Skip to main content

Actual Issues on Radiological Assessment for Events with Liquid Radioactive Materials Spills

  • Chapter
  • First Online:
Systems, Decision and Control in Energy III

Absrtact

According to the International Scale of Nuclear and Radiological Events INES, accidents involving liquid radioactive material (LRM) spills, depending on the magnitude of the atmospheric release and the corresponding radiological consequences, can theoretically be assigned different levels of danger (from level “0” Deviation” “to “7” Major accident”). This study was conducted mainly on the publications of leading scientists dealing with LRM spills, available incident databases, and descriptions of relevant software. An analysis and classification of events with LMR spill that occurred at nuclear facilities in different countries have been carried out. This made it possible to identify the main causes of such emergencies, the characteristic thermodynamic processes that occur during these situations, the routes of distribution of radioactive substances, the exposure conditions, and the extent of potential contamination. After reviewing the existing tools, approaches, and requirements for radiological impact assessment for the group of accidents with LMR spills, it can be stated that they do not comprehensively cover the features and have a number of shortcomings in modeling the course of accidents with spills of liquid radioactive media. Analysis and systematization of modern scientific approaches show that the problems of estimating the radiological impact of emissions in such accidents remain relevant and require further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kyrylenko, Y., Kameneva, I., Popov, O., Iatsyshyn, A., Artemchuk, V., Kovach, V.: Source term modelling for event with liquid radioactive materials spill. In: Babak, V., Isaienko, V., Zaporozhets, A. (eds.) Systems, Decision and Control in Energy I. Studies in Systems, Decision and Control, vol. 298, pp. 261–279 (2020). https://doi.org/10.1007/978-3-030-48583-2_17

  2. Zabulonov, Y., Popov, O., Burtniak, V., Iatsyshyn, A., Kovach, V., Iatsyshyn, A.: Innovative developments to solve major aspects of environmental and radiation safety of Ukraine. In: Zaporozhets A., Artemchuk V. (eds) Systems, Decision and Control in Energy II. Studies in Systems, Decision and Control, vol. 346, pp. 273–292 (2021). https://doi.org/10.1007/978-3-030-69189-9_16

  3. Kyrylenko, Y., Kameneva, I., Popov, O., Iatsyshyn, A., Matvieieva, I., Bliznyuk, V., Molitor, N.: Source term model of radioactive liquid spills for actual decision support systems. E3S Web Conf. (2021, in pres)

    Google Scholar 

  4. Zabulonov, Y., Burtnyak, V., Odukalets, L., Alekseeva, O., Petrov, S.: Plasmachemical plant for NPP drain water treatment. Sci. Innov. 14(6), 86–94 (2018). https://doi.org/10.15407/scine14.06.086

  5. Burtniak, V., Zabulonov, Y., Stokolos, M., Bulavin, L., Krasnoholovets, V.: The remote radiation monitoring of highly radioactive sports in the chornobyl exclusion zone. J. Intell. Robot. Syst. Theory Appl. 90(3–4), 437–442 (2018). https://doi.org/10.1007/s10846-017-0682-7

    Article  Google Scholar 

  6. Zabulonov, Yu.L., Burtnyak, V.M., Odukalets, L.A.: System for effective remote control and monitoring of radiation situation based on unmanned aerial vehicle. Sci. Innov. 13(4), 40–45 (2017). https://doi.org/10.15407/scine13.04.040

  7. Bogorad, V., Bielov, Y., Kyrylenko, Y., Lytvynska, T., Poludnenko, V., Slepchenko, O.: Forecast of the consequences of a fire in the chernobyl exclusion zone: A combination of the hardware of the mobile laboratory RanidSONNI and computer technologies DSS RODOS. Nucl. Radiat. Saf. 3(79), 10–15. (2018). https://doi.org/10.32918/nrs.2018.3(79).02

