Skip to main content

Switched Models of Non-integer Order

  • Chapter
  • First Online:
Automatic Control, Robotics, and Information Processing

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 296))

Abstract

In this paper, methods for modeling complex, non-linear dynamic systems of non-integer order, using so-called switched models that are based on the dynamic change of local linear models, depending on the value of an appropriately chosen switching function are discussed. Such a multimodel approach enables a relatively simple description of properties of many complex physical and abstract processes encountered in technology, especially in automation and robotics, but also in nature, biology, medicine and, for example, in economics. Although the theory of switched systems has been developing intensively for over a dozen or so years, many issues and problems have not yet been solved. This is particularly true for systems of a non-integer order. In the paper, basic definitions of fractional switched models, their principal properties and examples of applications in control are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bemporad, A., Ferrari-Trecate, G., Morari, M.: Observability and controllability of piecewise affine and hybrid systems. IEEE Trans. Autom. Control 45(10), 1864–1876 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Benmessaouda, O., Benzaouia, A., Tadeo, F.: Stabilization of uncertain state constrained discrete-time switched systems. In: Preparation of the 18th IFAC World Congress, Milano, Italy, pp. 5736–5740 (2011)

    Google Scholar 

  3. Bin Liu, B., Hill, D.J.: Stabilization for decomposable dissipative discrete-time switched systems. In: Preparation of the 18th IFAC World Congress, Milano, Italy, pp. 5730–5735 (2011)

    Google Scholar 

  4. Blesa, J., Puig, V., Bolea, Y.: Fault detection using interval LPV models in an open-flow canal. Contr. Eng. Practice 18, 460–470 (2010)

    Google Scholar 

  5. Branicky, M.S.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Autom. Control 43(3), 475–482 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Busłowicz, M.: Stability of state-space models of linear continuous-time fractional order systems. Acta Mech. Autom. 5(2), 15–22 (2011)

    Google Scholar 

  7. Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, London (2004)

    MATH  Google Scholar 

  8. Chadli, M.: An LMI approach to design observer for unknown inputs Takagi-Sugeno fuzzy models. Asian J. Control 12(4), 524–530 (2010)

    MathSciNet  Google Scholar 

  9. Chen, Y.Q., Petráš, I., Xue, D.: Fractional order control. In: American Control Conference, St. Louis, pp. 1397–1410 (2009)

    Google Scholar 

  10. Daafouz, J., Riedinger, P., Iung, C.: Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach. IEEE Trans. Autom. Control 47(11), 1883–1887 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Deaecto, G.S., Souza, M., Geromel, J.C.: Discrete-time switched linear systems state feedback design with application to networked control. IEEE Trans. Autom. Control 60(3), 877–888 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Ding, B.: Properties of parameter-dependent open-loop MPC for uncertain systems with polytopic description. Asian J. Control 12(1), 58–70 (2010)

    MathSciNet  Google Scholar 

  13. Domek, S.: Robust Model Predictive Control for Nonlinear Processes (In Polish). Technical University of Szczecin Academic Press, Szczecin (2006)

    Google Scholar 

  14. Domek, S.: A model based robust control system for a class of MIMO nonlinear systems. In: Malinowski, K., Rutkowski, L. (eds.) Recent Advances in Control and Automation, Challenging Problems of Science, Control and Automation, pp. 1–10. Academic Publishing House EXIT, Warszawa (2008)

    Google Scholar 

  15. Domek, S.: Fuzzy predictive control of fractional-order nonlinear discrete-time systems. Acta Mech. Autom. 5(2), 23–26 (2011)

    Google Scholar 

  16. Domek, S.: Switched state model predictive control of fractional-order nonlinear discrete-time systems. In: Pisano, A., Caponetto, R. (eds.) Advances in Fractional Order Control and Estimation, Asian J. Control, Special Issue 15(3), 658–668 (2013)

    Google Scholar 

  17. Domek, S.: Fractional-Order Calculus in Model Predictive Control (In Polish). West Pomeranian University of Technology Academic Press, Szczecin (2013)

    MATH  Google Scholar 

  18. Domek, S.: Piecewise affine representation of discrete in time, non-integer order systems. In: Mitkowski, W., Kacprzyk, J., Baranowski, J. (eds.) Advances in the Theory and Applications of Non-integer Order Systems. Lecture Notes in Electrical Engineering, vol. 257, pp. 149–160. Springer (2013)

