Skip to main content

The Effect of Age, Gender, and Arousal Level on Categorizing Human Affective States

  • Chapter
  • First Online:
Emotion and Information Processing

Abstract

Emotion is a complex state of human beings that depicts the physical, physiological, or mental condition of a person. The study of emotion can facilitate appropriate treatment involving mental disorders in psychiatry. This motivates the author to investigate different human affective states using voice samples based on age, arousal-level, and subsidiary cues. In this process, it analyzes and compares several state-of-art feature extraction techniques that describe the human affective states effectively. Extensive simulation has been carried out considering both the positive and negative emotional states using a few efficient features to characterize and sub-group the intended states based on several efficient speech prosodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ai, H., Litman, D. J., Forbes-Riley, K., Rotaru, M., Tetreault, J., & Purandare, A. (2006). Using system and user performance features to improve emotion detection in spoken tutoring dialogs. In Ninth International Conference on Spoken Language Processing.

    Google Scholar 

  • Bahreini, K., Nadolski, R., & Westera, W. (2016). Towards multimodal emotion recognition in e-learning environments. Interactive Learning Environments, 24(3), 590–605.

    Article  Google Scholar 

  • Frank, M. G., & Feeley, T. H. (2003). To catch a liar: Challenges for research in lie detection training. Journal of Applied Communication Research, 31(1), 58–75.

    Article  Google Scholar 

  • Hernández, A., Sanchez, V., Sánchez, G., Pérez, H., Olivares, J., Toscano, K., & Martinez, V. (2016, March). Security attack prediction based on user sentiment analysis of Twitter data. In 2016 IEEE International Conference on Industrial Technology (ICIT) (pp. 610–617). New York: IEEE.

    Chapter  Google Scholar 

  • Kostoulas, T., Mporas, I., Kocsis, O., Ganchev, T., Katsaounos, N., Santamaria, J. J., & Fakotakis, N. (2012). Affective speech interface in serious games for supporting therapy of mental disorders. Expert Systems with Applications, 39(12), 11072–11079.

    Article  Google Scholar 

  • Martinez, R. S. (2017). U.S. Patent No. 9,569,424. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Merkx, P. A. B., Truong, K. P., & Neerincx, M. A. (2007, August). Inducing and measuring emotion through a multiplayer first-person shooter computer game. In Proceedings of the Computer Games Workshop (pp. 07–06).

    Google Scholar 

  • Mohanty, M. N., & Palo, H. K. (2019). Segment based emotion recognition using combined reduced features. International Journal of Speech Technology, 22(4), 865–884.

    Article  Google Scholar 

  • Mohanty, M. N., & Palo, H. K. (2020). Child emotion recognition using probabilistic neural network with effective features. Measurement, 152, 107369.

    Article  Google Scholar 

  • Palo, H. K., & Behera, D. (2020). Analysis of speaker’s age using clustering approaches with emotionally dependent speech features. In Critical approaches to information retrieval research (pp. 172–197). Hershey, PA: IGI Global.

    Chapter  Google Scholar 

  • Palo, H. K., Behera, D., & Rout, B. C. (2020). Comparison of classifiers for speech emotion recognition (SER) with discriminative spectral features. In Advances in intelligent computing and communication (pp. 78–85). Singapore: Springer.

    Chapter  Google Scholar 

  • Palo, H. K., Chandra, M., & Mohanty, M. N. (2017). Emotion recognition using MLP and GMM for Oriya language. International Journal of Computational Vision and Robotics, 7(4), 426–442.

    Article  Google Scholar 

  • Palo, H. K., Kumar, P., & Mohanty, M. N. (2017). Emotional speech recognition using optimized features. International Journal of Research in Electronics and Computer Engineering, 5(4), 4–9.

    Google Scholar 

  • Palo, H. K., & Mohanty, M. N. (2018). Wavelet based feature combination for recognition of emotions. Ain Shams Engineering Journal, 9(4), 1799–1806.

    Article  Google Scholar 

  • Palo, H. K., & Mohanty, M. N. (2020). Analysis of speech emotions using dynamics of prosodic parameters. In Cognitive informatics and soft computing (pp. 333–340). Singapore: Springer.

    Chapter  Google Scholar 

  • Palo, H. K., Mohanty, M. N., & Chandra, M. (2016). Efficient feature combination techniques for emotional speech classification. International Journal of Speech Technology, 19(1), 135–150.

    Article  Google Scholar 

  • Palo, H. K., Mohanty, M. N., & Chandra, M. (2018). Speech emotion analysis of different age groups using clustering techniques. International Journal of Information Retrieval Research (IJIRR), 8(1), 69–85.

    Article  Google Scholar 

  • Palo, H. K., & Sarangi, L. (2020). Overview of machine learners in classifying of speech signals. In Handbook of research on emerging trends and applications of machine learning (pp. 461–489). Hershey, PA: IGI Global.

    Chapter  Google Scholar 

  • Paulmann, S., Bleichner, M., & Kotz, S. A. (2013). Valence, arousal, and task effects in emotional prosody processing. Frontiers in Psychology, 4, 345.

    Article  Google Scholar 

  • Petrushin, V. A. (2011). U.S. Patent No. 7,940,914. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Plutchik, R. (2001). The nature of emotions: Human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice. American Scientist, 89(4), 344–350.

    Article  Google Scholar 

  • Raj, J., & Kumar, S. (2015). Gender based affection recognition of speech signals using spectral & prosodic feature extraction. International Journal of Engineering Research and General Science, 3(2), 898–905.

    Google Scholar 

  • Ram, R., Palo, H. K., & Mohanty, M. N. (2013). Emotion recognition with speech for call centres using LPC and spectral analysis. International Journal of Advanced Computer Research, 3(3), 189.

    Google Scholar 

  • Song, K. T., Han, M. J., & Wang, S. C. (2014). Speech signal-based emotion recognition and its application to entertainment robots. Journal of the Chinese Institute of Engineers, 37(1), 14–25.

    Article  Google Scholar 

  • Tawari, A., & Trivedi, M. (2010, June). Speech based emotion classification framework for driver assistance system. In 2010 IEEE Intelligent Vehicles Symposium (pp. 174–178). New York: IEEE.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemanta Kumar Palo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palo, H.K. (2020). The Effect of Age, Gender, and Arousal Level on Categorizing Human Affective States. In: Mohanty, S.N. (eds) Emotion and Information Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-48849-9_7

Download citation

Publish with us

Policies and ethics