  8. Balashevska Y., Kyrylenko Y., Pecherytsia O., Shevchenko I., Bogorad V.: Harmonization of methodological approaches and real time radiological consequence forecasting tools. Nucl. Radiat. Saf. 2(86), 20–26 (2020). https://doi.org/10.32918/nrs.2020.2(86).03

  9. Popov, O., Iatsyshyn, A., Kovach, V., Artemchuk, V., Taraduda, D., Sobyna, V., Sokolov, D., Dement, M., Yatsyshyn, T., Matvieieva, I.: Analysis of possible causes of NPP emergencies to minimize risk of their occurrence. Nucl. Radiat. Saf. 1(81), 75–80 (2019). https://doi.org/10.32918/nrs.2019.1(81).13

  10. Popov, O., Iatsyshyn, A., Kovach, V., Artemchuk, V., Taraduda, D., Sobyna, V., Sokolov, D., Dement, M., Yatsyshyn, T.: Conceptual approaches for development of informational and analytical expert system for assessing the NPP impact on the environment. Nucl. Radiat. Saf. 3(79), 56–65 (2018). https://doi.org/10.32918/nrs.2018.3(79).09

  11. Popov, O.O., Iatsyshyn, A.V., Kovach, V.O., Artemchuk, V.O., Kameneva, I.P., Taraduda, D.V., Sobyna, V.O., Sokolov, D.L., Dement, M.O., Yatsyshyn, T.M.: Risk assessment for the population of Kyiv, Ukraine as a result of atmospheric air pollution. J. Health Pollut. 10(25), 200303 (2020). https://doi.org/10.5696/2156-9614-10.25.200303

    Article  Google Scholar 

  12. Safety and Reliability of Complex Engineered Systems contains. In: Proceedings of the 25th European Safety and Reliability Conference (ESREL 2015), 2015 September 7–10, Zurich, Switzerland (2015)

    Google Scholar 

  13. Abe, H., Tashiro, S., Ueda, Y.: Research on consequence analysis method for probabilistic safety assessment of nuclear fuel facilities (iv): investigation of safety evaluation method for fire and explosion incidents. Trans. Atomic Energy Soc. Jpn. 9(1), 82–95 (2010). https://doi.org/10.3327/taesj.J09.004

    Article  Google Scholar 

  14. Arnal, J.M., Campayo, E., Garcia, J.L., Iborro, C., Alcaina Miranda, M., Sancho Fernandez, M.: Concentration of radioactive waste solution of iodine (I125) from radio immune analysis (RIA) using membrane techniques. Desalination 119(1–3), 185 (1998). https://doi.org/10.1016/S0011-9164(98)00145-3

  15. Bȩczkowska, S.: The method of optimal route selection in road transport of dangerous goods. Transp. Res. Proc. 40, 1252–1259 (2019). https://doi.org/10.1016/j.trpro.2019.07.174

    Article  Google Scholar 

  16. Karmali, N.: Ontario hydro's transportation of radioactive material and emergency response plan. In: Canadian Nuclear Association Annual Conference, June 1991 June 9–12, Saskatoon, Canada, pp. 403–405 (1991)

    Google Scholar 

  17. De Simone, G., Lucchetti, C., Pompilj, F., Galli, G., Tuccimei, P.: Laboratory simulation of recent NAPL spills to investigate radon partition among NAPL vapours and soil air. Appl. Radiat. Isotopes. 120, 106–110 (2017). https://doi.org/10.1016/j.apradiso.2016.12.013

    Article  Google Scholar 

  18. De Simone, G., Lucchetti, C., Pompilj, F., Galli, G., Tuccimei, P., Curatolo, P., Giorgi, R.: Soil radon survey to assess NAPL contamination from an ancient spill. Do kerosene vapors affect radon partition? J. Environ. Radioactiv. 171, 138–147 (2017). https://doi.org/10.1016/j.jenvrad.2017.02.014

  19. Kashuk, S., Mercurio, S.R., Iskander, M.: Visualization of dyed NAPL concentration in transparent porous media using color space components. J. Contam. Hydrol. 162–163, 1–16 (2014). https://doi.org/10.1016/j.jconhyd.2014.04.001

    Article  Google Scholar 

  20. Dridi, L., Pollet, I., Razakarisoa, O., Schäfer, G.: Characterisation of a DNAPL source zone in a porous aquifer using the partitioning interwell tracer test and an inverse modelling approach. J. Contam. Hydrol. 107(1–2), 22–44 (2009). https://doi.org/10.1016/j.jconhyd.2009.03.003

    Article  Google Scholar 

  21. Hatamian, H.: Wastes' in the up-stream petroleum operations. Energy Sources. Technology. Conference and Exhibition (1998)

    Google Scholar 

  22. Jiménez, S., Micó, M.M., Arnaldos, M., Medina, F., Contreras, S.: State of the art of produced water treatment. Chemosphere 192, 186–208 (2017). https://doi.org/10.1016/j.chemosphere.2017.10.139

    Article  Google Scholar 

  23. INES-2008 The International Nuclear and Radiological Event Scale User's Manual. 2008 Edition. Vienna, International Atomic Energy Agency (2013)

    Google Scholar 

  24. Henshaw, N.K., Alleyne, C.S.: Radioactive Contamination Research Developments. Nova Science Publishers Inc., UK (2009 July 1)

    Google Scholar 

  25. Ingram, R.J.: Emergency response to radiological releases: Have we communicated effectively to the first responder communities to prepare them to safely manage these incidents? Health. Phys. 114(2), 208–213 (2018). https://doi.org/10.1097/hp.0000000000000757

    Article  Google Scholar 

  26. Kim, J., Park, K., Joo, K.: Feasibility of miniature radiation portal monitor for measurement of radioactivity contamination in flowing water in pipe. J. Instrum. 13(1), P01022 (2018). https://doi.org/10.1088/1748-0221/13/01/P01022

    Article  Google Scholar 

  27. Babak, S., Babak, V., Zaporozhets, A., Sverdlova, A.: Method of statistical spline functions for solving problems of data approximation and prediction of objects state. In: Luengo, D., Subbotin, S., Arras, P., Bodyanskiy, Ye., Henke, K., Izonin, I., Levashenko, V., Lytvynenko, V., Parkhomenko, A., Pester, A., Shakhovska, N., Sharpanskykh, A., Tabunshchyk, G., Wolff, C., Wuttke, H.-D., Zaitseva, E. (eds.) Proceedings of the Second International Workshop on Computer Modeling and Intelligent Systems (CMIS-2019), Zaporizhzhia, Ukraine, April 15–19, 2019, CEUR Workshop Proceedings, vol. 2353, pp. 810–823. http://ceur-ws.org/Vol-2353/paper64.pdf

  28. Meisenhelder, J., Bursik, S.: Safe use of radioisotopes. Curr. Protoc. Protein. Sci. 60(1), A.2B.1-A.2B.18 (2010). https://doi.org/10.1002/0471140864.psa02bs60

  29. Meisenhelder, J., Bursik, S.: Radiation safety and measurement. Curr. Protoc. Essent. Lab. Tech. 16(1) (2018). https://doi.org/10.1002/cpet.22

  30. Stabin, M.G., Siegel, J.A.: Radiation dose and hazard assessment of potential contamination events during use of 223Ra dichloride in radionuclide therapy. Health. Phys. 109(3), 212–217 (2015). https://journals.lww.com/health-physics/Abstract/2015/09000/Radiation_Dose_and_Hazard_Assessment_of_Potential.5.aspx

  31. Materials on environmental impact assessment of the proposed activity on the operation of a nuclear facility, a complex of nuclear materials intended for radiochemical reprocessing of spent nuclear fuel. Russia, Ozyorsk: Federal State Unitary Enterprise “Production Association “Mayak” FSUE” PA “Mayak” (2012)

