Skip to main content

Squares, Cats and Mazes: The Art and Magic of Spatial Complexity

  • Chapter
  • First Online:
Spatial Complexity

Abstract

Spatial complexity can be playful, surprising and artful: some of its pleasant facets are highlighted in this chapter, as they emerge from the examination of spatial partitions and by means of games playable on boards of squares: chess, go, tic-tac-toe, checkers (among many other spatial games) revealing how charming the spatial complexity of square arrangements can be. Indeed, square maps are scientifically interesting as well as a source of inspiration throughout the ages, from Latin squares and famous modern painters to the mysterious Arnold Cat Maps and video games. Square maps can be both symbols of minimalism in art as well as genitors of highly complex mazes and labyrinths. With innumerable algorithmic challenges pertaining to them, they are a source of entertainment and endowed with a geometric shape perfectly suited for displaying and exploring the puzzling, mystic and aesthetic aspects of spatial complexity.

Intelligence in labyrinths

(Michel De Certeau 1984, p. 90)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott, E. A. (1991). Flatland: A romance of many dimensions. Princeton, N.J.: Princeton University Press.

    Book  Google Scholar 

  • Altieri, C. (2001). Representation, representativeness and non-representational Art. In C. Shukla (Ed.), Art and representation: Contributions to contemporary aesthetics (pp. 243–261). Westport, CT: Praeger.

    Google Scholar 

  • Anglin, W. S. (1990). The square pyramid puzzle. The American Mathematical Monthly, 97(2), 120–124.

    Article  MathSciNet  Google Scholar 

  • Arnold, V., & Avez, A. (1968). Ergodic problems in classical mechanics. New York: Benjamin.

    MATH  Google Scholar 

  • Aron, J. (2011, June 4). The world’s hardest problem: There’s a solution that will change everything. New Scientist, 2815, 37–41.

    Google Scholar 

  • Arquilla, J., & Ronfeldt, D. (2001). The advent of netwars (revisited). In J. Arquilla, & D. Ronfeldt (Eds.), Networks and Netwars. Santa Monica, CA: Rand.

    Google Scholar 

  • Berelkamp, E. R., Conway, J. H., & Guy, R. K. (2004). Winning ways for your Mathematical Plays (Vol. 4). Wellsley, MA: A.K. Peters.

    Google Scholar 

  • Chen, G., Mao, Y., & Chui, C. (2004). A symmetric image encryption scheme based on 3d Chaotic Cat Maps. Chaos, Solitons and Fractals, 21, 749–761.

    Article  MathSciNet  Google Scholar 

  • Chirikov, B. V. (1979). A universal instability of many-dimensional oscillator systems. Physics Reports, 52, 263.

    Article  MathSciNet  Google Scholar 

  • De Certeau, M. (1984). The practice of everyday life. Berkeley, CA: University of California Press.

    Google Scholar 

  • Demaine, E. D., Hohenberger, S., Liben-Nowell, D. (2002, October 21). Tetris is hard, even to approximate. arXiv:cs/0210020v1.

    Google Scholar 

  • DeMaio, J. (2007). Which chessboards have a closed knight’s tour within the cube? The Electronic Journal of Combinatorics, 14, R32.

    Article  MathSciNet  Google Scholar 

  • Ewald, K. C. (2001). The neglect of aesthetics in landscape planning in Switzerland. Landscape and Urban Planning, 54(1), 255–266.

    Article  Google Scholar 

  • Fraenkel, A., & Lichtenstein, D. (1981). Computing a perfect strategy for n × n chess requires time exponential in n. Journal of Combinatorial Theory A, 31, 199–214.

    Article  MathSciNet  Google Scholar 

  • Gibbins, N. M. (1944, May). Chess in 3 and 4 dimensions, Mathematical Gazette, 46–50.

    Google Scholar 

  • Holzer, M., & Jakobi, S. (2012). On the complexity of rolling block and Alice mazes. Lecture Notes in Computer Science, 7288, 210–222.

    Article  MathSciNet  Google Scholar 

  • Iwata, S., & Kasai, T. (1994). The Othello game on an n × n board is PSPACE-complete. Theoretical Computer Science, 123(2), 329–340.

    Article  MathSciNet  Google Scholar 

  • Jelliss, G. P., & Marlow, T. W. (1987). 3d tours. Chessics, 2(29/30), 162.

    Google Scholar 

  • Kornfeld, I. P., Fomin, S. V., & Sinai, Ya. G. (1982). Ergodic theory. New York: Springer.

    Google Scholar 

  • Kumar, A. (2008). Magic knight’s tours for chess in three dimensions. Mathematical Gazette, 92, 111–115.

    Article  Google Scholar 

  • Lichtenberg, A., & Lieberman, M. (1992). Regular and chaotic dynamics. New York: Springer.

    Book  Google Scholar 

  • Ma, D. G. (1985). An elementary proof of the solution to the diophantine equation 6y2 = x(x + 1)(2x + 1). Sichuan Daxue Xuebao, 4, 107–116.

    Google Scholar 

  • Papadimitriou, F. (2002). Modelling Indicators and indices of landscape complexity: An approach using GIS. Ecological Indicators, 2, 17–25.

    Article  Google Scholar 

  • Papadimitriou, F. (2009). Modelling spatial landscape complexity using the Levenshtein algorithm. Ecological Informatics, 4(1), 51–58.

    Article  Google Scholar 

  • Papadimitriou, F. (2012). The algorithmic complexity of landscapes. Landscape Research, 37(5), 599–611.

    Article  Google Scholar 

  • Papadimitriou, F. (2013). Mathematical modelling of land use and landscape complexity with ultrametric topology. Journal of Land Use Science, 8(2), 234–254.

    Article  Google Scholar 

  • Pickover, C. (2009). The Maths book. London: Sterling.

    Google Scholar 

  • Reisch, S. (1980). Gobang ist PSPACE-vollstandig (Gomoku is PSPACE-complete). Acta Informatica, 13, 5966.

    Article  MathSciNet  Google Scholar 

  • Robson, J. M. (1983). The complexity of go. In Information Processing; Proceedings of IFIP Congress (pp. 413–417).

    Google Scholar 

  • Robson, J. M. (1984). N by N checkers is Exptime complete. SIAM Journal on Computing, 13(2), 252–267.

    Article  MathSciNet  Google Scholar 

  • Stewart, I. (2008). Professor Stewart’s cabinet of mathematical curiosities. London: Profile Books.

    Google Scholar 

  • Stewart, I. (2010). Cows in the Maze and other Mathematical explorations. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Tegmark, M. (2014). Our Mathematical universe. New York: Vintage.

    MATH  Google Scholar 

  • Viglietta, G. (2013). Gaming is a hard job, but someone has to do it. arXiv:1201.4995v5.

  • Watkins, J. J. (2004). Across the board: The Mathematics of chessboard problems. Princeton, NJ: Princeton University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fivos Papadimitriou .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papadimitriou, F. (2020). Squares, Cats and Mazes: The Art and Magic of Spatial Complexity. In: Spatial Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-59671-2_9

Download citation

Publish with us

Policies and ethics