Skip to main content

Part of the book series: Synthesis Lectures on Computational Electromagnetics ((SLCE))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, vol. AP14, pp. 302-307, 1966. DOI: 10.1109/TAP.1966.1138693 1

    MATH  Google Scholar 

  • A. Taflove and M. E. Brodwin, "Numerical-solution of steady-state electromagnetic scattering problems using time-dependent Maxwell's equations," IEEE Transactions on Microwave Theory and Techniques, vol. 23, pp. 623-630, 1975. DOI: 10.1109/TMTT.1975.1128640 1

    Article  Google Scholar 

  • A. Taflove and M. E. Brodwin, "Computation of electromagnetic-fields and induced temperatures within a model of a microwave-irradiated human eye," IEEE Transactions on Microwave Theory and Techniques, vol. 23, pp. 888-896, 1975. DOI: 10.1109/TMTT.1975.1128708 1

    Article  Google Scholar 

  • R. Holland, "THREDE - Free-field EMP coupling and scattering code," IEEE Transactions on Nuclear Science, vol. 24, pp. 2416-2421, 1977. DOI: 10.1109/TNS.1977.4329229 1

    Article  Google Scholar 

  • C. L. Longmire, "State of the art in IEMP and SGEMP calculations," IEEE Transactions on Nuclear Science, vol. NS-22, pp. 2340-2344, 1975. DOI: 10.1109/TNS.1975.4328130 1

    Article  Google Scholar 

  • G. Mur, "Absorbing boundary-conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Transactions on Electromagnetic Compatibility, vol. 23, pp. 377-382, 1981. DOI: 10.1109/TEMC.1981.303970 2

    Article  Google Scholar 

  • R. L. Higdon, "Absorbing boundary-conditions for difference approximations to the multidimensional wave-equation" Mathematics of Computation, vol. 47, pp. 437-459, Oct 1986. DOI: 10.1090/S0025-5718-1986-0856696-4 2

    MathSciNet  MATH  Google Scholar 

  • R. L. Higdon, "Numerical absorbing boundary-conditions for the wave-equation," Mathematics of Computation, vol. 49, pp. 65-90, Jul 1987. DOI: 10.1090/S0025-5718-1987-0890254-1 2

    Article  MathSciNet  MATH  Google Scholar 

  • V. Betz and R. Mittra, "Comparison and evaluation of boundary conditions for the absorption of guided waves in an FDTD simulation," IEEE Microwave and Guided Wave Letters, vol. 2, pp. 499-501, 1992. DOI: 10.1109/75.173408 2

    Article  Google Scholar 

  • J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, vol. 114, pp. 195-200, 1994. DOI: 10.1006/jcph.1994.1159 2

    Article  MathSciNet  MATH  Google Scholar 

  • J. P. Berenger, Perfect Matched Layer (PML) for Computational Electromagnetics: Morgan and Claypool Publishers, 2007. DOI: 10.2200/S00030ED1V01Y200605CEM008 2

    Google Scholar 

  • F. L. Teixeira, "Time-domain finite-difference and finite-element methods for Maxwell equations in complex media," IEEE Transactions on Antennas and Propagation, vol. 56, pp. 2150-2166, Aug 2008. DOI: 10.1109/TAP.2008.926767 2

    Article  MathSciNet  MATH  Google Scholar 

  • R. Holland and L. Simpson, "Finite-difference analysis of EMP coupling to thin struts and wires," IEEE Transactions on Electromagnetic Compatibility, vol. 23, pp. 88-97, 1981. DOI: 10.1109/TEMC.1981.303899 2

    Article  Google Scholar 

  • S. Benkler, N. Chavannes, and N. Kuster, "A new 3-D conformal PEC FDTD scheme with user-defined geometric precision and derived stability criterion," IEEE Transactions on Antennas and Propagation, vol. 54, pp. 1843—1849, Jun 2006. DOI: 10.1109/TAP.2006.875909 3, 4

    Article  Google Scholar 

  • SEMCAD X, Reference Manual for the SEMCAD X simulation platform for electromagnetic compatibility, antenna design and dosimetry, ver. 10.0 ed.: SPEAG - Schmid & Fanner Engineering AG, EIGER, 2005. 3

    Google Scholar 

  • T. Weiland, "Discretization method for solution of Maxwell's equations for 6-component fields," AEU-International Journal of Electronics and Communications, vol. 31, pp. 116-120, 1977.

