Skip to main content

Representation and Analysis of the Earthquake Size Distribution: A Historical Review and Some New Approaches

  • Chapter
Seismicity Patterns, their Statistical Significance and Physical Meaning

Part of the book series: Pageoph Topical Volumes ((PTV))

The size distribution of earthquakes has been investigated since the early 20th century. In 1932 WADATI assumed a power-law distributionn(E) = kE —wfor earthquake energyEand estimated the w value to be 1.7 ~ 2.1. Since the introduction of the magnitude-frequency relation by GUTENBERG and RICHTER in 1944 in the form of logn(M) = a — bMthe spatial or temporal variation (or stability) ofbvalue has been a frequently discussed subject in seismicity studies. The logn(M)versusMplots for some data sets exhibit considerable deviation from a straight line. Many modifications of the G-R relation have been proposed to represent such character. The modified equations include the truncated G-R equation, two-range G-R equation, equations with various additional terms to the original G-R equation. The gamma distribution of seismic moments is equivalent to one of these equations.

In this paper we examine which equation is the most suitable to magnitude data from Japan and the world using AIC. In some cases, the original G-R equation is the most suitable, however in some cases other equations fit far better. The AIC is also a powerful tool to test the significance of the difference in parameter values between two sets of magnitude data under the assumption that the magnitudes are distributed according to a specified equation. Even if there is no significant difference inbvalue between two data sets (the G-R relation is assumed), we may find a significant difference between the same data sets under the assumption of another relation. To represent a character of the size distribution, there are indexes other than parameters in the magnitude-frequency distribution. Thenvalue is one of such numbers. Although it is certain that these indexes vary among different data sets and are usable to represent a certain feature of seismicity, the usefulness of these indexes in some practical problems such as foreshock discrimination has not yet been established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abe, K. (1981), Magnitudes of Large Shallow Earthquakes from 1904 to 1980, Phys. Earth Planet. Inter. 27, 72–92.

    Article  Google Scholar 

  • Abe, K. (1984), Compliments to “Magnitudes of Large Shallow Earthquakes from 1904 to 1980,” Phys. Earth Planet. Inter. 34, 17–23.

    Article  Google Scholar 

  • Abe, K., and Noguchi, S. (1983a), Determination of Magnitude for Large Shallow Earthquakes 1898–1917, Phys. Earth Planet. Inter. 32, 45–59.

    Article  Google Scholar 

  • Abe, K., and Noguchi, S. (1983b), Revision of Magnitudes of Large Earthquakes, 1897–1912, ·ter. 33, 1–11.

    Google Scholar 

  • Akaike, H. (1974), A New Look at the Statistical Model Identification, IEEE Trans. Automatic Control 19, 716–723.

    Article  Google Scholar 

  • Aki, K. (1965), Maximum Likelihood Estimates of b in the Formula log N = a - bM and its Confidence Limits, Bull. Earthq. Res. Inst. Univ. Tokyo 43, 237–239.

    Google Scholar 

  • Allen, C. R., ST. Amand, P., Richter, C. F., and Nordquist, J. M. (1965), Relationship Between Seismicity and Geologic Structure in the Southern California Region, Bull. Seismol. Soc. Am. 55, 753–797.

    Google Scholar 

  • Anderson, J. G., and Luco, J. E. (1983), Consequences of Slip Constraints on Earthquake Occurrence Relations, Bull. Seismol. Soc. Am. 76, 273–290.

    Google Scholar 

  • Asada, T., Suzuki, Z., and Tomoda, Y. (1951), Notes on the Energy and Frequency of Earthquakes, Bull. Earthq. Res. Inst. Univ. Tokyo 29, 289–293.

    Google Scholar 

  • Berrill, J. B., and Davis, R. D. (1980), Maximum Entropy and the Magnitude Distribution, Bull. Seismol. Soc. Am. 70, 1823–1831.

    Google Scholar 

  • Broom, E. D., and Erdman, R. C. (1980), The Observation of a Universal Shape Regularity in Earthquake Frequency Magnitude Distributions, Bull. Seismol. Soc. Am. 70, 349–362.

    Google Scholar 

  • Caputo, M. (1976), Model and Observed Seismicity Represented in a Two-dimensional Space, Ann. Geofis. 29, 277–288.