    Google Scholar 

  19. Domek, S.: Multiple use of the fractional-order differential calculus in the model predictive control. In: 19th International Conference on Methods and Models in Automation and Robotics, Miȩdzyzdroje, pp. 359–362 (2014). https://doi.org/10.1109/MMAR.2014.6957379

  20. Domek, S.: Fractional-order model predictive control with small set of coincidence points. In: Latawiec, K., Łukaniszyn, M., Stanisławski, R. (eds.) Advances in Modelling and Control of Non-integer Order Systems. Lecture Notes in Electrical Engineering, vol. 320, pp. 135–144. Springer (2014)

    Google Scholar 

  21. Domek, S.: Model-plant mismatch in fractional order model predictive control. In: Domek, S., Dworak, P. (eds.) Theoretical Developments and Applications of Non-integer Order Systems. Lecture Notes in Electrical Engineering, vol. 357, pp. 281–291. Springer (2016)

    Google Scholar 

  22. Domek, S.: Approximation and stability analysis of some kinds of switched fractional linear systems. In: Mitkowski, W., Kacprzyk, J., Oprzȩdkiewicz, K., Skruch, P. (eds.) Trends in Advanced Intelligent Control, Optimization and Automation. AISC, vol. 577, pp. 442–454. Springer (2017)

    Google Scholar 

  23. Domek, S.: Fractional linear systems with memory deficiency and their state-space integer-order approximation. In: Ostalczyk, P., Sankowski, D., Nowakowski, J. (eds.) Non-integer Order Calculus and its Applications. Lecture Notes in Electrical Engineering, vol. 496, pp. 164–179. Springer (2018). https://doi.org/10.1007/978-3-319-78458-8_15

  24. Domek, S., Dworak, P., Pietrusewicz, K.: Hybrid model-following control algorithm within the motion control system. In: Proceedings of the IEEE International Symposium on Industrial Electronics, Piscataway, pp. 1476–1481 (2009)

    Google Scholar 

  25. Domek, S., Jaroszewski, K.: Model predictive controller for fractional order systems. In: Grzech, A., Świçtek, P., Drapała, J. (eds.) Advances in System Science. Computer Science, pp. 9–18. EXIT, Warszawa (2010)

    Google Scholar 

  26. Dzieliński, A., Sierociuk, D.: Stability of discrete fractional order state-space systems. J. Vib. Control 14(9–10), 1543–1556 (2008)

    Google Scholar 

  27. Dzieliński, A., Sarwas, G., Sierociuk, D.: Comparison and validation of integer and fractional order ultracapacitor models. Adv. Differ. Equ. (2011). https://doi.org/10.1186/1687-1847-2011-11

  28. Dzieliński, A., Sierociuk, D., Sarwas, G.: Some applications of fractional order calculus. Bull. Pol. Acad. Sci. Tech. Sci. 58(4), 583–592 (2010)

    Google Scholar 

  29. Fang, L., Lin, H., Antsaklis, P.J.: Stabilization and performance analysis for a class of switched systems. In: Proceedings of the 43rd IEEE Conference on Decision Control, Atlantis, pp. 1179–1180 (2004)

    Google Scholar 

  30. Geromel, J.C., Colaneri, P.: Stability and stabilization of discrete time switched systems. Int. J. Control 79(7), 719–728 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Geyer, T., Torrisi, F., Morari, M.: Optimal complexity reduction of polyhedral piecewise affine systems. Automatica 44(7), 1728–1740 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Ionescu, C., Lopes, A., Copot, D., Machado, J.A.T., Bates, J.H.T.: The role of fractional calculus in modeling biological phenomena: a review. Commun. Nonlinear Sci. Numer. Simulat. 51, 141–159 (2017)

    MathSciNet  Google Scholar 

  33. Jiménez, A., Al-Hadithi, B.M., Matia, F., Haber-Haber, R.: Improvement of Takagi-Sugeno fuzzy model for the estimation of nonlinear functions. Asian J. Control (2010). https://doi.org/10.1002/asjc.310

    Article  MATH  Google Scholar 

  34. Kaczorek, T.: Practical stability and asymptotic stability of positive fractional 2D linear systems. Asian J. Control 12(2), 200–207 (2010)