    Google Scholar 

  • A. Taflove, "Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems," IEEE Transactions on Electromagnetic Compatibility, vol. 22, pp. 191-202, 1980. DOI: 10.1109/TEMC.1980.303879

    Article  Google Scholar 

  • J. Gilbert and R. Holland, "Implementation of the thin-slot formalism in the finite difference EMP code THREADII," IEEE Transactions on Nuclear Science, vol. 28, pp. 4269-4274, 1981. DOI: 10.1109/TNS.1981.4335711

    Article  Google Scholar 

  • A. Taflove and K. Umashankar, "Radar cross-section of general 3-dimensional scatterers," IEEE Transactions on Electromagnetic Compatibility, vol. 25, pp. 433-440, 1983. DOI: 10.1109/TEMC.1983.304133

    Article  Google Scholar 

  • K. Umashankar and A. Taflove, "A novel method to analyze electromagnetic scattering of complex objects," IEEE Transactions on Electromagnetic Compatibility, vol. 24, pp. 397-405, 1982. DOI: 10.1109/TEMC.1982.304054

    Article  Google Scholar 

  • R. Holland, "Finite-difference solution of Maxwells equations in generalized nonorthogonal coordinates," IEEE Transactions on Nuclear Science, vol. 30, pp. 4589-4591, 1983. DOI: 10.1109/TNS.1983.4333176

    Article  Google Scholar 

  • K. R. Umashankar, A. Taflove, and B. Beker, "Calculation and experimental validation of induced currents on coupled wires in an arbitrary shaped cavity," IEEE Transactions on Antennas and Propagation, vol. 35, pp. 1248-1257, Nov 1987. DOI: 10.1109/TAP.1987.1144000

    Article  Google Scholar 

  • D. M. Sullivan, O. P. Gandhi, and A. Taflove, "Use of the finite-difference time-domain method for calculating EM absorption in man models," IEEE Transactions on Biomedical Engineering, vol. 35, pp. 179-186, 1988. DOI: 10.1109/10.1360

    Article  Google Scholar 

  • S. T. Chu and S. K. Chaudhuri, "A finite-difference time-domain method for the design and analysis of guided-wave optical structures," Journal Of Lightwave Technology, vol. 7, pp. 2033-2038, Dec 1989. DOI: 10.1109/50.41625 4

    Article  Google Scholar 

  • D. M. Sheen, S. M. Ali, M. D. Abouzahra, and J. A. Kong, "Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits," IEEE Transactions on Microwave Theory and Techniques, vol. 38, pp. 849-857, July 1990. DOI: 10.1109/22.55775

    Article  Google Scholar 

  • N. K. Madsen and R. W. Ziolkowski, "A 3-dimensional modified finite volume technique for Maxwell's equations," Electromagnetics, vol. 10, pp. 147-161, 1990. DOI: 10.1080/02726349008908233

    Article  Google Scholar 

  • V. Shankar, A. H. Mohammadian, and W. F. Hall, "A time-domain, finite-volume treatment for the Maxwell equations," Electromagnetics, vol. 10, pp. 127-145, 1990. DOI: 10.1080/02726349008908232

    Article  Google Scholar 

  • E. Sano and T. Shibata, "Fullwave analysis ofpicosecond photoconductive switches," IEEE Journal Of Quantum Electronics, vol. 26, pp. 372-377, Feb 1990. DOI: 10.1109/3.44970

    Article  Google Scholar 

  • R. Luebbers, F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A Frequency-Dependent Finite-Difference Time-Domain Formulation for Dispersive Materials," IEEE Transactions on Electromagnetic Compatibility, vol. 32, pp. 222-227, 1990. DOI: 10.1109/15.57116

    Article  Google Scholar 

  • R. J. Luebbers and F. Hunsberger, "FDTD for Nth-Order Dispersive Media," IEEE Transactions on Antennas and Propagation, vol. 40, pp. 1297-1301, 1992. DOI: 10.1109/8.202707

    Article  Google Scholar 

  • R. M. Joseph, S. C. Hagness, and A. Taflove, "Direct time integration of Maxwell equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses," Optics Letters, vol. 16, pp. 1412-1414, Sep 1991. DOI: 10.1364/OL.16.001412