    Google Scholar 

  • Cornell, C. A., and Vanmarche, E. H. (1969), The Major Influence on Seismic Risk, Proc. 4th World Conf. Earthq. Engin. Al, 69–83.

    Google Scholar 

  • Cornell, C. A., and Winterstein, S. R. (1988), Temporal and Magnitude Dependence in Earthquake Recurrence Models, Bull. Seismol. Soc. Am. 78, 1522–1537.

    Google Scholar 

  • Cosentino, P., and Luzio, D. (1976), A Generalization of the Frequency-magnitude Relation in the Hypothesis of a Maximum Regional Magnitude, Ann. Geofis. 29, 3–8.

    Google Scholar 

  • Cosentino, P., Ficarra, V., and Luzio, D. (1977), Truncated Exponential Frequency-magnitude Relationship in Earthquake Statistics, Bull. Seismol. Soc. Am. 67, 1615–1623.

    Google Scholar 

  • Enya, M. (1908a), Relation Between the Maximum Velocity of Motion and the Frequency of the Earthquakes Observed in Tokyo, Rep. Earthq. Invest. Com. 61, 77–78 (in Japanese).

    Google Scholar 

  • Enya, M. (1908b), Relation Between the Frequency of Large Earthquakes and that of Small Ones, Rep.Earthq. Invest. Corn. 61, 71–75 (in Japanese).

    Google Scholar 

  • Frohlich, C., and Davis, S. S. (1993), Teleseismic b Values; or, Much Ado About 1.0, J. Geophys. Res. 98, 631–644.

    Article  Google Scholar 

  • Guarnieri-Botti, L., Pasquale, V., and Anghinolfi, M. (1980), A New General Frequency-magnitude Relationship, Pure appl. geophys. 119, 196–206.

    Article  Google Scholar 

  • Gutenberg, B. (1956), The Energy of Earthquakes, Quart. J. Geol. Soc. London 112, 1–14. Gutenberg, B., and Richter, C. F. (1941), Seismicity of the Earth, Geol. Soc. Am. Spec. Pap. No. 34, 1–131.

    Google Scholar 

  • Gutenberg, B., and Richter, C. F. (1944), Frequency of Earthquakes in California, Bull. Seismol. Soc. Am. 34, 185–188.

    Google Scholar 

  • Gutenberg, B., and Richter, C. F., Seismicity of the Earth and Associated Phenomena (Princeton Univ. Press, 1949) 273 pp.

    Google Scholar 

  • Henderson, J., Main, I., Meredith, P., and Sammonds, P. (1992), The Evolution of Seismicity of Parktield: Observation, Experiment and a Fracture-mechanical Interpretation, J. Struct. Geol. 14, 905–913.

    Article  Google Scholar 

  • Henderson, J., Main, I. G., Pearce, R. G., and Takeya, M. (1994), Seismicity in North-eastern Brazil: Fractal Clustering and the Evolution of the b Value, Geophys. J. Int. 116, 217–226.

    Article  Google Scholar 

  • Imoto, M. (1987), A Bayesian Method for Estimating Earthquake Magnitude Distribution and Changes in the Distribution with Time and Space in New Zealand, New Zealand J. Geol. Geophys. 30, 1063–1116.

    Article  Google Scholar 

  • Imoto, M. (1991), Changes in the Magnitude frequency b Value Prior to Large (M 6) Earthquakes in Japan, Tectonophys. 193, 311–325.

    Article  Google Scholar 

  • Ishimoto, M., and Iida, K. (1939), Observations of Earthquakes Registered with the Microseismograph Constructed Recently (I), Bull. Earthq. Res. Inst. Univ. Tokyo 17, 443–478 (in Japanese).

    Google Scholar 

  • Jin, A., and Aki, K. (1989), Spatial and Temporal Correlation Between Coda Q-’ and Seismicity and its Physical Mechanism, J. Geophys. Res. 94, 14,041–14,059.

    Google Scholar 

  • Kagan, Y. Y. (1969), A Study of the Energy of the Seismoacoustic Pulses Arising during Bursts in a Coal Bed, Izv. Phys. Solid Earth, 85–91 (English translation).

    Google Scholar 

  • Kagan, Y. Y. (1991), Seismic Moment Distribution, Geophys. J. Int. 106, 123–134.

