Skip to main content

Part of the book series: Synthesis Lectures on Computational Electromagnetics ((SLCE))

  • 352 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • C. A. Balanis, Advanced Engineering Electromagnetics. New York: Wiley, 1989. 138

    Google Scholar 

  • K. R.Umashankar, A. Taflove, andB. Beker,"Calcuation and experimental validation of induced currents on coupled wires in an arbitrary shaped cavity," IEEE Transactions on Antennas and Propagation, vol. 35, pp. 1248-1257, Nov 1987. DOI: 10.1109/TAP.1987.1144000 138

    Article  Google Scholar 

  • R. M. Mäkinen, J. S. Juntunen, and M. A. Kivikoski, "An improved thin-wire model for FDTD," IEEE Transactions on Microwave Theory and Techniques, vol. 50, pp. 1245-1255, May 2002. DOI: 10.1109/22.999136 139, 140, 144, 146, 147

    Article  Google Scholar 

  • J. A. Stratton, Electromagnetic Theory. New York: McGraw-Hill, 1941. 143,158

    MATH  Google Scholar 

  • A. R. Krommer and C. W. Ueberhuber, Computational Integration. Philadelphia: SIAM, 1998. 145, 146

    Book  MATH  Google Scholar 

  • S. Zhang and J. M. Jin, Computation of Special Functions. NY: John Wiley & Sons, Inc., 1996. 145

    Google Scholar 

  • S. Watanabe and M. Taki, "An improved FDTD model for the feeding gap of a thin-wire antenna," IEEE Microwave and Guided Wave Letters, vol. 8, pp. 152-154, Apr 1998. DOI: 10.1109/75.663515 146

    Article  Google Scholar 

  • G. J. Burke and A. J. Poggio, "Numerical Electromagnetics Code (NEC)-method ofmoments," Naval Ocean Systems Center, San Diego, CA Technical Document 11, January 1981. 149

    Google Scholar 

  • J. G. Maloney, K. L. Shlager, and G. S. Smith, "A Simple FDTD Model for Transient Excitation of Antennas by Transmission-Lines," IEEE Transactions on Antennas and Propagation, vol. 42, pp. 289-292, Feb 1994. DOI: 10.1109/8.277228 150

    Article  Google Scholar 

  • T. G.Jurgens, A. Taflove, K. R. Umashankar, andT. G. Moore, "Finite-difference time-domain modelingofcurved surfaces," IEEE Transactions on Antennas and Propagation, vol. 40, pp. 357-366, 1992. DOI: 10.1109/8.138836 153

    Article  Google Scholar 

  • S. Dey and R. Mittra, "A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects," IEEE Microwave And Guided Wave Letters, vol. 7, pp. 273-275, Sep 1997. DOI: 10.1109/75.622536 153

    Article  Google Scholar 

  • S. Dey and R. Mittra, "A modified locally conformal finite-difference time-domain algorithm for modeling three-dimensional perfectly conducting objects," Microwave and Optical Technology Letters, vol. 17, pp. 349-352, Apr 1998. DOI: 10.1002/(SICI)1098-2760(19980420)17:6%3C349::AID-MOP4%3E3.0.CO;2-H 153

    Article  Google Scholar 

  • W. H. Yu and R. Mittra, "A conformal FDTD software package modeling antennas and microstrip circuit components," IEEE Antennas and Propagation Magazine, vol. 42, pp. 28-39, Oct 2000. DOI: 10.1109/74.883505 153, 157

    Article  Google Scholar 

  • G. Waldschmidt and A. Taflove, "Three-dimensional CAD-based mesh generator for the Dey-Mittra conformal FDTD algorithm," IEEE Transactions on Antennas and Propagation, vol. 52, pp. 1658-1664, Jul 2004. DOI: 10.1109/TAP.2004.831334

    Article  Google Scholar 

  • S. Benkler, N. Chavannes, and N. Kuster, "A new 3-D conformal PEC FDTD scheme with user-defined geometric precision and derived stability criterion," IEEE Transactions on Antennas and Propagation,, vol. 54, pp. 1843-1849, Jun 2006. DOI: 10.1109/TAP.2006.875909 153, 158

    Article  Google Scholar 

  • T. Xiao and Q. H. Liu, "A 3-D enlarged cell technique (ECT) for the conformal FDTD method," IEEE Transactions on Antennas and Propagation, vol. 56, pp. 765-773, Mar 2008. DOI: 10.1109/TAP.2008.916876

    Article  MathSciNet  MATH  Google Scholar 

  • W. H. Yu, R. Mittra, X. L. Yang, Y. J. Liu, Q. J. Rao, and A. Muto, "High-Performance Conformal FDTD Techniques," IEEE Microwave Magazine, vol. 11, pp. 42-55, Jun 2010. DOI: 10.1109/MMM.2010.936496 153, 162

