Skip to main content

How Can One Test the Seismic Gap Hypothesis? The Case of Repeated Ruptures in the Aleutians

  • Chapter
Seismicity Patterns, their Statistical Significance and Physical Meaning

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

The test that KAGAN and JACKSON (1991, 1995) applied to the seismic gap hypothesis did not bring us closer to understanding the generation of large earthquakes. On the contrary, it led some to the conclusion that the rebound theory of earthquake generation should be rejected. We disagree with this point of view and argue that a global test of the simplified gap hypothesis cannot be done because it cannot account for differences in the slip history of fault segments and tectonic differences between separate plate boundaries. Kagan and Jackson did show, however, that the original gap hypothesis was oversimplified and should be refined. We propose that consideration of all the facts, including slip history and seismicity patterns in the Andreanof Islands, show that the concept of seismic gaps and the elastic rebound theory are correct for that segment of the plate boundary. The coseismic slip in the M w, 8.7 earthquake that broke this plate boundary segment in 1957 was only 2 m, as published before the repeat earthquake of 1986 (M w, 8), and thus, using a plate convergence rate of 7.3 cm/year, the return time in this cycle was expected to be less than 30 years, unless substantial aseismic creep occurs. This supports the time predictable model of mainshock recurrence. In addition, KISSLINGER et al. (1985) and KISSLINGER (1986) noticed a seismic quiescence in the subsequent source volume before the 1986 earthquake and attempted to predict it. The specific parameters he estimated were not entirely correct although his interpretation of the observed quiescence as a precursor was. We conclude that the 1986, M w, 8, Andreanof earthquake was not an example that disproves the seismic gap hypothesis. On the contrary, it shows that the hypothesis that plate motions reload plate boundaries after most of the elastic energy is released in great ruptures was correct in this case. This suggests that great earthquakes occur preferably in mature gaps. We believe the testing of the seismic gap hypothesis by algorithm on a global scale is an example that illustrates that overly simplified tests can lead to erroneous conclusions. To make progress in the actual understanding of the physics of the process of great earthquake ruptures, one must consider all the facts known for case histories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axi, K. (1984), Asperities, Barriers, Characteristic Earthquakes and Strong Motion Prediction, J. Geophys. Res. 89, 5867–5872.

    Article  Google Scholar 

  • Atwater, B. F. (1992), Geologic Evidence for Earthquakes during the Past 2000 Years along the Copalis River, Southern Coastal Washington, J. Geophys. Res. 97, 1901–1919.

    Article  Google Scholar 

  • Bakun, W. H., and Mcevilly, T. V. (1984), Recurrence Models and Parkfield, California, Earthquakes, J. Geophys. Res. 89, 3051–3058.

    Article  Google Scholar 

  • Boyd, T. M., and Nabelek, J. L. (1988), Rupture Process of the Andreanof Islands Earthquake of May 7, 1986, Bull. Seismol. Soc. Am. 78, 1653–1673.

    Google Scholar 

  • Brune, J. N. (1979), Implications of Earthquake Triggering and Rupture Propagation for Earthquake Prediction Based on Premonitory Phenomena, J. Geophys. Res. 84, 2195–2198.

    Article  Google Scholar 

  • Brune, J. N., Henyey, T. L., and Roy, R. F. (1969), Heat Flow, Stress, and Rate of Slip along the San Andreas Fault, California, J. Geophys. Res. 74, 3821–3827.

    Article  Google Scholar 

  • Bufe, C. G., Nishenko, S. P., and Varnes, D. J. (1994), Seismicity Trends and Potential for Large Earthquakes in the Alaska-Aleutian Region, Pure appl. geophys. 142, 83–99.

    Article  Google Scholar 

  • Bufe, C. G., and Varnes, D. J. (1996), Time-to-failure in the Alaska-Aleutian Region: An Update, EOS 77, F456.

    Google Scholar 

  • Christensen, D. H., and Beck, S. L. (1994), The Rupture Process and Tectonic Implications of the Great 1964 Prince William Sound Earthquake, Pure appl. geophys. 142, 29–53.

    Article  Google Scholar 

  • Davies, G. F., and Brune, J. N. (1971), Regional and Global Fault Slip Rates from Seismicity, Nature 229, 101–107.

    Article  Google Scholar 

  • Demets, C., Gordon, R. G., Argus, D. F., and Stein, S. (1990), Current Plate Motions, Geophys. J. Int. 101, 425–478.