    Google Scholar 

  • Kagan, Y. Y. (1993), Statistics of Characteristic Earthquakes, Bull. Seismol. Soc. Am. 83, 4–24. Kagan, Y. Y. (1997), Seismic Moment frequency Relation for Shallow Earthquakes: Regional Comparison, J. Geophys. Res. 102, 2835–2852.

    Google Scholar 

  • Kagan, Y. Y., and Knopoff, L. (1984), A Stochastic Model of Earthquake Occurrence, Proc. 8th Int. Conf. Earthq. Eng. 1, 295–302.

    Google Scholar 

  • Kanamori, H. (1977), The Energy Release in Great Earthquakes, J. Geophys. Res. 82, 2981–2987.

    Article  Google Scholar 

  • Karmic, V., and Klima, K. (1993), Magnitude frequency Distribution in the European-Mediterranean Earthquake Regions, Tectonophys. 220, 309–323.

    Article  Google Scholar 

  • Kayano, I. (1982), A Characteristic of Earthquake Sequences-An Index for Energy Distribution of Major Earthquakes Belonging to Earthquake Sequences, Bull. Earthq. Res. Inst. Univ. Tokyo 57, 317–336 (in Japanese).

    Google Scholar 

  • Koyama, J., The Complex Faulting Process of Earthquakes (Kluwer Academic Press, 1997) 208 pp.

    Google Scholar 

  • Latoussakis, J., and Drakopoulos, J. (1987), A Modified Formula for Frequency-magnitude Distribution, Pure appl. geophys. 25, 753–764.

    Article  Google Scholar 

  • Lomnitz, C. (1964), Estimation Problems in Earthquake Series, Tectonophys. 2, 193–203. LOMNITZ-ADLER, J., and LOMNITZ, C. (1978), A New Magnitude frequency Relation, Tectonophys. 49, 237–245.

    Google Scholar 

  • Lomnitz-Adler, J., and Lomnitz, C. (1979), A Modified Form of the Gutenberg-Richter Magnitude-frequency Relation, Bull. Seismol. Soc. Am. 69, 1209–1214.

    Google Scholar 

  • Main, I. G. (1987), A Characteristic Earthquake Model of the Seismicity Preceding the Eruption of Mount St. Helens on 18 May 1980, Phys. Earth Planet. Inter. 49, 283–293.

    Google Scholar 

  • Main, I. G. (1996), Statistical Physics, Seismogenesis, and Seismic Hazard, Rev. Geophys. 34, 433–462.

    Article  Google Scholar 

  • Main, I. G., and Burton, P. W. (1984a), Information Theory and the Earthquake Frequency-magnitude Distribution, Bull. Seismol. Soc. Am. 74, 140–1426.

    Google Scholar 

  • Main, I. G., and Burton, P. W. (1984b), Physical Links Between Crustal Deformation, Seismic Moment and Seismic Hazard for Regions of Varying Seismicity, Geophys. J. R. Astr. Soc. 79, 469–488.

    Article  Google Scholar 

  • Main, I. G., and Burton, P. W. (1986), Long-term Earthquake Recurrence Constrained by Tectonic Seismic Moment Release Rates, Bull. Seismol. Soc. Am. 76, 297–304.

    Google Scholar 

  • Makianic, B. (1972), A Contribution to the Statistical Analysis of Zagreb Earthquakes in the Period 1869–1968, Pure appl. geophys. 95, 80–88.

    Article  Google Scholar 

  • Makianic, B. (1980), On the Frequency Distribution of Earthquake Magnitude and Intensity, Bull. Seismol. Soc. Am. 70, 2253–2260.

    Google Scholar 

  • Maruyama, T. (1978), Frequency Distribution of the Sizes of Fractures Generated in the Branching Process-Elementary Analysis, Bull. Earthq. Res. Inst. Univ. Tokyo 53, 407–421 (in Japanese).

    Google Scholar 

  • Merz, H. A., and Cornell, C. A. (1973), Seismic Risk Analysis Based on a Quadratic Magnitude-fre-quency Law, Bull. Seismol. Soc. Am. 63, 1999–2006.

    Google Scholar 

  • Mogi, K. (1979), Global Variation of Seismic Activity, Tectonophys. 57, T43–T50.

    Article  Google Scholar 

  • Molchan, G., Kronrod, T., and Panza, G. P. (1997), Multiscale Seismicity Model for Seismic Risk, Bull. Seismol. Soc. Am. 87, 1220–1229.