    Article  Google Scholar 

  • J. Gilbert and R. Holland, "Implementation of the thin-slot formalism in the finite difference EMP code THREADII," IEEE Transactions on Nuclear Science, vol. 28, pp. 4269-4274, 1981. DOI: 10.1109/TNS.1981.4335711 160

    Article  Google Scholar 

  • K. P. Ma, M. Li, J. L. Drewniak, T. H. Hubing, and T. P. VanDoren, "Comparison of FDTD algorithms for subcellular modeling of slots in shielding enclosures," IEEE Transactions on Electromagnetic Compatibility, vol. 39, pp. 147-155, May 1997. DOI: 10.1109/15.584937

    Article  Google Scholar 

  • A. Taflove, K. R. Umashankar, B. Beker, F. Harfoush, and K. S. Yee, "Detailed FD-TD analysis of electromagnetic-fields penetrating narrow slots and lapped joints in thick conducting screens," IEEE Transactions on Antennas and Propagation, vol. 36, pp. 247-257, Feb 1988. DOI: 10.1109/8.1102

    Article  Google Scholar 

  • C. D. Turner and L. D. Bacon, "Evaluation of a thin-slot formalism for finite-difference timedomain electromagnetic codes," IEEE Transactions on Electromagnetic Compatibility, vol. 30, pp. 523-528, 1988. DOI: 10.1109/15.8766 160

    Article  Google Scholar 

  • S. Dey and R. Mittra, "A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators," IEEE Transactions on Microwave Theory and Techniques, vol. 47, pp. 1737-1739, Sep 1999. DOI: 10.1109/22.788616 162

    Article  Google Scholar 

  • D. Li, P. M. Meaney, and K. D. Paulsen, "Conformal microwave imaging for breast cancer detection," IEEE Transactions On Microwave Theory And Techniques, vol. 51, pp. 1179-1186, Apr 2003. DOI: 10.1109/TMTT.2003.809624

    Article  Google Scholar 

  • W. H. Yu and R. Mittra, "A conformal finite difference time domain technique for modeling curved dielectric surfaces," IEEE Microwave and Wireless Components Letters, vol. 11, pp. 25-27, Jan 2001. DOI: 10.1109/7260.905957 162, 164

    Article  Google Scholar 

  • N. Kaneda, B. Houshmand, and T. Itoh, "FDTD analysis of dielectric resonators with curved surfaces," IEEE Transactions on Microwave Theory and Techniques, vol. 45, pp. 1645-1649, 1997. DOI: 10.1109/22.622937 164, 165

    Article  Google Scholar 

  • X. J. Hu and D. B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress in Electromagnetics Research-Pier, vol. 79, pp. 305-319, 2008. DOI: 10.2528/PIER07101902

    Article  Google Scholar 

  • T. I. Kosmanis and T. D. Tsiboukis, "A systematic Conformal finite-difference time-domain (FDTD) technique for the simulation of arbitrarily curved interfaces between dielectrics," IEEE Transactions on Magnetics, vol. 38, pp. 645-648, Mar 2002. DOI: 10.1109/20.996168

    Article  Google Scholar 

  • G. R. Werner and J. R. Cary, "A stable FDTD algorithm for non-diagonal, anisotropic dielectrics," Journal of Computational Physics, vol. 226, pp. 1085-1101, Sep 2007. DOI: 10.1016/j.jcp.2007.05.008 162

    Article  MATH  Google Scholar 

  • X.-P. Liang and K. A. Zakim, "Modeling of cylindrical dielectric resonators in rectangular waveguides and cavity," IEEE Transactions on Microwave Theory and Techniques, vol. 41, pp. 2174-2181, 1993. DOI: 10.1109/22.260703 164, 165

    Article  Google Scholar 

  • J. G. Maloney and G. S. Smith, "The efficient modeling of thin matieral sheets in the finite-difference time-domain (FDTD) method," IEEE Transactions on Antennas and Propagation, vol. 40, pp. 323-330, Mar 1992. DOI: 10.1109/8.135475 165

    Article  Google Scholar 

  • J. G. Maloney and G. S. Smith, "A comparison of methods for modeling electrically thin dielectric and conducting sheets in the finite-difference time-domain method," IEEE Transactions on Antennas and Propagation, vol. 41, pp. 690-694, May 1993. DOI: 10.1109/8.222291 165

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Gedney, S.D. (2011). Subcell Modeling. In: Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics. Synthesis Lectures on Computational Electromagnetics. Springer, Cham. https://doi.org/10.1007/978-3-031-01712-4_7

Download citation

Publish with us

Policies and ethics