Skip to main content

The Topological Basis of Spatial Complexity

  • Chapter
  • First Online:
Spatial Complexity

Abstract

The key topological indicators of spatial complexity are: number of boundaries, genus, dimension, knottingness, braiding, linking/writhing and immersion of the surface or object: i.e. the higher the number of boundaries and/or knots (or braids) and the higher the genus and the dimension of the surface or object, the more spatially complex it is. Some initial experimentations with spatial complexity can be made with easy-to-derive estimates by using the Gage-Hamilton-Grayson theorem, Pick’s theorem and intersections of lines with Jordan curves. Then, spatial complexity can be assessed in various ways by using concepts of the complexity of knots and braids, including knot polynomials, linking numbers and Grosberg-Nechaev complexity.

1. A point is that of which there is no part.

2. A line is length without breadth.

3. The extremities of a line are points.

“αʹ.Σημεῖόν ἐστιν, οὗ μέρος οὐθέν.

βʹ.Γραμμὴ δὲ μῆκος ἀπλατές.

γʹ.Γραμμῆς δὲ πέρατα σημεῖα.”

(Euclid, 4th century b.C.,“Elements", Book A)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bachelard, G. (1994). The Poetics of Space. Boston MA: Beacon Press.

    Google Scholar 

  • Bangert, P. D., Berger, M. A. and Prandi, R. (2002). In search of minimal random braid configurations. Journal of Physics A: Mathematical and General, 35(1), 43–59.

    Article  MathSciNet  MATH  Google Scholar 

  • Barenghi, C. F., Ricca, R. L. and Samuels, D. C. (2001). How tangled is a tangle? Physica D: Nonlinear Phenomena, 157(3), 197–206.

    Article  MathSciNet  MATH  Google Scholar 

  • Berger, M. A. (1994). Minimum Crossing Numbers for 3-Braids. Journal of Physics A: General Physics, 27(18), 6205–6213.

    Article  MathSciNet  MATH  Google Scholar 

  • Burton, B.A. (2011). Maximal admissible faces and asymptotic bounds for the normal surface solution space. Journal of Combinatorial Theory, A,118 (4),1410–1435.

    Google Scholar 

  • Casali, M. and Cristofori, P. (2006). Computing Matveev’s Complexity via Crystallization Theory: The Orientable Case. Acta Applicandae Mathematicae, 92(2), 113–123.

    Article  MathSciNet  MATH  Google Scholar 

  • De Landa, M. (2002). Intensive Science and Virtual Philosophy. London: Continuum.

    Google Scholar 

  • DeTurck, D. and Gluck, H. (2005). Electrodynamics and the Gauss linking integral on the 3-sphere and in hyperbolic 3-space. arxiv.org/abs/math.GT/0510388.

    Google Scholar 

  • Diao, Y. and Ernst, C. (1998). The complexity of lattice knots. Topology and its Applications, 90(1), 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  • Dynnikov, I. and West, B. (2007). On complexity of Braids. Journal of the European Mathematical Society, 9(4), 801–840.

    Article  MathSciNet  MATH  Google Scholar 

  • Fiedler, B. and Rocha, C. (1999). Realization of meander permutations by boundary value problems. Journal of Differential Equations, 156(2), 282–308.

    Article  MathSciNet  MATH  Google Scholar 

  • Gage, M. E. (1983). An isoperimetric inequality with applications to curve shortening. Duke Mathematical Journal, 50(4), 1225–1229. https://doi.org/10.1215/S0012-7094-83-05052-4

    Article  MathSciNet  MATH  Google Scholar 

  • Gage, M. E. (1984). Curve shortening makes convex curves circular. Inventiones Mathematicae, 76(2), 357–364. https://doi.org/10.1007/BF01388602

    Article  MathSciNet  MATH  Google Scholar 

  • Gage, M. and Hamilton, R.S. (1986). The heat equation shrinking convex plane curves. Journal of Differential Geometry, 23(1), 69-96. MR 840401.

    Google Scholar 

  • Garber, D., Kaplan, S. and Teicher, M. (2002). A New Algorithm for Solving the Word Problem in Braid Groups. Advances in Mathematics, 167(1), 142–159.

    Article  MathSciNet  MATH  Google Scholar 

  • Grayson, M.A. (1987). The heat equation shrinks embedded plane curves to round points. Journal of Differential Geometry 26(2), 285-314. MR 906392

    Google Scholar 

  • Grayson, M.A. (1989a). The shape of a figure-eight under the curve shortening flow. Inventiones Mathematicae, 96(1), 177-180. MR981740. doi: https://doi.org/10.1007/BF01393973.

  • Grayson, M.A. (1989b). Shortening embedded curves. Annals of Mathematics, Second Series, 129(1), 71-111. MR979601. doi: https://doi.org/10.2307/1971486.

  • Grosberg, A. Y. and Nechaev, S. K. (1991). Topological constraints in polymer network strong collapse. Macromolecules, 24(10), 2789–2793.

    Article  Google Scholar 

  • Grosberg, A. Y., and Nechaev, S. K. (1992). Averaged Kauffman invariant and Quasi-Knot concept for linear polymers. Europhysics Letters, 20(7), 613–619.

    Article  MathSciNet  Google Scholar 

  • Hass, J. and Lagarias, J. C. (2001). The number of Reidemeister moves needed for unknotting. Journal of the American Mathematical Society, 14(2), 399–428.

    Article  MathSciNet  MATH  Google Scholar 

  • Ito, T. (2011). Braid ordering and knot genus. Journal of Knot Theory and its Ramifications, 20(9), 1311–1323.

    Article  MathSciNet  MATH  Google Scholar 

  • Kanenobu, T. (1986). Examples on polynomial invariants of knots and links. Mathematische Annalen, 275(4), 555–572.

    Article  MathSciNet  MATH  Google Scholar 

  • Kholodenko, A. L. and Rolfsen, D. P. (1996). Knot complexity and related observables from path integrals for semiflexible polymers. Journal of Physics A: Mathematical and General, 29(17), 5677–5691.

    Article  MathSciNet  MATH  Google Scholar 

  • Kronheimer, P. B. and Mrowka, T. S. (2011). Khovanov homology is an unknot-detector. Publications Mathematiques de l’ Institut de Hautes Etudes Scientifiques, 113, 97–208.

    Article  MathSciNet  MATH  Google Scholar 

  • Lickorish, W. B. R. (1987). Linear skein theory and link polynomials. Topology and its Applications, 27, 265–274.

    Article  MathSciNet  MATH  Google Scholar 

  • Macdonald, I. G. (1963). The volume of a lattice polyhedron. Proceedings of the Cambridge Philosophical Society, 59, 719–726.

    Article  MathSciNet  MATH  Google Scholar 

  • Macdonald, I. G. (1971). Polynomials associated with finite cell-complexes. Journal of the London Mathematical Society, 4, 181–192.

    Article  MathSciNet  MATH  Google Scholar 

  • Makowsky, J. A. and Marino, J. P. (2003). The parametrized complexity of knot polynomials. Journal of Computer and System Sciences, 67(4), 742–756.

    Article  MathSciNet  MATH  Google Scholar 

  • Manolescu, C., Ozsváth, P., Szabo, Z. and Thurston, D. (2007). Coombinatorial link Floer Homology. Geometry and Topology, 11, 2339–2412.

    Article  MathSciNet  MATH  Google Scholar 

  • Manolescu, C., Ozsváth, P. S. and Sarkar, S. (2009). A combinatorial description of knot Floer homology. Annals of Mathematics, 169(2), 633–660.

    Article  MathSciNet  MATH  Google Scholar 

  • Nechaev, S. K., Grosberg, A. Y. and Vershik, A. M. (1996). Random walks on braid groups: Brownian bridges, complexity and statistics. Journal of Physics A: Mathematical and General, 29(10), 2411–2433.

    Article  MathSciNet  MATH  Google Scholar 

  • Orlandini, E., Tesi, M. C. and Whittington, S. G. (2005). Entanglement complexity of semiflexible lattice polygons. Journal of Physics A: Mathematical and General, 38(47), L795–L800.

    Article  MathSciNet  MATH  Google Scholar 

  • Papadimitriou, F. (2002). Modelling Indicators and indices of landscape complexity: An approach using GIS. Ecological Indicators, 2, 17–25.

    Article  Google Scholar 

  • Papadimitriou, F. (2013). Mathematical modelling of land use/landscape complexity with ultrametric topology. Journal of Land Use Science, 8(2), 234–254.

    Article  Google Scholar 

  • Pick, G. (1899). Geometrisches zur Zahlenlehre. Sitzungsberichte des deutschen naturwissenschaftlich-medicinischen Vereines für Böhmen “Lotos“ in Prag. (Neue Folge). 19: 311–319.JFM 33.0216.01. CiteBank:47270

    Google Scholar 

  • Raymer, D. M. and Smith, D. E. (2007). Spontaneous knotting of an agitated string. Proceedings of the National Academy of Sciences of the USA, 104(42), 16432–16437.

    Article  Google Scholar 

  • Reeve, J. E. (1957a). Le volume des polyedres entiers. Comptes Rendus de l’ Academie de Sciences de Paris, 244, 1990–1992.

    MathSciNet  MATH  Google Scholar 

  • Reeve, J. E. (1957b). On the volume of lattice polyhedra. Proceedings of the London Mathematical Society, 7, 378–395.

    Article  MathSciNet  MATH  Google Scholar 

  • Reidemeister, K. (1932). Knottentheorie. Berlin: Springer.

    Google Scholar 

  • Shonkwiler, C. and Vela-Vick, D. S. (2008). Higher dimensional linking integrals. Arxiv, 0801, 4022.

    MATH  Google Scholar 

  • Simsek, H., Bayram, M. and Can, I. (2003). Automatic calculation of minimum crossing numbers of 3-Braids. Applied Mathematics and Computation, 144(2–3), 507–516.

    Article  MathSciNet  MATH  Google Scholar 

  • Tait, P. G. (1898). On knots I, 11, III, Scientific Papers (Vol. I). London: Cambridge University Press.

    Google Scholar 

  • Thiffeault, J.-L. (2005). Measuring Topological Chaos. Physics Review Letters, 94, 084502.

    Article  Google Scholar 

  • Welsh, D.J.A. (1993). Complexity: Knots, Colorings and Counting. London Mathematical Society Lecture Notes Series, Vol. 186. Cambridge: Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fivos Papadimitriou .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papadimitriou, F. (2020). The Topological Basis of Spatial Complexity. In: Spatial Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-59671-2_5

Download citation

Publish with us

Policies and ethics