    Google Scholar 

  • Mori, J., and Abercrombie, R. E. (1997), Depth Dependence of Earthquake Frequency-magnitude Distributions in California: Implications for the Rupture Initiation, J. Geophys. Res. 102, 15,081–090.

    Google Scholar 

  • NeunhÖfer, H. (1969), Non-linear Energy frequency Curves in Statistics of Earthquakes, Pure appl. geophys. 72, 76–83.

    Article  Google Scholar 

  • Niazi, M. (1964), Seismicity of Northern California and Western Nevada, Bull. Seismol. Soc. Am. 54, 845–850.

    Google Scholar 

  • Ogata, Y. (1992), Detection of Precursory Relative Quiescence Before Great Earthquakes Through a Statistical Model, J. Geophys. Res. 97, 19,845–871.

    Google Scholar 

  • Ogata, Y., and Abe, K. (1991), Some Statistical Features of the Long-term Variation of the Global and Regional Seismic Activity, Int. Statist. Rev. 59, 139–161.

    Article  Google Scholar 

  • Ogata, Y., Imoto, M., and Katsura, K. (1991), 3-D Spatial Variation of b Values of Magnitude-fre-quency Distribution Beneath the Kanto District, Japan, Geophys. J. Int. 104, 135–146.

    Article  Google Scholar 

  • Ogata, Y., and Katsura, K. (1993), Analysis of Temporal and Spatial Heterogeneity of Magnitude Frequency Distribution Inferred from Earthquake Catalogues, Geophys. J. Int. 113, 727–738.

    Article  Google Scholar 

  • Ogata, Y., Utsu, T., and Katsura, K. (1995), Statistical Features of Foreshocks in Comparison with Other Earthquake Clusters, Geophys. J. Int. 121, 233–254.

    Article  Google Scholar 

  • Okada, H., Watanabe, H., Yamashita, H., and Yokoyama, I. (1981), Seismological Significance of the 1977–1978 Eruptions and Magma Intrusion Process of Usu Volcano, Hokkaido, J. Volc. Geotherm. Res. 9, 311–334.

    Article  Google Scholar 

  • Okada, M. (1970), Magnitude frequency Relationship of Earthquakes and Estimation of Supremum-A Statistical Study, Kenkyujiho (J. Meteoro!. Res. JMA) 22, 8–19 (in Japanese).

    Google Scholar 

  • Okal, E. A., and Romanowicz, B. A. (1994), On the Variation of b Value with Earthquake Size, Phys. Earth Planet. Inter. 87, 55–76.

    Article  Google Scholar 

  • Okal, E. A., and Kirby, S. H. (1995), Frequency-moment Distribution of Deep Earthquakes; Implications for the Seismogenic Zone at the Bottom of Slabs, Phys. Earth Planet. Inter. 92, 169–187.

    Article  Google Scholar 

  • Okuda, S., Ouchi, T., and Terashima, T. (1992), Deviation of Magnitude Frequency Distribution of Earthquakes from the Gutenberg-Richter Law: Detection of Precursory Anomalies Prior to Large Earthquakes, Phys. Earth Planet. Inter. 73, 229–238.

    Article  Google Scholar 

  • Olsson, R. (1986), Are Earthquake Magnitudes Exponentially or Normally Distributed?, Tectonophys. 82, 379–382.

    Article  Google Scholar 

  • Omori, F. (1902), Macroseismic Measurements in Tokyo, II and III, Pub. Earthq. Invest. Corn. 11, 1–95.

    Google Scholar 

  • Omori, F. (1908), List of Stronger Japan Earthquakes, 1902–1907, Bull. Earthq. Inv. Com. 2, 58–88.

    Google Scholar 

  • ÖNcel, A. O., Main, I., Alptekin, B., and Cowie, P. (1996), Spatial Variations of the Fractal Properties of Seismicity in the Anatolian Fault Zones, Tectonophys. 275, 189–202.

    Article  Google Scholar 

  • Otsuka, M. (1972), A Chain-Reaction-Type Source Model as a Tool to Interpret the Magnitude-frequency Relation of Earthquakes, J. Phys. Earth 20, 35–45.

    Article  Google Scholar 

  • Ouchi, T., and Yokota, T. (1979), A New Scale of Magnitude frequency Distribution of Earthquakes, Zisin (J. Seism. Soc. Japan) Ser. 2, 32, 415–421 (in Japanese).