    Article  Google Scholar 

  • J. G. Maloney, G. S. Smith, and W. R. Scott, "Accurate computation of the radiation from simple antennas using the finite-difference time-domain method," IEEE Transactions on Antennas and Propagation, vol. 38, pp. 1059-1068, Jul 1990. DOI: 10.1109/8.55618

    Article  Google Scholar 

  • http://www.cst.com/. 9

    Google Scholar 

  • J. G. Maloney and G. S. Smith, "The Use of Surface Impedance Concepts in the Finite-Difference Time-Domain Method," IEEE Transactions on Antennas and Propagation, vol. 40, pp. 38-48, 1992. DOI: 10.1109/8.123351

    Article  Google Scholar 

  • J. G. Maloney and G. S. Smith, "The efficient modeling of thin material sheets in the finite-difference time-domain (FDTD) method," IEEE Transactions on Antennas and Propagation, vol. 40, pp. 323-330, Mar 1992. DOI: 10.1109/8.135475

    Article  Google Scholar 

  • P. M. Goorjian and A. Taflove, "Direct time integration of Maxwell's equations in nonlinear dispersive media for propagation and scattering of femtosecond electromagnetic solitons," Optics Letters, vol. 17, pp. 180-182, 1992. DOI: 10.1364/OL.17.000180

    Article  Google Scholar 

  • T. G. Jurgens, A. Taflove, K. R. Umashankar, and T. G. Moore, "Finite-difference time-domain modeling of curved surfaces," IEEE Transactions on Antennas and Propagation, vol. 40, pp. 357-366, 1992. DOI: 10.1109/8.138836

    Article  Google Scholar 

  • W. Q Sui, D. A. Christensen, and C. H. Durney, "Extending the 2-dimensional FDTD method to hybrid electromagnetic systems with active and passive lumped elements," IEEE Transactions on Microwave Theory and Techniques, vol. 40, pp. 724-730, Apr 1992. DOI: 10.1109/22.127522

    Article  Google Scholar 

  • B. Toland, B. Houshmand, and T. Itoh, "Modeling of nonlinear active regions with the FDTD method," IEEE Microwave and Guided Wave Letters, vol. 3, pp. 333-335, 1993. DOI: 10.1109/75.244870

    Article  Google Scholar 

  • J. B. Schneider and S. Hudson, "The finite-difference time-domain method applied to anisotropic material," IEEE Transactions on Antennas and Propagation, vol. 41, pp. 994-999, 1993. DOI: 10.1109/8.237636

    Article  Google Scholar 

  • K. S. Kunz and R. Luebbers, Finite Difference Time Domain Method for Electromagnetics, Boca Raton, FL: CRC Press, LLC, 1993.

    Google Scholar 

  • http://www.remcom.eom/. 9

    Google Scholar 

  • V. A. Thomas, M. E.Jones, M.J. Piket-May, A. Taflove, and E. Harrigan, "The use of SPICE lumped circuits as sub-grid models for FDTD high-speed electronic circuit design," IEEE Microwave and Guided Wave Letters, vol. 4, pp. 141-143, 1994. DOI: 10.1109/75.289516

    Article  Google Scholar 

  • W. C. Chew and W. H.Weedon,"A 3D Perfectly Matched Medium from Modified Maxwells Equations with Stretched Coordinates," Microwave and Optical Technology Letters, vol. 7, pp. 599-604, 1994. DOI: 10.1002/mop.4650071304

    Article  Google Scholar 

  • S. D. Gedney, "Finite-Difference Time-Domain Analysis of Microwave Circuit Devices on High-Performance Vector/Parallel Computers," IEEE Transactions on Microwave Theory and Techniques, vol. 43, pp. 2510-2514, 1995. DOI: 10.1109/22.466191

    Article  Google Scholar 

  • N. K. Madsen, "Divergence preserving discrete surface integral methods for Maxwell's equations using nonorthogonal unstructured grids," Journal of Computational Physics, vol. 119, pp. 34-45, 1995. DOI: 10.1006/jcph.1995.1114

    Article  MathSciNet  MATH  Google Scholar 

  • A. Taflove, "Computational Electrodynamics: The Finite Difference Time Domain," Boston: Artech House, 1995.

    MATH  Google Scholar 

  • S. D. Gedney, "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Transactions on Antennas and Propagation, vol. 44, pp. 1630-1639, December 1996. DOI: 10.1109/8.546249

    Article  Google Scholar 

  • S. D. Gedney, "An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media," Electromagnetics, vol. 16, pp. 399-415, 1996. DOI: 10.1080/02726349608908487

    Article  Google Scholar 

  • Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Transactions on Antennas and Propagation, vol. 43, pp. 1460-1463, 1995. DOI: 10.1109/8.477075

    Article  Google Scholar 

  • J. M. Bourgeois and G. S. Smith, "A fully three-dimensional simulation of a ground-penetrating radar: FDTD theory compared with experiment," IEEE Transactions on Geoscience and Remote Sensing, vol. 34, pp. 36-44, 1996. DOI: 10.1109/36.481890 4

    Article  Google Scholar 

  • S. Dey and R. Mittra, "A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects," IEEE Microwave And Guided Wave Letters, vol. 7, pp. 273-275, Sep 1997. DOI: 10.1109/75.622536

    Article  Google Scholar 

  • S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, "FDTD microcavity simulations: Design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators," Journal Of Lightwave Technology, vol. 15, pp. 2154-2165, Nov 1997. DOI: 10.1109/50.641537

    Article  Google Scholar 

  • D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, "Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and Z1.6-nm free spectral range," Optics Letters, vol. 22, pp. 1244-1246, Aug 1997. DOI: 10.1364/OL.22.001244

    Article  Google Scholar 

  • J. A. Roden, S. D. Gedney, M. P. Kesler, J. G. Maloney, and P. H. Harms, "Time-domain analysis of periodic structures at oblique incidence: Orthogonal and nonorthogonal FDTD implementations," IEEE Transactions on Microwave Theory and Techniques, vol. 46, pp. 420-427, 1998. DOI: 10.1109/22.664143

    Article  Google Scholar 

  • S. C. Hagness, A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Transactions on Biomedical Engineering, vol. 45, pp. 1470-1479, Dec 1998. DOI: 10.1109/10.730440

    Article  Google Scholar 

  • S. C. Hagness, A. Taflove, and J. E. Bridges, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna-array element," IEEE Transactions on Antennas and Propagation, vol. 47, pp. 783-791, May 1999. DOI: 10.1109/8.774131

    Article  Google Scholar 

  • F. H. Zheng, Z. Z. Chen, and J. Z. Zhang, "Toward the development ofa three-dimensional unconditionally stable finite-difference time-domain method," IEEE Transactions on Microwave Theory and Techniques, vol. 48, pp. 1550-1558,2000. DOI: 10.1109/22.869007

    Article  Google Scholar 

  • J. A. Roden and S. D. Gedney, "Convolutional PML (CPML): An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media," Microwave and Optical Technology Letters, vol. 27, pp. 334-339, December 5 2000. DOI: 10.1002/1098-2760(20001205)27:5%3C334::AID-MOP14%3E3.3.CO;2-1

    Article  Google Scholar 

  • F. L.Teixeira, K. P. Hwang, W. C. Chew, and J. M.Jin, "Conformal PML-FDTD schemes for electromagnetic field simulations: A dynamic stability study," IEEE Transactions On Antennas And Propagation, vol. 49, pp. 902-907, Jun 2001. DOI: 10.1109/8.931147

    Article  Google Scholar 

  • R. W. Ziolkowski and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Physical Review E, vol. 64, 2001. DOI: 10.1103/PhysRevE.64.056625

    Google Scholar 

  • N. Chavannes, "Local mesh refinement algorithms for enhanced modeling capabilities in the FDTD method," Zurich, Switzerland: Swiss Federal Institute of Technology (ETH), 2002.

    Google Scholar 

  • A. Akyurtlu and D. H. Werner, "Modeling of transverse propagation through a uniaxial bianisotropic medium using the finite-difference time-domain technique," IEEE Transactions on Antennas and Propagation, vol. 52, pp. 3273-3279, Dec 2004. DOI: 10.1109/TAP.2004.836442

    Article  MathSciNet  MATH  Google Scholar 

  • S. H. Chang and A. Taflove, "Finite-difference time-domain model of lasing action in a four-level two-electron atomic system," Optics Express, vol. 12, pp. 3827-3833, 2004. DOI: 10.1364/OPEX.12.003827

    Article  Google Scholar 

  • X. Li, Z. G. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Optics Express, vol. 13, pp. 526-533, Jan 2005. DOI: 10.1364/OPEX.13.000526

    Article  Google Scholar 

  • G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, and C. A. Grimes, "A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications," Solar Energy Materials and Solar Cells, vol. 90, pp. 2011-2075, Sep 2006. DOI: 10.1016/j.solmat.2006.04.007 4

    Article  Google Scholar 

  • K. G. Ong, O. K. Varghese, G. K. Mor, K. Shankar, and C. A. Grimes, "Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption," Solar Energy Materials and Solar Cells, vol. 91, pp. 250—257, Feb 2007. DOI: 10.1016/j.solmat.2006.09.002 4

    Article  Google Scholar 

  • Y. Zhao, P. A. Belov, and Y. Hao, "Modelling of wave propagation in wire media using spatially dispersive finite-difference time-domain method: Numerical aspects," IEEE Transactions on Antennas and Propagation, vol. 55, pp. 1506—1513,2007. DOI: 10.1109/TAP.2007.897320

    Article  Google Scholar 

  • S. C. Kong, A. Sahakian, A. Taflove, and V. Backman, "Photonic nanojet-enabled optical data storage," Optics Express, vol. 16, pp. 13713—13719, Sep 2008. DOI: 10.1364/OE.16.013713 4

    Article  Google Scholar 

  • S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, "High-Density Optical Data Storage Enabled by the Photonic Nanojet from a Dielectric Microsphere," Japanese Journal of Applied Physics, vol. 48, p. 3, Mar 2009. DOI: 10.1143/JJAP.48.03A008

    Article  Google Scholar 

  • C. Argyropoulos, E. Kallos, and Y. Hao, "FDTD analysis of the optical black hole," Journal ofthe Optical Society of America B-Optical Physics, vol. 27, pp. 2020-2025, Oct. 2010. DOI: 10.1364/JOSAB.27.002020 4

    Article  Google Scholar 

  • C. Furse, "A survey of phased arrays for medical applications," Applied Computational Electromagnetics Society Journal, vol. 21, pp. 365-379, Nov 2006. 4

    Google Scholar 

  • A. Dunn and R. Richards-Kortum, "Three-dimensional computation of light scattering from cells," IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, pp. 898-905, Dec 1996. DOI: 10.1109/2944.577313

    Article  Google Scholar 

  • A. Wax and V. Backman, Biomedical Applications of Light Scattering : McGraw Hill, 2010.

    Google Scholar 

  • J. D. Shea, P. Kosmas, S. C. Hagness, and B. D. Van Veen, "Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique," Medical Physics, vol. 37, pp. 4210-4226, August 2010. DOI: 10.1118/1.3443569 4

    Article  Google Scholar 

  • O. P. Gandhi, "Electromagnetic fields: Human safety issues," Annual Review of Biomedical Engineering, vol. 4, pp. 211-234, 2002. DOI: 10.1146/annurev.bioeng.4.020702.153447 4

    Article  Google Scholar 

  • L. Gurel and U. Oguz, "Three-dimensional FDTD modeling ofa ground-penetrating radar," IEEE Transactions on Geoscience and Remote Sensing, vol. 38, pp. 1513-1521, Jul 2000. DOI: 10.1109/36.851951 4

    Article  Google Scholar 

  • S. C. Kongand Y. W. Choi, "Finite-Difference Time-Domain (FDTD) Model for Traveling-Wave Photodetectors," Journal of Computational and Theoretical Nanoscience, vol. 6, pp. 2380-2387, Nov 2009. DOI: 10.1166/jctn.2009.1292 4

    Article  Google Scholar 

  • H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science, vol. 305, pp. 1444-1447, Sep 2004. DOI: 10.1126/science.1100968

    Article  Google Scholar 

  • R. W. Ziolkowski and J. B. Judkins, "Applications of the nonlinear finite-difference timedomain (NL-FDTD) method to pulse-propagation in nonlinear media - self-focusing and linear-nonlinear interfaces," Radio Science, vol. 28, pp. 901-911, Sep-Oct 1993. DOI: 10.1029/93RS01100 4

    Article  Google Scholar 

  • X. Li, A. Taflove, and V. Backman, "Recent progress in exact and reduced-order modeling of light-scattering properties of complex structures," IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, pp. 759-765, 2005. DOI: 10.1109/JSTQE.2005.857691 4

    Article  Google Scholar 

  • S. Tanev, W. B. Sun, J. Pond, V. V. Tuchin, and V. P. Zharov, "Flow cytometry with gold nanoparticles and their clusters as scattering contrast agents: FDTD simulation of light-cell interaction," Journal of Biophotonics, vol. 2, pp. 505-520, Sep 2009. DOI: 10.1002/jbio.200910039 4

    Article  Google Scholar 

  • E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, vol. 311, pp. 189-193, Jan 2006. DOI: 10.1126/science.1114849 4

    Article  Google Scholar 

  • J.J. Simpson and A. Taflove, "Electrokinetic effect of the Loma Prieta earthquake calculated by an entire-Earth FDTD solution of Maxwell's equations," Geophysical Research Letters, vol. 32, 2005. DOI: 10.1029/2005GL022601 4

    Google Scholar 

  • T. K. Sarkar and O. Pereira, "Using the matrix pencil method to estimate the parameters of a sum of complex exponentials," IEEE Antennas and Propagation Magazine, vol. 37, pp. 48-55, Feb 1995. DOI: 10.1109/74.370583 7

    Article  Google Scholar 

  • B. Cockburn, G. E. Karniadakis, and C.-W. Shu, Discontinuous Galerkin Methods: Theory, Computation and Applications vol. 11. Berlin: Springer-Verlag Telos, 2000. 7

    Book  MATH  Google Scholar 

  • J. S. Hesthaven and T. Warburton, "High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem," Philosophical Transactions Of The Royal Society Of London Series A-Mathematical Physical And Engineering Sciences, vol. 362, pp. 493-524, Mar 15 2004. DOI: 10.1098/rsta.2003.1332 7

    Article  MathSciNet  MATH  Google Scholar 

  • A. F. Peterson, S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics. New York: IEEE Press, 1998. 8

    MATH  Google Scholar 

  • J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed. New York: John Wiley & Sons, Inc., 2002. 8

    Google Scholar 

  • W. C. Chew, J. M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics: Artech House, Boston, MA, 2001. 8

    Google Scholar 

  • R. J. Adams, Y. Xu, X. Xu, J. S. Choi, S. D. Gedney, and F. X. Canning, "Modular fast direct electromagnetic analysis using local-global solution modes," IEEE Transactions on Antennas and Propagation, vol. 56, pp. 2427-2441, Aug 2008. DOI: 10.1109/TAP.2008.926769 8

    Article  MathSciNet  MATH  Google Scholar 

  • K. A. Michalski and J. R. Mosig, "Multilayered media Green's functions in integral equation formulations," IEEE Transactions on Antennas and Propagation, vol. 45, pp. 508-519, Mar 1997. DOI: 10.1109/8.558666 8

    Article  Google Scholar 

  • http://www.2comu.com/. 9

    Google Scholar 

  • http://www.speag.com/. 9

    Google Scholar 

  • http://electromagneticapplications.com/ema3d_main.html. 9

    Google Scholar 

  • http://www.empire.de/. 9

    Google Scholar 

  • http://www.qwed.com.pl/. 9

    Google Scholar 

  • http://www.acceleware.com/fdtd-solvers. 9

    Google Scholar 

  • http://www.lumerical.com/fdtd.php. 9

    Google Scholar 

  • http://rsoftdesign.com. 9

    Google Scholar 

  • http://www.optiwave.com/.9

    Google Scholar 

  • http://www.nlcstr.com/sim3d.htm. 9

    Google Scholar 

  • http://www.emexplorer.net/. 9

    Google Scholar 

  • http://www.emphotonics.com/. 9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Gedney, S.D. (2011). Introduction. In: Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics. Synthesis Lectures on Computational Electromagnetics. Springer, Cham. https://doi.org/10.1007/978-3-031-01712-4_1

Download citation

Publish with us

Policies and ethics