    Google Scholar 

  32. Lewis, W.B.: The accident to the NRX reactor on December 12, 1952. Canada. Technical Report No DR-32; AECL-232 (1953)

    Google Scholar 

  33. Johnson, M.E., Field, J.G.: Hanford SX-Farm Leak Assessments Report. Washington: Washington River Protection Solutions LLC, RPP-ENV-39658 Revision (2010)

    Google Scholar 

  34. IAEA-TECDOC-867 Significant incidents in nuclear fuel cycle facilities. Vienna, Austria: International Atomic Energy Agency (1996)

    Google Scholar 

  35. Temelin Unit 2 leakage. Prague, Czech Republic, State office for Nuclear Safety (2004). https://www.sujb.cz/en/reports/temelin-unit-2-leakage/

  36. Accidents and incidents. Oslo, Norway, Bellona (2010). https://bellona.org/news/nuclear-issues/accidents-and-incidents/2010-12-bad-weather-takes-out-six-research-reactors-in-russias-dimitrovgrad

  37. Ignalina Nuclear Power Plant. Visagino mun., Lithuania: State Enterprise Ignalina Nuclear Power Plant. https://www.iae.lt/en

  38. The Information Channel on Nuclear and Radiation events. Vienna, Austria, International Atomic Energy Agency. https://www-news.iaea.org/

  39. Comment: A shut-down Ignalina NPP: No RIP for Lithuania’s cranky nuclear corpse. Oslo, Norway, Bellona (2010) https://bellona.org/news/nuclear-issues/accidents-and-incidents/2010-11-comment-a-shut-down-ignalina-npp-no-rip-for-lithuanias-cranky-nuclear-corpse

  40. O'Kula, K.R., McAllister, J.E.: Estimation of the conservatism in the free-fall spill source term correlation for high-level waste. In: International Topical Meeting on Probabilistic Safety Assessment and Analysis (PSA 2019), 2019 April 28–May 2, Charleston, SC, pp. 898–904 (2019)

    Google Scholar 

  41. Porter, L.E.: An unusual incident: Breached 22Na sealed source. Health Phys. 86(2 SUPPL.) S38–S41 (2004). https://pubmed.ncbi.nlm.nih.gov/14744069/

  42. Accident analysis for nuclear power plants. Vienna, International Atomic Energy Agency (2002)

    Google Scholar 

  43. Zaporozhets, A., Babak, V., Isaienko, V., Babikova, K.: Analysis of the air pollution monitoring system in Ukraine. In: Babak, V., Isaienko, V., Zaporozhets, A. (eds) Systems, Decision and Control in Energy I. Studies in Systems, Decision and Control, vol. 298, pp. 85–110. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48583-2_6

  44. King, M., Gough, H., et al.: Investigating the influence of neighbouring structures on natural ventilation potential of a full-scale cubical building using time-dependent. CFD J Wind Eng. Ind Aerodyn. 169, 265–279 (2017). https://doi.org/10.1016/j.jweia.2017.07.020

    Article  Google Scholar 

  45. Morató, S., Bernal, A., Querol, A. et al.: Training in external dosimetry calculations with computational codes. In: Proceedings of the VI International Conference on Education and Training in Radiological Protection (ETRAP 2017) 2017 June 2, Valencia, Spain

    Google Scholar 

  46. Benchmarking of fast-running software tools used to model releases during nuclear accidents. Paris, France, Nuclear Energy Agency (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kyrylenko, Y., Kameneva, I., Popov, O., Iatsyshyn, A., Artemchuk, V., Kovach, V. (2022). Actual Issues on Radiological Assessment for Events with Liquid Radioactive Materials Spills. In: Zaporozhets, A. (eds) Systems, Decision and Control in Energy III. Studies in Systems, Decision and Control, vol 399. Springer, Cham. https://doi.org/10.1007/978-3-030-87675-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87675-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87674-6

  • Online ISBN: 978-3-030-87675-3

  • eBook Packages: Intelligent Technologies and Robotics

Publish with us

Policies and ethics