    Google Scholar 

  • Pacheco, J. F., and Sykes, L. R. (1992), Seismic Moment Catalog of Large Shallow Earthquakes, 1900–1989, Bull. Seismol. Soc. Am. 82, 1306–1349.

    Google Scholar 

  • Page, R. (1968), Aftershocks and Microaftershocks of the Great Alaska Earthquake of 1964, Bull. Seismol. Soc. Am. 58, 1131–1168.

    Google Scholar 

  • Purcaru, G. (1975), A New Magnitude frequency Relation for Earthquakes and a Classification of Relation Types, Geophys. J. R. Astr. Soc. 42, 61–79.

    Google Scholar 

  • Ranalli, G. (1975), A Test of the Lognormal Distribution of Earthquake Magnitude, Veroff. Zentralinst. Phys. Erde, DAW 31, 163–180.

    Google Scholar 

  • Richter, C. F. (1935), An Instrumental Magnitude Scale, Bull. Seismol. Soc. Am. 25, 1–32.

    Google Scholar 

  • Riznichenko, Yu. V. (1959), On Quantitative Determination and Mapping of Seismicity, Ann. Geofis. 12, 227–237.

    Google Scholar 

  • Riznichenko, Yu. V. (1964), The Investigation of Seismic Activity by the Method of Earthquake Summation, Izv. Phys. Solid Earth 589–593 (English translation).

    Google Scholar 

  • Riznichenko, Yu. V. (1966), Problems of Earthquake Physics, Izv. Phys. Solid Earth 73–86 (English translation).

    Google Scholar 

  • Rundle, J. B. (1993), Magnitude frequency Relations for Earthquakes Using a Statistical Mechanical Approach, J. Geophys. Res. 98, 21,943–949.

    Google Scholar 

  • Sacuiu, I., and Zorilescu, D. (1970), Statistical Analysis of Seismic Data on Earthquakes in the Area of Vrancea Focus, Bull. Seismol. Soc. Am. 60, 1089–1099.

    Google Scholar 

  • Saito, M., Kikuchi, M., and Kudo, K. (1973), Analytical Solution of Go-game Model of Earthquakes, Zisin (J. Seism. Soc. Japan), Ser. 2, 26, 19–25 (in Japanese).

    Google Scholar 

  • Seing, M., Fuxut, K., and Churei, M. (1989), Magnitude vs. Frequency Distributions of Earthquakes with Upper Bound Magnitude, Zisin (J. Seism. Soc. Japan), Ser. 2, 42, 73–80 (in Japanese).

    Google Scholar 

  • Shlien, S., and ToksÖZ, M. N. (1970), Frequency-magnitude Statistics of Earthquake Occurrences, Earthq. Notes 41 (1), 5–18.

    Google Scholar 

  • Smith, W. D. (1986), Evidence for Precursory Changes in the Frequency-magnitude b Value, Geophys. J. Roy. Astr. Soc. 86, 815–838.

    Article  Google Scholar 

  • Sornette, D., Knopoff, L., kagan, Y. Y., and Vanneste, C. (1996), Rank-ordering Statistics of Extreme Events: Application to the Distribution of Large Earthquakes, J. Geophys. Res. 101, 13,88313,893.

    Google Scholar 

  • Speidel, D. H., and Mattson, P. H. (1993), The Polymodal Frequency-magnitude Relationship of Earthquakes, Bull. Seismol. Soc. Am. 83, 1893–1901.

    Google Scholar 

  • Suzuki, Z. (1959), A Statistical Study on the Occurrence of Small Earthquakes, IV, Sci. Rep. Tohoku Univ., Ser. 5, 11, 10–54.

    Google Scholar 

  • Triep, E. G., and Sykes, L. R. (1997), Frequency of Occurrence of Moderate to Great Earthquakes in Intracontinental Regions: Implication for Changes in Stress, Earthquake Prediction, and Hazard Assessments, J. Geophys. Res. 102, 9923–9948.

    Article  Google Scholar 

  • Trifu, C.-I., and Shumila, V. I. (1996), A Method for Multidimensional Analysis of Earthquake Frequency-magnitude Distribution with an Application to the Vrancea Region of Romania, Tectonophys. 261, 9–22.

    Article  Google Scholar 

  • Turcotte, D. L., Fractals and Chaos in Geology and Geophysics, 2nd Ed. (Cambridge University Press 1997) 398 pp.

    Google Scholar 

  • Utsu, T. (1961), A Statistical Study on the Occurrence of Aftershocks, Geophys. Mag. 30, 521–605.

    Google Scholar 

  • Utsu, T. (1962), On the Nature of Three Alaskan Aftershock Sequences of 1957 and 1958, Bull. Seismol. Soc. Am. 52, 279–297.

    Google Scholar 

  • Utsu, T. (1965), A Method for Determining the Value of b in a Formula log n = a - bM Showing the Magnitude frequency Relation for Earthquakes, Geophys. Bull. Hokkaido Univ. 13, 99–103 (in Japanese).

    Google Scholar 

  • Utsu, T. (1966), A Statistical Significance Test of the Difference in b Value Between Two Earthquake Groups, J. Phys. Earth 14, 37–40.

    Article  Google Scholar 

  • Utsu, T. (1971), Aftershocks and Earthquake Statistics (III), J. Fac. Sci. Hokkaido Univ. Ser. VII 3, 379–441.

    Google Scholar 

  • Utsu, T. (1978), Estimation of Parameter Values in Formulas for Magnitude frequency Relation ofEarthquake Occurrence, Zisin (J. Seism. Soc. Japan), Ser. 2, 31, 367–382 (in Japanese).

    Google Scholar 

  • Utsu, T. (1982), Relationships Between Earthquake Magnitude Scales, Bull. Earthq. Res. Inst. Univ.Tokyo 57, 465–497 (in Japanese).

    Google Scholar 

  • Utsu, T. (1988), 7 Value for Magnitude Distribution and Earthquake Prediction, Rep. Coord. Comm. Earthq. Pred. 39, 280–386 (in Japanese).

    Google Scholar 

  • Utsu, T. (1992), Introduction to Seismicity, Surijishingaku (Mathematical Seismology) (VII), Inst. Statis. Math. 139–157 (in Japanese).

    Google Scholar 

  • Vere-Jones, D. (1976), A Branching Model for Crack Propagation, Pure appl. geophys. 114, 711–725.

    Google Scholar 

  • Vere-Jones, D. (1977), Statistical Theories of Crack Propagation, J. Math. Geol. 9, 455–481.

    Article  Google Scholar 

  • Wadati, K. (1932), On the Frequency Distribution of Earthquakes, Kishoshushi (J. Meteorol. Soc.Japan), Ser. 2, 10, 559–568 (in Japanese).

    Google Scholar 

  • Ward, S. N. (1996), A Synthetic Seismicity Model for Southern California: Cycles, Probabilities, and Hazard, J. Geophys. Res. 101, 22,393–418.

    Google Scholar 

  • Wiemer, S., and Benoit, J. (1996), Mapping the b Value Anomaly at 100 km Depth in the Alaska and New Zealand Subduction Zones, Geophys. Res. Lett. 23, 1557–1560.

    Article  Google Scholar 

  • Wiemer, S., and Mcnurr, S. (1997), Variations in the Frequency-magnitude Distribution with Depth in Two Volcanic Areas: Mount St. Helens, Washington, and Mt. Spurr, Alaska, Geophys. Res. Lett. 24, 189–192.

    Article  Google Scholar 

  • Wiemer, S., and Wyss, M. (1997), Mapping the Frequency-magnitude Distribution in Asperities: An Improved Technique to Calculate Recurrence Times?, J. Geophys. Res. 102, 15,115–15,128.

    Google Scholar 

  • Wyss, M., Shimazaki, K., and Wiemer, S. (1997), Mapping Active Magma Chamber by b Values Beneath the Off-Ito Volcano, Japan, J. Geophys. Res. 102, 20,413–20,422.

    Google Scholar 

  • Zhang, Y.-X., and Huang, D.-Y. (1990), On the ry Value as a Parameter for Earthquake Prediction, Earthq. Res. China 4, 63–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Verlag

About this chapter

Cite this chapter

Utsu, T. (1999). Representation and Analysis of the Earthquake Size Distribution: A Historical Review and Some New Approaches. In: Wyss, M., Shimazaki, K., Ito, A. (eds) Seismicity Patterns, their Statistical Significance and Physical Meaning. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8677-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8677-2_15

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6209-6

  • Online ISBN: 978-3-0348-8677-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics