar 

  28. Lei, J., Bickel, P., Snyder, C.: Comparison of ensemble Kalman filters under non-Gaussianity. Month. Weather Rev. 138(4), 1293–1306 (2010)

    Article  Google Scholar 

  29. Lv, H., Zhang, L., Wang, D., Wu, J.: An optimization iterative algorithm based on nonnegative constraint with application to allan variance analysis technique. Adv. Space Res. 53(5), 836–844 (2014)

    Article  Google Scholar 

  30. Mańczak, K., Nahorski, Z.: Komputerowa identyfikacja obiektów dynamicznych (in polish). Polish Scientific Publishers (1983)

    Google Scholar 

  31. Mateos, I., Patton, B., Zhivun, E., Budker, D., Wurm, D., Ramos-Castro, J.: Noise characterization of an atomic magnetometer at sub-millihertz frequencies. Sensors Actuators A Phys. 224, 147–155 (2015)

    Article  Google Scholar 

  32. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press, Cambridge, MA (2012)

    MATH  Google Scholar 

  33. Of Electrical, I., Engineers, E.: IEEE Standard Specification Format Guide and Test Procedure for Linear, Single-axis. IEEE Nongyroscopic Accelerometers (1999)

    Google Scholar 

  34. Osowski, S.: Modelowanie i symulacja układów i procesów dynamicznych (in polish). A publishing house of Warsaw University of Technology (2007)

    Google Scholar 

  35. Paszek, J., Kaniewski, P., Łabowski, M.: Analiza błędów losowych czujników bezwładnościowych przy pomocy metod wariancyjnych (in polish). Przeglqd Elektrotechniczny 92(1), 62–67 (2016)

    Google Scholar 

  36. Petkov, P., Slavov, T.: Stochastic modeling of mems inertial sensors. Cybernet. Inf. Technol. 10(2), 31–40 (2010)

    Google Scholar 

  37. Roth, M., Fritsche, C., Hendeby, G., Gustafison, F.: The ensemble Kalman filter and its relations to other nonlinear filters. In: 23rd European Signal Processing Conference (EUSIPCO), pp. 1236–1240. IEEE (2015)

    Google Scholar 

  38. Sheinker, A., Shkalim, A., Salomonski, N., Ginzburg, B., Frumkis, L., Kaplan, B.Z.: Processing of a scalar magnetometer signal contaminated by 1/f \(\alpha \) noise. Sensors Actuators A Phys. 138(1), 105–111 (2007)

    Article  Google Scholar 

  39. Shen, Z., Tang, Y.: A modified ensemble Kalman particle filter for non-Gaussian systems with nonlinear measurement functions. J. Adv. Model. Earth Syst. 7(1), 50–66 (2015)

    Article  Google Scholar 

  40. Simon, D.: Kalman filtering. Embed. Syst. Program. 14(6), 72–79 (2001)

    Google Scholar 

  41. Simon, D.: Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons (2006)

    Google Scholar 

  42. Theodoridis, S.: Machine learning: a Bayesian and optimization perspective. Academic Press, Elsevier (2015)

    Google Scholar 

  43. Van Der Merwe, R., Wan, E.A., Julier, S.: Sigma-Point Kalman Filters Nonlinear Estimation and Sensor Fusion- Applications in Integrated Navigation. Proceedings, AIAA Guidance Navigation and Controls Conference (2004)

    Google Scholar 

  44. Van Leeuwen, P.J.: Particle filtering in geophysical systems. Month. Weather Rev. 137(12), 4089–4114 (2009)

    Article  Google Scholar 

  45. Van Leeuwen, P.J.: Nonlinear data assimilation in geosciences: an extremely efficient particle filter. Q. J. R. Meteorol. Soc. 136(653), 1991–1999 (2010)

    Article  Google Scholar 

  46. Vasilescu, G.: Electronic noise and interfering signals: principles and applications. Springer Science & Business Media (2006)

    Google Scholar 

  47. Vig, J.R.: IEEE standard definitions of physical quantities for fundamental frequency and time metrology-random instabilities (IEEE standard). IEEE, New York (1999)

    Google Scholar 

  48. Wan, E.A., Van Der Merwe, R.: The unscented Kalman filter for nonlinear estimation. In: Adaptive Systems for Signal Processing, Communications, and Control Symposium, pp. 53–158 (2000)

    Google Scholar 

  49. Wang, L., Zhang, Ch., Gao, S., Wang, T., Lin, T., Li, X.: Application of fast dynamic Allan variance for the characterization of FOGs-Based measurement while drilling. Sensors 16(12), 1–18 (2016)

    Article  Google Scholar 

  50. Woodman, O.J.: An introduction to inertial navigation. University of Cambridge, Computer Laboratory, Tech. Rep. UCAMCL-TR-696 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Świątek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Świątek, J., Brzostowski, K., Drapała, J. (2021). Non-Gaussian Noise Reduction in Measurement Signal Processing. In: Kulczycki, P., Korbicz, J., Kacprzyk, J. (eds) Automatic Control, Robotics, and Information Processing. Studies in Systems, Decision and Control, vol 296. Springer, Cham. https://doi.org/10.1007/978-3-030-48587-0_4

Download citation

Publish with us

Policies and ethics