Skip to main content

Part of the book series: Synthesis Lectures on Computational Electromagnetics ((SLCE))

  • 368 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A. F. Peterson, S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics. NewYork: IEEE Press, 1998. 101

    MATH  Google Scholar 

  • C. A. Balanis, Advanced Engineering Electromagnetics. New York: Wiley, 1989. 101

    Google Scholar 

  • R. Holtzman and R. Kastner, "The time-domain discrete Green's function method (GFM) characterizing the FDTD grid boundary," IEEE Transactions on Antennas and Propagation, vol. 49, pp. 1079-1093, Jul 2001. DOI: 10.1109/8.933488 101

    Article  MATH  Google Scholar 

  • W. L. Ma, M. R. Rayner, and C. G. Parini, "Discrete Green's function formulation of the FDTD method and its application in antenna modeling," IEEE Transactions on Antennas and Propagation, vol. 53, pp. 339-346, Jan 2005. DOI: 10.1109/TAP.2004.838797

    Article  Google Scholar 

  • N. Rospsha and R. Kastner, "Closed form FDTD-compatible Green's function based on combinatorics," Journal of Computational Physics, vol. 226, pp. 798-817, Sep 2007. DOI: 10.1016/j.jcp.2007.05.017

    Article  MathSciNet  MATH  Google Scholar 

  • J. Vazquez and C. G. Parini, "Discrete Green's function formulation of FDTD method for electromagnetic modelling," Electronics Letters, vol. 35, pp. 554-555, Apr 1999. DOI: 10.1049/el:19990416 101

    Article  Google Scholar 

  • J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, vol. 114, pp. 195-200, 1994. DOI: 10.1006/jcph.1994.1159 101

    Article  MathSciNet  MATH  Google Scholar 

  • B. Engquist and A. Majda, "Absorbing boundary-conditions for numerical simulation of waves," Mathematics of Computation, vol. 31, pp. 629-651, 1977. DOI: 10.1090/S0025-5718-1977-0436612-4 101

    Article  MathSciNet  MATH  Google Scholar 

  • G. Mur, "Absorbing boundary-conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Transactions on Electromagnetic Compatibility, vol. 23, pp. 377-382, 1981. DOI: 10.1109/TEMC.1981.303970 101, 106

    Article  Google Scholar 

  • A. Taflove and S. B. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain, 3rd ed. Boston, MA: Artech House, 2005. 101

    MATH  Google Scholar 

  • L. Halpern and L. N. Trefethen, "Wide-angle one-wave wave-equations," Journal of the Acoustical Society of America, vol. 84, pp. 1397-1404, Oct 1988. DOI: 10.1121/1.396586 102

    Article  Google Scholar 

  • L. N. Trefethen and L. Halpern, "Well-posedness of one-wave wave-equations and absorbing boundary-conditions," Mathematics of Computation, vol. 47, pp. 421-435, Oct 1986. DOI: 10.1090/S0025-5718-1986-0856695-2 102

    Article  MathSciNet  MATH  Google Scholar 

  • R. L. Higdon, "Absorbing boundary-conditions for difference approximations to the multidimensional wave-equation" Mathematics of Computation, vol. 47, pp. 437-459, Oct 1986. DOI: 10.1090/S0025-5718-1986-0856696-4 102, 106

    MathSciNet  MATH  Google Scholar 

  • R. L. Higdon, "Numerical absorbing boundary-conditions for the wave-equation," Mathematics of Computation, vol. 49, pp. 65-90,Jul 1987. DOI: 10.1090/S0025-5718-1987-0890254-1 102, 106

    Article  MathSciNet  MATH  Google Scholar 

  • V. Betz and R. Mittra, "Comparison and evaluation of boundary conditions for the absorption of guided waves in an FDTD simulation," IEEE Microwave and Guided Wave Letters, vol. 2, pp. 499-501, 1992. DOI: 10.1109/75.173408 102, 108, 109

    Article  Google Scholar 

  • O. M. Ramahi,"The complementary operators method in FDTD simulations," IEEE Antennas and Propagation Magazine, vol. 39, pp. 33-45, Dec 1997. DOI: 10.1109/74.646801 102

    Article  Google Scholar 

  • O. M. Ramahi, "The concurrent complementary operators method for FDTD mesh truncation," IEEE Transactions on Antennas and Propagation, vol. 46, pp. 1475-1482, Oct 1998. DOI: 10.1109/8.725279 102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Gedney, S.D. (2011). Absorbing Boundary Conditions. In: Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics. Synthesis Lectures on Computational Electromagnetics. Springer, Cham. https://doi.org/10.1007/978-3-031-01712-4_5

Download citation

Publish with us

Policies and ethics