    MathSciNet  Google Scholar 

  35. Kaczorek, T.: Selected Problems of Fractional Systems Theory. Springer, Berlin (2011)

    MATH  Google Scholar 

  36. Ławryńczuk, M.: Nonlinear state-space predictive control with on-line linearisation and state estimation. Int. J. Appl. Math. Comput. Sci. 25(4), 833–847 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Lian, J., Zhao, J.: Output feedback variable structure control for a class of uncertain switched systems. Asian J. Control 11(1), 31–39 (2009)

    MathSciNet  Google Scholar 

  38. Liberzon, D., Morse, A.S.: Basic problems in stability and design of switched systems. IEEE Control Syst. 19(5), 59–70 (1999)

    MATH  Google Scholar 

  39. Liberzon, D.: Switching in Systems and Control. Birkhauser, Boston (2003)

    MATH  Google Scholar 

  40. Lin, H., Antsaklis, P.J.: Stability and stabilizability of switched linear systems: a survey of recent results. IEEE Trans. Autom. Control 54(2), 308–322 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Macias, M., Sierociuk, D.: An alternative recursive fractional variable-order derivative definition and its analog validation. In: Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA), Catania, pp. 1–6 (2014)

    Google Scholar 

  42. Maciejowski, J.M.: Predictive Control with Constraints. Prentice Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

  43. Mäkilä, P.M., Partington, J.R.: On linear models for nonlinear systems. Automatica 39, 1–13 (2003)

    MathSciNet  MATH  Google Scholar 

  44. Margaliot, M.: Stability analysis of switched systems using variational principles: an introduction. Automatica 42, 2059–2077 (2006)

    MathSciNet  MATH  Google Scholar 

  45. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu, V.: Fractional Order Systems and Controls. Springer-Verlag, London (2010)

    MATH  Google Scholar 

  46. Mozyrska, D., Ostalczyk, P.: Generalized fractional-order discrete-time integrator. Complexity (Hindawi) (2017). https://doi.org/10.1155/2017/3452409

    Article  Google Scholar 

  47. Muddu Madakyaru, M., Narang, A., Patwardhan, S.C.: Development of ARX models for predictive control using fractional order and orthonormal basis filter parameterization. Ind. Eng. Chem. Res. 48(19), 8966–8979 (2009)

    Google Scholar 

  48. Murray-Smith, R., Johansen, T.: Multiple Model Approaches to Modeling and Control. Taylor and Francis, London (1997)

    Google Scholar 

  49. Nafsun, A.I., Yusoff, N.: Effect of model-plant mismatch on MPC controller performance. J. Appl. Sci. 21(11), 579–585 (2011)

    Google Scholar 

  50. Ostalczyk, P.: The non-integer difference of the discrete-time function and its application to the control system synthesis. Int. J. Syst. Sci. 31(12), 1551–1561 (2000)

    MATH  Google Scholar 

  51. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  52. Rodrigues, M., Theilliol, D., Adam-Medina, M., Sauter, D.: A fault detection and isolation scheme for industrial systems based on multiple operating models. Contr. Eng. Practice 16, 225–239 (2008)

    Google Scholar 

  53. Romero, M., De Madrid, Á.P., Mañoso, C., Vinagre, B.M.: Fractional-order generalized predictive control: formulation and some properties. In: Proceedings of the 11th International Conference on Control, Automation, Robotics and Vision, Singapore, pp. 1495–1500 (2010)

    Google Scholar 

  54. Romero, M., Vinagre, B.M., De Madrid, Á.P.: GPC control of a fractional–order plant: improving stability and robustness. In: Proceedings of the 17th IFAC World Congress, Seoul, pp. 14266–14271 (2008)

    Google Scholar 

  55. Rydel, M., Stanisławski, R., Bialic, G., Latawiec, K.: Modeling of discrete-time fractional-order state space systems using the balanced truncation method. In: Domek, S., Dworak, P. (eds.) Theoretical Developments and Applications of Non-integer Order Systems. Lecture Notes in Electrical Engineering, vol. 357, pp. 119–127. Springer (2016)

    Google Scholar 

  56. Safonov, M.G., Chiang, R.Y.: A Schur method for balanced model reduction. IEEE Trans. Autom. Control AC–2(7), 729–733 (1989)

    Google Scholar 

  57. Savkin, A.V., Evans, R.J.: Hybrid Dynamical Systems. Controller and Sensor Switching Problems. Birkhäuser, Boston (2002)

    MATH  Google Scholar 

  58. Shantanu, D.: Functional Fractional Calculus for System Identification and Controls. Springer Verlag, Berlin (2008)

    MATH  Google Scholar 

  59. Shorten, R., Wirth, F., Mason, O., Wulff, K., King, C.: Stability criteria for switched and hybrid systems. SIAM Rev. 49(4), 545–592 (2007)

    MathSciNet  MATH  Google Scholar 

  60. Sierociuk, D., Dzieliński, A.: Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation. Int. J. Appl. Math. Comp. Sci. 16(1), 129–140 (2006)

    MathSciNet  MATH  Google Scholar 

  61. Sontag, E.D.: Interconnected automata and linear systems: a theoretical framework in discrete-time. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) Hybrid Systems III: Verification and Control. Lecture Notes in Computer Science, vol. 1066, pp. 436–448. Springer-Verlag (1996)

    Google Scholar 

  62. Stanisławski, R., Latawiec, K.: Normalized finite fractional differences: the computational and accuracy breakthroughs. Int. J. Appl. Math. Comput. Sci. 22(4), 907–919 (2012)

    MathSciNet  MATH  Google Scholar 

  63. Stanisławski, R., Latawiec, K., Łukaniszyn, M., Gaüek, M.: Time-domain approximations to the Grünwald-Letnikov difference with application to modeling of fractional-order state space systems. In: Proceedings of the 20th International Conference on Methods and Models in Automation and Robotics, Miȩdzyzdroje, Poland, pp. 579–584 (2015)

    Google Scholar 

  64. Sun, Z., Ge, S.S.: Switched Linear Systems. Control and Design. Springer, London (2005)

    MATH  Google Scholar 

  65. Sun, Z., Ge, S.S.: Analysis and synthesis of switched linear control systems. Automatica 41(2), 181–195 (2005)

    MathSciNet  MATH  Google Scholar 

  66. Sun, Z., Ge, S.S., Lee, H.: Controllability and reachability criteria for switched linear systems. Automatica 38(5), 775–786 (2002)

    MathSciNet  MATH  Google Scholar 

  67. Szűcs, A., Kvasnica, M., Fikar, M.: Optimal piecewise affine approximations of nonlinear functions obtained from measurements. In: Proceedings of the 4th IFAC Conference on Analysis and Design of Hybrid Systems, Eindhoven, pp. 160–165 (2012)

    Google Scholar 

  68. Tatjewski, P.: Advanced Control of Industrial Processes. Springer, London (2007)

    MATH  Google Scholar 

  69. Tatjewski, P.: Supervisory predictive control and on-line set-point optimization. Int. J. Appl. Math. Comput. Sci. 20(3), 483–495 (2010)

    MathSciNet  MATH  Google Scholar 

  70. Tatjewski, P.: Offset-free nonlinear predictive control with measured state and unknown asymptotically constant disturbances. In: Malinowski, K., Józefczyk, J., Świ(mohana)tek, J.: (eds.) Actual Problems in Automation and Robotics. Akademicka Oficyna Wydawnicza Exit, Warszawa, pp. 288–299 (2014)

    Google Scholar 

  71. Vesely, V., Rosinova, D.: Robust MPC controller design for switched systems using multi-parameter dependent Lyapunov function. Int. J. Innov. Comput. Inform. Control 10(1), 269–280 (2014)

    Google Scholar 

  72. Wang, Y., Wang, X.: Performance diagnosis of MPC with model-plant mismatch. In: Proceedings of the Chinese Control and Decision Conference, Xuzhou, pp. 78–82 (2010)

    Google Scholar 

  73. Zhao, X.D., Zhang, L., Shi, P., Liu, M.: Stability and stabilization of switched linear systems with mode-dependent average dwell time. IEEE Trans. Autom. Control 57(7), 1809–1815 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Domek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Domek, S. (2021). Switched Models of Non-integer Order. In: Kulczycki, P., Korbicz, J., Kacprzyk, J. (eds) Automatic Control, Robotics, and Information Processing. Studies in Systems, Decision and Control, vol 296. Springer, Cham. https://doi.org/10.1007/978-3-030-48587-0_6

Download citation

Publish with us

Policies and ethics