    Article  Google Scholar 

  • Dieterich, J. (1994), A Constitutive Law for Rate of Earthquake Production and its Application to Earthquake Clustering, J. Geophys. Res. 99, 2601–2618.

    Article  Google Scholar 

  • Evison, F. F., and Rhoades, D. A. (1993), The Precursory Swarm in New Zealand: Hypothesis Test, New Zealand J. Geol. Geophys. 36, 51–60.

    Article  Google Scholar 

  • Fedotov, S. A. (1965), Regularities of the Distribution of Strong Earthquakes in Kamchatka, the Kurile Islands and Northeastern Japan, Tr. Inst. Fiz. Zemli Akad. Nauk SSSR 36, 66.

    Google Scholar 

  • Freymueller, J., Cohen, S., and Fletcher, H. (1999), Deformation in the Kenai Peninsula, J. Geophys. Res., submitted.

    Google Scholar 

  • Gamar, F., and Bernard, P. (1997), Shear-wave Anisotropy in the Erzincan Basin and its Relationship with Crustal Strain, J. Geophys. Res. 102, 20,373–20,393.

    Article  Google Scholar 

  • Geller, R. J. (1997), Earthquake Prediction: Are Further Efforts Warranted, Geophys. J. Int. 147, 111–999.

    Google Scholar 

  • Geller, R. J., Jackson, D. D., Kagan, Y. Y., and Mulargia, F. (1997), Earthquakes Cannot be Predicted, Science 275, 1616–1617.

    Article  Google Scholar 

  • Habermann, R. E. (1981), The Quantitative Recognition and Evaluation of Seismic Quiescence: Applications to Earthquake Prediction and Subduction Zone Tectonics, University of Colorado, Boulder, 253 pp.

    Google Scholar 

  • Habermann, R. E., and Creamer, F. (1994), Catalog Errors and the M 8 Earthquake Prediction Algorithm, Bull. Seismol. Soc. Am. 84, 1551–1559.

    Google Scholar 

  • Haessler, H., Deschamps, A., Dufumier, H., Fuenzalida, H., and Cisternas, A. (1992), The Rupture Process of the Armenian Earthquake from Broad-band Teleseismic Body Wave Records, Geophys. J. Int. 109, 151–161.

    Article  Google Scholar 

  • Harvey, D., and Wyss, M. (1986), Comparison of a Complex Rupture Model with the Precursor Asperities of the 1975 Hawaii Ms= 7.2 Earthquake, Pure appl. geophys. 124, 957–973.

    Article  Google Scholar 

  • Heki, K., Miyazaki, S., and Tsuji, H. (1997), Silent Fault Slip Following an Interplate Thrust Earthquake at the Japan Trench, Nature 386, 595–598.

    Article  Google Scholar 

  • Henyey, T. L., and Wasserburg, G. J. (1971), Heat Flow near Major Strike-slip Faults in California, J. Geophys. Res. 76, 7924–7946.

    Article  Google Scholar 

  • Jaumé, S., and Sykes, L. R. (1999), Evolving towards a Critical Point: A Review of Accelerating Seismic Moment ‘Energy Release prior to Large and Great Earthquakes, Pure appl. geophys., this issue.

    Google Scholar 

  • Jaumé, S. C., and Sykes, L. R. (1996), Evolution of Moderate Seismicity in the San Francisco Bay Region, 1850 to 1993: Seismicity Changes Related to Occurrence of Large and Great Earthquakes, J. Geophys. Res. 101, 765–790.

    Article  Google Scholar 

  • Johnson, J. M. (1998),Heterogeneous Coupling along the Alaska-Aleutians as Inferred from Tsunami, Seismic and Geodetic Inversions, Advances in Geophysics 39, 1–116.

    Article  Google Scholar 

  • Johnson, J. H., and Satake, K. (1993), Source Parameters of the 1957 Aleutian Earthquake from Tsunami Waveforms, Geophys. Res. Lett. 20, 1487–1490.

    Article  Google Scholar 

  • Johnson, J. M. et al. (1994), The 1957 Great Aleutian Earthquake, Pure appl. geophys. 142, 3–28.

    Article  Google Scholar 

  • Jones, L. M. (1988), Focal Mechanisms and the State of Stress on the San Andreas Fault in Southern California, J. Geophys. Res. 93, 8869–8891.

    Article  Google Scholar 

  • Kagan, Y. Y. (1997), Are Earthquakes Predictable?, Geophys. J. Int. 131, 505–525.

    Article  Google Scholar 

  • Kagan, Y. Y., and Jackson, D. D. (1991), Seismic Gap Hypothesis: Ten Years after, J. Geophys. Res. 96, 21,419–21,431.

    Article  Google Scholar 

  • Kagan, Y. Y., and Jackson, D. D. (1995), New Seismic Gap Hypothesis: Five Years after, J. Geophys. Res. 100, 3943–3960.

    Article  Google Scholar 

  • Kanamori, H., and Anderson, D. L. (1975), Theoretical Basis of Some Empirical Relations in Seismology, Bull. Seismol. Soc. Am. 65, 1073–1095.

    Google Scholar 

  • Kato, N., Ohtake, M., and Hirasawa, T. (1998), Possible Mechanism of Precursory Seismic Quiescence: Regional Stress Relaxation due to Preseismic Sliding, Pure appl. geophys. 150, 249–267.

    Article  Google Scholar 

  • Keilis-Borok, V. I., Knopoff, L., Kossobokov, V. G., and Rotvain, I. (1990), Intermediate-term Prediction in Advance of the Loma Prieta Earthquake, Geophys. Res. Letts. 17, 1461–1464.

    Article  Google Scholar 

  • Kisslinger, C. (1986), Seismicity Patterns in the Adak Seismic Zone and the Short-term Outlook for a Major Earthquake, Meeting of the National Earthquake Prediction Evaluation Council. U.S. Geol. Survey, Open-file Rept. 86–92, Anchorage, Alaska, pp. 119–134.

    Google Scholar 

  • Kisslinger, C. (1988), An Experiment in Earthquake Prediction and the 7 May 1986 Andreanof Islands Earthquake, Bull. Seismol. Soc. Am. 78, 218–229.

    Google Scholar 

  • Kisslinger, C., Mcdonald, C., and Bowman, J. R. (1985), Precursory Time-space Patterns of Seismicity and their Relation to Fault Processes in the Central Aleutian Islands Seismic Zone, IASPEI, 23rd General Assembly, Tokyo, Japan, 32 pp.

    Google Scholar 

  • Kisslinger, K., and Kindel, B. (1994), A Comparison of Seismicity Rates near Adak Island, Alaska, September 1988 through May 1990 with Rates before the 1982 to 1986 Apparent Quiescence, Bull. Seismol. Soc. Am. 84, 1560–1570.

    Google Scholar 

  • Kossobokov, V. G., Healy, J. H., and Dewey, J. W. (1997), Testing an Earthquake Prediction Algorithm, Pure appl. geophys. 149, 219–248.

    Article  Google Scholar 

  • Kossobokov, V. G., Keilis-Borok, V. I., and Smith, S. W. (1990), Localization of Intermediate-term Earthquake Prediction, J. Geophys. Res. 95, 19,763–19,772.

    Article  Google Scholar 

  • Lachenbruch, A. H., and Sass, J. H. (1980), Heat Flow and Energetics of the San Andreas Fault Zone, J. Geophys. Res. 85, 6185–6222.

    Article  Google Scholar 

  • Main, I. G. (1997), Long Odds on Prediction, Nature 385, 19–20.

    Article  Google Scholar 

  • Mccann, W. E., Nishenko, S. P., Sykes, L. R., and Krause, J. (1979), Seismic Gaps and PlateTectonics: Seismic Potential for Major Plate Boundaries, Pure appl. geophys. 117, 1082–1147.

    Article  Google Scholar 

  • Minster, J. B., and Williams, N. P. (1996), M 8 Intermediate-term Earthquake Prediction Algorithm: Performance Update for M> 7.5, 1985–1996, EOS 77, F456.

    Google Scholar 

  • Mulargia, F., and Gasperini, P. (1995), Evaluation of the Applicability of the Time-and Slip-pre-dictable Earthquake Recurrence Models to Italian Seismicity, Geophys. J. Int. 120, 453–473.

    Article  Google Scholar 

  • Nishenko, S. P. (1991), Circum-Pacific Seismic Potential: 1989–1999, Pure appl. geophys. 135, 169–259.

    Article  Google Scholar 

  • Nishenko, S. P. et al. (1996), 1996 Delarof Islands Earthquake -A Successful Earthquake Forecast/Prediction? EOS 77, F456.

    Google Scholar 

  • Nishenko, S. P., and Sykes, L. R. (1993), Comment on “Seismic Gap Hypothesis: Ten Years after” by Y. Y. Kagan and D. D. Jackson, J. Geophys. Res. 98, 9909–9916.

    Article  Google Scholar 

  • Nishimura, T. et al. (1998), Source Model of the Co-and Post-seismic Deformation Associated with the 1994 far off Sanriku Earthquake (M 7.5) Inferred from Strainmeter and GPS Measurements, Tohoku Geophys. J. 35, 15–32.

    Google Scholar 

  • Page, R. (1968), Aftershocks and Microaftershocks of the Great Alaska Earthquake of 1964, Bull. Seismol. Soc. Am. 58, 1131–1168.

    Google Scholar 

  • Reid, H. F. (1910). The Mechanics of the Earthquake, The California Earthquake of April 18, 1906, Report of the State Earthquake Investigation Commission. Carnegie Institution of Washington, Washington, D.C.

    Google Scholar 

  • Ruff, L. R., Kanamori, H., and Sykes, L. R. (1985), The 1957 Great Aleutian Earthquake (abstract), EOS 66, 298.

    Google Scholar 

  • Schwartz, D. P., and Coppersmith, K. J. (1984), Fault Behaviour and Characteristic Earthquakes: Examples from the Wasatch and San Andreas Fault Zones, J. Geophys. Res. 89, 5681–5698.

    Article  Google Scholar 

  • Shimazaki, K., and Nakata, T. (1980), Time predictable Recurrence Model for Large Earthquakes, Geophys. Res. Letts. 7, 279–282.

    Article  Google Scholar 

  • Sibson, R. H. (1980), Power Dissipation and Stress Levels on Faults in the Upper Crust, J. Geophys. Res. 85, 6239–6247.

    Article  Google Scholar 

  • Sieh, K. E. et al. (1992), Near field Investigations of the Landers Earthquake Sequence, April to July 1992, Science 260, 171–176.

    Article  Google Scholar 

  • Sieh, K. E. (1984), Lateral Offsets and Revised Dates of Large Prehistoric Earthquakes at Pallett Creek, Southern California, J. Geophys. Res. 89, 7641–7670.

    Article  Google Scholar 

  • Swanson, D. A., Duffield, W. A., and Fiske, R. S. (1976), Displacement of the South Flank of Kilauea Volcano: The Result of Forceful Intrusion of Magma into the Rift Zones, U.S. Geol. Surv. Prof. Pap. 963, 1–39.

    Google Scholar 

  • Sykes, L. R. (1971), Aftershock Zones of Great Earthquakes, Seismicity Gaps, Earthquake Prediction for Alaska and the Aleutians, J. Geophys. Res. 76, 8021–8041.

    Article  Google Scholar 

  • Sykes, L. R., and Jaumé, S. C. (1990), Seismic Activity on Neighbouring Faults as a long-term Precursor to Large Earthquakes in the San Francisco Bay Area, Nature 348, 595–599.

    Article  Google Scholar 

  • Sykes, L. R., and Nishenko, S. P. (1984), Probabilities of Occurrence of Large Plate Rupturing Earthquakes for the San Andreas, San Jacinto, and Imperial Faults, California, J. Geophys. Res. 89, 5905–5927.

    Article  Google Scholar 

  • Sykes, L. R., Shaw, B. E., and Scholz, C. H. (1999), Rethinking Earthquake Prediction, Pure appl. geophys., this volume.

    Google Scholar 

  • Tanioka, Y., Ruff, L., and Satake, K. (1996), The Sanriku-oki, Japan Earthquake of December 28, 1994 (M,v 7.7): Rupture of a Different Asperity from a Previous Earthquake, Geophys. Res. Letts. 23, 1465–1468.

    Article  Google Scholar 

  • Thatcher, W. (1990), Order and Diversity in the Modes of Circum-Pacific Earthquake Recurrence, J. Geophys. Res. 95, 2609–2624.

    Article  Google Scholar 

  • Tilling, R. I. et al. (1976), Earthquake and Related Catastrophic Events, Island of Hawaii, November 29, 1975: A Preliminary Report, Geological Survey Circular 740, 33 pp.

    Google Scholar 

  • Varnes, D. J. (1989), Predicting Earthquakes by Analyzing Accelerating Precursory Seismic Activity, Pure appl. geophys. 130, 661–686.

    Article  Google Scholar 

  • Wahr, J., and Wyss, M. (1980), Interpretation of Postseismic Deformation with a Viscoelastic Relaxation Model, J. Geophys. Res. 85, 6471–6477.

    Article  Google Scholar 

  • Wald, D. J., Heaton, T. H., and Hudnut, K. W. (1996), The Slip History of the 1994 Northridge, California, Earthquake Determined from Strong-motion, Teleseismic, GPS, and Levelling Data, Bull. Seismol. Soc. Am. 86 (B1), S49–570.

    Google Scholar 

  • Wang, K., Mulder, T., Rogers, G. C., and Hyndman, R. D. (1995), Case for Very Low Coupling Stress of the Cascadia Subduction Fault, J. Geophys. Res. 100, 12,907–12,918.

    Article  Google Scholar 

  • Wiemer, S. (1996), Analysis of Seismicity: New Techniques and Case Studies, Dissertation Thesis, University of Alaska, Fairbanks, Alaska, 151 pp.

    Google Scholar 

  • Wiemer, S., and Wyss, M. (1994), Seismic Quiescence before the Landers (M = 7.5) and Big Bear (M= 6.5) 1992 Earthquakes, Bull. Seismol. Soc. Am. 84, 900–916.

    Google Scholar 

  • Wyss, M. (1988), A Proposed Source Model for the Great Kau, Hawaii, Earthquake of 1868, Bull. Seismol. Soc. Am. 78, 1450–1462.

    Google Scholar 

  • Wyss, M. (1991a), Evaluation of Proposed Earthquake Precursors, Am. Geophys. Union, Washington, 94 pp.

    Book  Google Scholar 

  • Wyss, M. (1991b), Reporting History of the Central Aleutians Seismograph Network and the Quiescence Preceding the 1986 Andreanof Island Earthquake, Bull. Seismol. Soc. Am. 81, 1231–1254.

    Google Scholar 

  • Wyss, M. (l997a), Nomination of Precursory Seismic Quiescence as a Significant Precursor, Pure appl. geophys. 149, 79–114.

    Article  Google Scholar 

  • Wyss, M. (1997b), Second Round of Evaluations of Proposed Earthquake Precursors, Pure appl. geophys. 149, 3–16.

    Article  Google Scholar 

  • Wyss, M., and Booth, D. C. (1997), The IASPE! Procedure for the Evaluation of Earthquake Precursors, Geophys. J. Int. 131, 423–424.

    Article  Google Scholar 

  • Wyss, M., and Brune, J. N. (1967), The Alaska Earthquake of 28 March 1964: A Complex Multiple Rupture, Bull. Seismol. Soc. Am. 57, 1017–1023.

    Google Scholar 

  • Wyss, M., and Burford, R. O. (1987), A Predicted Earthquake on the San Andreas Fault, California, Nature 329, 323–325.

    Article  Google Scholar 

  • Wyss, M., Hasegawa, A., Wiemer, S., and Umino, N. (1999), Quantitative Mapping of Precursory Seismic Quiescence before the 1989, M 7.1, off-Sanriku Earthquake, Japan, Annali di Geophysica, in press.

    Google Scholar 

  • Wyss, M., and Kovach, R. L. (1988), Comments on “A Single Force Model for the 1975 Kalapana, Hawaii, Earthquake,” by H.K. Eissler and H. Kanamori, J. Geophys. Res. 93, 8078–8082.

    Article  Google Scholar 

  • Wyss, M., and Lu, Z. (1995), Plate Boundary Segmentation by Stress Directions: Southern San Andreas Fault, California, Geophys. Res. Letts. 22, 547–550.

    Article  Google Scholar 

  • Wyss, M., Shimazaki, K., and URABE, T. (1996), Quantitative Mapping of a Precursory Quiescence to the Izu-Oshima 1990 (M 6.5) Earthquake, Japan, Geophys. J. Int. 127, 735–743.

    Article  Google Scholar 

  • Zoback, M. D., and Beroza, G. C (1993), Evidence for Near-frictionless-faulting in the 1989 (M 6.9) Loma Prieta, California, Earthquake and its Aftershocks, Geology 21, 181–185.

    Article  Google Scholar 

  • Zoback, M. D., et al. (1987), New Evidence on the State of Stress of the San Andreas Fault System, Science 238, 1105–1111.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Verlag

About this chapter

Cite this chapter

Wyss, M., Wiemer, S. (1999). How Can One Test the Seismic Gap Hypothesis? The Case of Repeated Ruptures in the Aleutians. In: Wyss, M., Shimazaki, K., Ito, A. (eds) Seismicity Patterns, their Statistical Significance and Physical Meaning. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8677-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8677-2_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6209-6

  • Online ISBN: 978-3-0348-8677-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics