Skip to main content

Cosmochemistry of Lithium

  • Chapter
  • First Online:
Advances in Lithium Isotope Geochemistry

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

  • 1975 Accesses

Abstract

The utility of Li and Li isotopes in Earth and planetary science is discussed in this chapter, with a particular focus to major planetary bodies (Moon, Mars) and other inner Solar System pilgrims (Vesta) of which we are aware to have physical samples in our collections. Inevitably in cosmochemistry, the journey through solid materials starts with chondrites, important building blocks of all larger celestial bodies. However, the story of Li began already in the very first seconds of the nascent Universe; therefore, a brief history of the fate of Li in the cosmos, "empty" interstellar space, galaxies, and stars, including our nearest vital thermonuclear reactor of a marvellous size is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agee CB, Wilson NV, McCubbin FM, Ziegler K, Polyak VJ, Sharp ZD, Asmerom Y, Nunn MH, Shaheen R, Thiemens MH, Steele A, Fogel ML, Bowden R, Glamoclija M, Zhang Z, Elardo SM (2013) Unique meteorite from Early Amazonian Mars: water-rich basaltic breccia Northwest Africa 7034. Science 339:780–785

    Article  Google Scholar 

  • Ahrens B, Stix M, Thorn M (1992) On the depletion of lithium in the Sun. Astron Astrophys 264:673–678

    Google Scholar 

  • Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214

    Article  Google Scholar 

  • Andersen J, Gustafsson B, Lambert DL (1984) The lithium isotope ratio in F and G stars. Astron Astrophys 136:65–73

    Google Scholar 

  • Asplund M, Grevesse N, Sauval J, Scott P (2009) The chemical composition of the Sun. Annu Rev Astron Astrophys 47:481–522

    Article  Google Scholar 

  • Asplund M, Lambert DL, Nissen PE, Primas F, Smith VV (2006) Lithium isotopic abundances in metal-poor halo stars. Astrophys J 644:229–259

    Article  Google Scholar 

  • Audi G, Bersillon O, Blachot J, Wapstra AH (2003) The NUBASE evaluation of nuclear and decay properties. Nucl Phys A 729:3–128

    Article  Google Scholar 

  • Audouze J, Boulade O, Malinie G, Poilane Y (1983) Galactic evolution of the lithium isotopes. Astron Astrophys 127:164–168

    Google Scholar 

  • Balsiger H, Geiss J, Groegler N, Wyttenbach A (1968) Distribution and isotopic abundance of lithium in stone meteorites. Earth Planet Sci Lett 5:17–22

    Article  Google Scholar 

  • Barrat JA, Chaussidon M, Bohn M, Gillet P, Göpel C, Lesourd M (2005) Lithium behavior during cooling of a dry basalt: an ion-microprobe study of the lunar meteorite Northwest Africa 479 (NWA 479). Geochim Cosmochim Acta 69:5597–5609

    Article  Google Scholar 

  • Barrat JA, Yamaguchi A, Greenwood RC, Bohn M, Cotten J, Benoit M, Franchi IA (2007) The Stannern trend eucrites: contamination of main group eucritic magmas by crustal partial melts. Geochim Cosmochim Acta 71:4108–4124

    Article  Google Scholar 

  • Barrat JA, Yamaguchi A, Greenwood RC, Benoit M, Cotten J, Bohn M, Franchi IA (2008) Geochemistry of diogenites: still more diversity in their parental melts. Meteorit Planet Sci 43:1759–1775

    Article  Google Scholar 

  • Barrat JA, Yamaguchi A, Bunch TE, Bohn M, Bollinger C, Ceuleneer G (2011) Possible fluid–rock interactions on differentiated asteroids recorded in eucritic meteorites. Geochim Cosmochim Acta 75:3839–3852

    Article  Google Scholar 

  • Barrat JA, Jambon A, Ferrière L, Bollinger C, Langlade JA, Liorzou C, Boudouma O, Fialin M (2014) No Martian soil component in shergottite meteorites. Geochim Cosmochim Acta 125:23–33

    Article  Google Scholar 

  • Barrat J-A, Yamaguchi A, Zanda B, Bollinger C, Bohn M (2010) Relative chronology of crust formation on asteroid Vesta: Insights from the geochemistry of diogenites. Geochim Cosmochim Acta 74:6218–6231

    Article  Google Scholar 

  • Baumann P, Ramírez I, Meléndez J, Asplund M, Lind K (2010) Lithium depletion in solar-like stars: no planet connection. Astron Astrophys 519:A87

    Article  Google Scholar 

  • Beard BL, Taylor LA, Scherer EE, Johnson CM, Snyder GA (1998) The source region and melting mineralogy of high-titanium and low-titanium lunar basalts deduced from Lu-Hf isotope data. Geochim Cosmochim Acta 62:525–544

    Article  Google Scholar 

  • Beck P, Barrat JA, Chaussidon M, Gillet P, Bohn M (2004) Li isotopic variations in single pyroxenes from the Northwest Africa 480 shergottite (NWA 480): a record of degassing of Martian magmas? Geochim Cosmochim Acta 68:2925–2933

    Article  Google Scholar 

  • Beck P, Chaussidon M, Barrat JA, Gillet P, Bohn M (2006) Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: the case of pyroxene phenocrysts form nakhlite meteorites. Geochim Cosmochim Acta 70:4813–4825

    Article  Google Scholar 

  • Becker RH, Pepin RO (1984) The case for a martian origin of the shergottites: nitrogen and noble gases in EETA 79001. Earth Planet Sci Lett 69:225–242

    Article  Google Scholar 

  • Bell DR, Buseck PR, Channon M, Hervig RL, Rieck K, Singletary SJ (2008) SIMS analysis of the isotopic composition of lithium in meteorites. Lunar Planet Sci Conf XXXIX, #2276

    Google Scholar 

  • Bernal NF, Gleeson SA, Dean AS, Liu X-M, Hoskin P (2014) The source of halogens in geothermal fluids from the Taupo Volcanic Zone, North Island. New Zealand Geochim Cosmochi Acta 126:265–283

    Article  Google Scholar 

  • Bernas R, Gradsztajn E, Reeves H, Schatzman E (1967) On the nucleosynthesis of lithium, beryllium, and boron. Ann Physics 44:426–478

    Article  Google Scholar 

  • Blichert-Toft J, Boyet M, Télouk P, Albarède F (2002) 147Sm-143Nd and 176Lu-176Hf in eucrites and the differentiation of the HED parent body. Earth Planet Sci Lett 204:167–181

    Google Scholar 

  • Bogard DD, Johnson P (1983) Martian gases in an Antarctic meteorite? Science 221:651–654

    Article  Google Scholar 

  • Borg LE, Connelly JN, Boyet M, Carlson RW (2011) Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature 477:70–72

    Article  Google Scholar 

  • Brown JA, Sneden C, Lambert DL, Dutchover E Jr (1989) A search for lithium-rich giant stars. Astrophys J Suppl 71:293–322

    Article  Google Scholar 

  • Caffau E, Bonifacio P, François P, Sbordone L, Monaco L, Spite M, Spite F, Ludwig H-G, Cayrel R, Zaggia S, Hammer F, Randich S, Molaro P, Hill V (2011) An extremely primitive star in the Galactic halo. Nature 477:67–69

    Article  Google Scholar 

  • Cameron AGW, Fowler WA (1971) Lithium and the s-process in red-giant stars. Astrophys J 164:111–114

    Article  Google Scholar 

  • Canup RM (2004) Dynamics of lunar formation. Annu Rev Astron Astrophys 42:441–475

    Article  Google Scholar 

  • Carlberg JK, Smith VV, Cunha K, Majewski SR, Rood RT (2010) The super lithium-rich red giant rapid rotator G0228 + 73.2600: a case for planet accretion? Astrophys J Lett 723:L103–L107

    Article  Google Scholar 

  • Carlson RW, Lugmair GW (1988) The age of ferroan anorthosite 60025: oldest crust on a young Moon? Earth Planet. Sci Lett 90:119–130

    Google Scholar 

  • Chaklader J, Shearer CK, Borg LE (2006) The behavior of Li and B in lunar mare basalts during crystallization, shock, and thermal metamorphism: Implications for volatile element contents of martian basalts. Am Mineral 91:1553–1564

    Article  Google Scholar 

  • Charbonnel C, Talon S (2005) Influence of gravity waves on the internal rotation and Li abundance of Solar-type stars. Science 309:2189–2191

    Article  Google Scholar 

  • Charbonnel C, Tosi M, Primas F, Chiappini C (2009) Light elements in the Universe, IAU Symposium 268. Cambridge Univ. Press, 504 pp

    Google Scholar 

  • Chaussidon M, Robert F (1998) 7Li/6Li and 11B/10B variations in chondrules from Semarkona unequilibrated chondrite. Earth Planet Sci Lett 164:577–589

    Article  Google Scholar 

  • Chaussidon M, Robert F (1999) Lithium nucleosynthesis in the Sun inferred from the solar-wind 7Li/6Li ratio. Nature 402:270–273

    Article  Google Scholar 

  • Chaussidon M, Robert F, McKeegan KD (2006) Li and B isotopic variations in an Allende CAI: Evidence for the in situ decay of short-lived 10Be and for the possible presence of the short-lived nuclide 7Be in the early solar system. Geochim Cosmochim Acta 70:224–245

    Article  Google Scholar 

  • Chennaoui Aoudjehane H, Avice G, Barrat JA, Boudouma O, Chen G, Duke MJM, Franchi IA, Gattacceca J, Grady MM, Greenwood RC, Herd CDK, Hewins R, Jambon A, Marty B, Rochette P, Smith CL, Sautter V, Verchovsky A, Weber P, Zanda B (2012) Tissint martian meteorite: a fresh look at the interior, surface, and atmosphere of Mars. Science 338:785–788

    Article  Google Scholar 

  • Coc A, Goriely S, Xu Y, Saimpert M, Vangioni E (2012) Standard Big Bang Nucleosynthesis up to CNO with an improved extended nuclear network. Astrophys J 744, paper number 158, doi: 10.1088/0004-637X/744/2/158

    Google Scholar 

  • Coc A (2013) Primordial nucleosynthesis. Acta Phys Polonica B 44:521–530

    Article  Google Scholar 

  • Coogan LA (2011) Preliminary experimental determination of the partitioning of lithium between plagioclase crystals of different anorthite contents. Lithos 125:711–715

    Article  Google Scholar 

  • Coogan LA, Kasemann SA, Chakraborty S (2005) Rates of hydrothermal cooling of new oceanic upper crust derived from lithium-geospeedometry. Earth Planet Sci Lett 240:415–424

    Article  Google Scholar 

  • Craddock PR, Dauphas N, Clayton RN (2010) Mineralogical control on iron isotopic fractionation during lunar differentiation and magmatism. 41st Lunar Planet Sci Conf, #1230

    Google Scholar 

  • Cyburt RH, Fields BD, Olive KA (2008) An update on the big bang nucleosynthesis prediction for 7Li: the problem worsens. J Cosmol Astropart Phys 11, paper number 012, doi:10.1088/1475-7516/2008/1011/1012

  • Day JMD, Taylor LA, Floss C, McSween HY (2006) Petrology and chemistry of MIL 03346 and its significance in understanding the petrogenesis of nakhlites on Mars. Meteorit Planet Sci 41:581–606

    Article  Google Scholar 

  • Day JMD, Rudnick RL, McDonough WF, Walker RJ, Taylor LA (2008) Lithium isotope constraints on magma ocean differentiation and the composition of the terrestrial planets. Lunar Planet Sci Conf XXXIX, #1072

    Google Scholar 

  • Day JMD, Walker RJ, Qin L, Rumble D (2012) Late accretion as a natural consequence of planetary growth. Nature Geosci 5:614–617

    Article  Google Scholar 

  • Delbourgo-Salvador P, Gry C, Malinie G, Audouze J (1985) Effects of nuclear uncertainties and chemical evolution on the standard big bang nucleosynthesis. Astron Astrophys 150:53–61

    Google Scholar 

  • Delgado Mena E, Bertrán de Lis S, Adibekyan VZ, Sousa SG, Figueira P, Mortier A, González Hernández JI, Tsantaki M, Israelian G, Santos NC (2015) Li abundances in F stars: planets, rotation, and Galactic evolution. Astron. Astrophys. 576, paper number A69, doi: 10.1051/0004-6361/201425433

    Google Scholar 

  • Desch SJ, Ouellette N (2006) Comment on Li and Be isotopic variations in an Allende CAI: Evidence for the in situ decay of short-lived 10Be and for the possible presence of the short-lived nuclide 7Be in the early solar system, by M. Chaussidon, F. Robert, and K.D. McKeegan Geochim Cosmochim Acta 70:5426–5432

    Article  Google Scholar 

  • Dews JR (1966) The isotopic composition of lithium in chondrules. J Geophys Res 71:4011–4020

    Article  Google Scholar 

  • Dreibus G, Spettel B, Wänke H (1976) Lithium as a correlated element, its condensation behaviour and its use to estimate the bulk composition of the moon and eucrite parent body. Proc Lunar Sci Conf 7th, 3383–3396

    Google Scholar 

  • Eugster O, Bernas R (1971) Li, B, Mg and Ti isotopic abundances and search for trapped solar wind Li in Apollo 11 and Apollo 12 material. Proc Lunar Sci Conf 2:1461–1469

    Google Scholar 

  • Fairén AG, Losa-Adams E, Gil-Lozano C, Gago-Duport L, Uceda ER, Squyres SW, Rodríguez AP, Davila AF, McKay CP (2015) Tracking the weathering of basalts on Mars using lithium isotope fractionation models. Geochem Geophys Geosys 16, doi:10.1002/2015GC005748

    Google Scholar 

  • Fehr MA, James RH, Sephton MA, Martins Z, Bland PA (2009) Primitive lithium isotope signatures in CR carbonaceous chondrites? Geochim Cosmochim Acta 73:A359

    Google Scholar 

  • Ferlet R, Dennefeld M (1984) Interstellar lithium and the 7Li/6Li ratio in diffuse clouds. Astron Astrophys 138:303–310

    Google Scholar 

  • Fields BD (2011) The primordial lithium problem. Annu Rev Nucl Particle Sci 61:47–68

    Article  Google Scholar 

  • Figueira P, Faria JP, Delgado-Mena E, Adibekyan VZ, Sousa SG, Santos NC, Israelian G (2014) Exoplanet hosts reveal lithium depletion: Results from a homogeneous statistical analysis. Astron Astrophys 570, paper number A21, doi:10.1051/0004-6361/201424218

    Google Scholar 

  • Filiberto J, Chin E, Day JMD, Franchi IA, Greenwood RC, Gross J, Penniston-Dorland SC, Schwenzer SP, Treiman AH (2012) Geochemistry of intermediate olivine-phyric shergottite Northwest Africa 6234, with similarities to basaltic shergottite Northwest Africa 480 and olivine-phyric shergottite Northwest Africa 2990. Meteorit Planet Sci 47:1256–1273

    Google Scholar 

  • Fitoussi C, Bourdon B (2012) Silicon isotope evidence against an enstatite chondrite Earth. Science 335:1477–1480

    Article  Google Scholar 

  • Fujiya W, Hoppe P, Ott U (2011) Hints for neutrino-process boron in presolar silicon carbide grains from supernovae. Astrophys J Lett 730, paper number L7, doi:10.1088/2041-8205/1730/1081/L1087

  • Garcia-Munoz M, Mason GM, Simpson JA (1975) The isotopic composition of galactic cosmic-ray lithium, beryllium, and boron. Astrophys J 201:L145–L148

    Article  Google Scholar 

  • García Pérez AE, Aoki W, Inoue S, Ryan SG, Suzuki TK, Chiba M (2009) 6Li/7Li estimates for metal-poor stars. Astron Astrophys 504:213–223

    Article  Google Scholar 

  • Garner EL, Machlan LA, Barnes IL (1975) The isotopic composition of lithium, potassium, and rubidium in some Apollo 11, 12, 14, 15, and 16 samples. Proc Lunar Sci Conf 6th, 1845–1855

    Google Scholar 

  • Ghezzi L, Cunha K, Smith VV, Margheim S, Schuler S, de Araújo FX, de la Reza R (2009) Measurements of the isotopic ratio 6Li/7Li in stars with planets. Astrophys J 698:451–460

    Article  Google Scholar 

  • Giguere TA, Taylor GJ, Hawke BR, Lucey PG (2000) The titanium contents of lunar mare basalts. Meteorit Planet Sci 35:193–200

    Article  Google Scholar 

  • Gradsztajn E, Salome M, Yaniv A, Bernas R (1967) Isotopic analysis of lithium in the Holbrook meteorite and in terrestrial samples with a sputtering ion source mass spectrometer. Earth Planet Sci Lett 3:387–393

    Article  Google Scholar 

  • Greenwood RC, Franchi IA, Jambon A, Buchanan PC (2005) Widespread magma oceans on asteroidal bodies in the early Solar System. Nature 435:916–918

    Article  Google Scholar 

  • Gyngard F, Amari S, Zinner E, Ott U (2009) Interstellar exposure ages of large presolar SiC grains from the Murchison meteorite. Astrophys J 694:359–366

    Article  Google Scholar 

  • Hammache F, Heil M, Typel S, Galaviz D, Sümmerer K, Coc A, Uhlig F, Attalah F, Caamano M, Cortina D, Geissel H, Hellström M, Iwasa N, Kiener J, Koczon P, Kohlmeyer B, Mohr P, Schwab E, Schwarz K, Schümann F, Senger P, Sorlin O, Tatischeff V, Thibaud JP, Vangioni EAW, Walus W (2010) High-energy breakup of 6Li as a tool to study the Big Bang nucleosynthesis reaction 2H(α, γ)6Li. Phys Rev C 82, paper number 065803, doi:065810.061103/PhysRevC.065882.065803

    Google Scholar 

  • Hanon P, Chaussidon M, Robert F (1999) Distribution of lithium, beryllium, and boron in meteoritic chondrules. Meteorit Planet Sci 34:247–258

    Article  Google Scholar 

  • Hauri EH, Weinreich T, Saal AE, Rutherford MC, Van Orman JA (2011) High pre-eruptive water contents preserved in lunar melt inclusions. Science 333:213–215

    Article  Google Scholar 

  • Herd CDK, Treiman AH, McKay GA, Shearer CK (2004) The behavior of Li and B during planetary basalt crystallization. Am Mineral 89:832–840

    Article  Google Scholar 

  • Herd CDK, Treiman AH, McKay GA, Shearer CK (2005) Light lithophile elements in martian basalts: evaluating the evidence for magmatic water degassing. Geochim Cosmochim Acta 69:2431–2440

    Article  Google Scholar 

  • Hobbs LM, Thorburn JA (1994) Lithium isotope ratios in six halo stars. Astrophys J 428:L25–L28

    Article  Google Scholar 

  • Hobbs LM, Thorburn JA, Rebull LM (1999) Lithium isotope ratios in halo stars III. Astrophys J 523:797–804

    Article  Google Scholar 

  • Howk JC, Lehner N, Fields BD, Mathews GJ (2012) Observation of interstellar lithium in the low-metallicity Small Magellanic Cloud. Nature 489:121–123

    Article  Google Scholar 

  • Humayun M, Nemchin A, Zanda B, Hewins RH, Grange M, Kennedy A, Lorand J-P, Göpel C, Fieni C, Pont S, Deldicque D (2013) Origin and age of the earliest Martian crust from meteorite NWA7533. Nature 503:513–516

    Article  Google Scholar 

  • Iocco F, Mangano G, Miele G, Pisanti O, Serpico PD (2009) Primordial nucleosynthesis: from precision cosmology to fundamental physics. Phys Reports 472:1–76

    Article  Google Scholar 

  • Irving AJ, Kuehner SM, Bunch TE, Ziegler K, Chen G, Herd CDK, Conrey RM, Ralew S (2013) Ungrouped mafic achondrite Northwest Africa 7325: a reduced, iron-poor cumulate olivine gabbro from a differentiated planetary parent body. 44th Lunar Planet Sci Conf, #2164

    Google Scholar 

  • Israelian G, Delgado Mena E, Santos NC, Sousa SG, Mayor M, Udry S, Domínguez Cerdeña C, Rebolo R, Randich S (2009) Enhanced lithium depletion in Sun-like stars with orbiting planets. Nature 462:189–191

    Article  Google Scholar 

  • Jaeger M, Wilmes S, Kölle V, Staudt G, Mohr P (1996) Precision measurement of the half-life of 7Be. Phys Rev C 54:423–424

    Article  Google Scholar 

  • James RH, Palmer MR (2000) The lithium isotope composition of international rock standards. Chem Geol 166:319–326

    Google Scholar 

  • Javoy M, Kaminski E, Guyot F, Andrault D, Sanloup C, Moreira M, Labrosse S, Jambon A, Agrinier P, Davaille A, Jaupart C (2010) The chemical composition of the Earth: Enstatite chondrite models. Earth Planet Sci Lett 293:259–268

    Article  Google Scholar 

  • Jeffcoate AB, Elliott T, Kasemann SA, Ionov D, Cooper KM (2007) Li isotope fractionation in peridotites and mafic melts. Geochim Cosmochim Acta 71:202–218

    Article  Google Scholar 

  • Jerde EA, Snyder GA, Taylor LA, Liu Y-G, Schmitt RA (1994) The origin and evolution of lunar high-Ti basalts: Periodic melting of a single source at Mare Tranquillitatis. Geochim Cosmochim Acta 58:515–527

    Article  Google Scholar 

  • Kawanomoto S, Kajino T, Aoki W, Bessel M, Suzuki TK, Ando H, Noguchi K, Honda S, Izumiura H, Kambe E, Okita K, Sadakane K, Sato B, Tajitsu A, Takada-Hidai M, Tanaka W, Watanabe E, Yoshida M (2009) The new detections of 7Li/6Li isotopic ratio in the interstellar media. Astrophys J 701:1506–1518

    Article  Google Scholar 

  • Kleine T, Mezger K, Münker C, Palme H, Bischoff A (2004) 182Hf-182W isotope systematics of chondrites, eucrites, and martian meteorites: Chronology of core formation and early mantle differentiation in Vesta and Mars. Geochim Cosmochim Acta 68:2935–2946

    Article  Google Scholar 

  • Knauth DC, Federman SR, Lambert DL (2003) An ultra-high-resolution survey of the interstellar 7Li/6Li isotope ratio in the solar neighborhood. Astrophys J 586:268–285

    Article  Google Scholar 

  • Knauth DC, Federman SR, Lambert DL, Crane P (2000) Newly synthesized lithium in the interstellar medium. Nature 405:656–658

    Article  Google Scholar 

  • Koch A, Lind K, Rich RM (2011) Discovery of a super-Li-rich turnoff star in the metal-poor globular cluster NGC 6397. Astrophys J Lett 738:L29

    Article  Google Scholar 

  • Krankowsky D, Müller O (1964) Isotopenhäufigkeit und Konzentration des Lithiums in Steinmeteoriten. Geochim Cosmochim Acta 28:1625–1630

    Article  Google Scholar 

  • Krankowsky D, Müller O (1967) Isotopic composition and abundance of lithium in meteoritic matter. Geochim Cosmochim Acta 31:1833–1842

    Article  Google Scholar 

  • Krot AN, Keil K, Scott ERD, Goodrich CA, Weisberg MK (2014) Classification of meteorites and their genetic relationships. In: Davis AM (ed.), Treatise on Geochemistry, Vol 1, 2nd edition. Elsevier Ltd., Oxford UK, pp. 1–63

    Google Scholar 

  • Kumar YB, Reddy BE, Lambert DL (2011) Origin of lithium enrichment in K giants. Astrophys J Lett 730:L12

    Article  Google Scholar 

  • Lapen TJ, Righter M, Brandon AD, Debaille V, Beard BL, Shafer JT, Peslier AH (2010) A younger age for ALH84001 and its geochemical link to shergottite sources in Mars. Science 328:347–351

    Article  Google Scholar 

  • Lemoine M, Ferlet R, Vidal-Madjar A, Emerich C, Bertin P (1993) Interstellar lithum and the 7Li/6Li ratio toward ρ Oph. Astron Astrophys 269:469–476

    Google Scholar 

  • Lentz RCF, McSween HY, Ryan J, Riciputi LR (2001) Water in martian magmas: clues from light lithophile elements in shergottite and nakhlite pyroxenes. Geochim Cosmochim Acta 65:4551–4565

    Article  Google Scholar 

  • Leya I (2011) Cosmogenic effects on 7Li/6Li, 10B/11B, and 182W/184W in CAIs from carbonaceous chondrites. Geochim Cosmochim Acta 75:1507–1518

    Article  Google Scholar 

  • Lind K, Melendez J, Asplund M, Collet R, Magic Z (2013) The lithium isotopic ratio in very metal-poor stars. Astron Astrophys 554, paper number A96, doi:10.1051/0004-6361/201321406

    Google Scholar 

  • Liu Y, Spicuzza MJ, Craddock PR, Day JMD, Valley JW, Dauphas N, Taylor LA (2010) Oxygen and iron isotope constraints on near-surface fractionation effects and the composition of lunar mare basalt source regions. Geochim Cosmochim Acta 74:6249–6262

    Article  Google Scholar 

  • Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591:1220–1247

    Article  Google Scholar 

  • Longhi J (1992) Origin of picritic green glass magmas by polybaric fractional fusion. Proc Lunar Planet Sci Conf 22:343–353

    Google Scholar 

  • Lundstrom CC, Chaussidon M, Hsui AT, Kelemen P, Zimmerman M (2005) Observations of Li isotopic variations in the Trinity Ophiolite: Evidence for isotopic fractionation by diffusion during mantle melting. Geochim Cosmochim Acta 69:735–751

    Article  Google Scholar 

  • Lyon IC, Tizard JM, Henkel T (2007) Evidence for lithium and boron from star-forming regions implanted in presolar SiC grains. Meteorit Planet Sci 42:373–385

    Article  Google Scholar 

  • Magna T, Neal CR (2011) Lithium isotope composition of lunar crust—rapid crystallization and post-solidification quiescence? Mineral Mag 75:A1385

    Google Scholar 

  • Magna T, Wiechert U, Halliday AN (2006) New constraints on the lithium isotope compositions of the Moon and terrestrial planets. Earth Planet Sci Lett 243:336–353

    Article  Google Scholar 

  • Magna T, Šimčíková M, Moynier F (2014a) Lithium systematics in howardite–eucrite–diogenite meteorites: Implications for crust–mantle evolution of planetary embryos. Geochim Cosmochim Acta 125:131–145

    Article  Google Scholar 

  • Magna T, Žák K, Farkaš J, Trubač J, Rodovská Z, Šimeček M, Skála R, Řanda Z, Mizera J (2014b): Lithium and magnesium isotopes in sediments of the Ries area: Constraints on the sources of moldavite tektites. Meteorit Planet Sci 49:A254

    Google Scholar 

  • Magna T, Neal CR, Tomascak PB, Bourdon B, Oberli F, Day JMD (2009) On lithium isotope systematics and abundances in lunar mare basalts. Geochim Cosmochim Acta 73:A816

    Google Scholar 

  • Magna T, Deutsch A, Mezger K, Skála R, Seitz H-M, Mizera J, Řanda Z, Adolph L (2011) Lithium in tektites and impact glasses: Implications for sources, histories and large impacts. Geochim Cosmochim Acta 75:2137–2158

    Google Scholar 

  • Magna T, Day JMD, Mezger K, Fehr MA, Dohmen R, Chennaoui Aoudjehane H, Agee C (2015) Lithium isotope constraints on crust-mantle interactions and surface processes on Mars. Geochim Cosmochim Acta 162:46–65

    Article  Google Scholar 

  • Maruyama S, Watanabe M, Kunihiro T, Nakamura E (2009) Elemental and isotopic abundances of lithium in chondrule constituents in the Allende meteorite. Geochim Cosmochim Acta 73:778–793

    Article  Google Scholar 

  • Maurice E, Spite F, Spite M (1984) The lithium isotope ratio in metal-deficient stars. Astron Astrophys 132:278–282

    Google Scholar 

  • McCubbin FM, Elardo SM, Shearer CK, Smirnov A, Hauri EH, Draper DS (2013) A petrogenetic model for the comagmatic origin of chassignites and nakhlites: Inferences from chlorine-rich minerals, petrology, and geochemistry. Meteorit Planet Sci 48:819–853

    Article  Google Scholar 

  • McCubbin FM, Hauri EH, Elardo SM, Vander Kaaden KE, Wang J, Shearer CK (2012) Hydrous melting of the martian mantle produced both depleted and enriched shergottites. Geology 40:683–686

    Article  Google Scholar 

  • McDonough WF, Teng F-Z, Rudnick RL, Ash RD (2006) Lithium isotopic analyses of chondrites and chondrules. Lunar Planet Sci XXXVII, #2416

    Google Scholar 

  • McDonough WF, Teng F-Z, Tomascak PB, Ash RD, Grossman JN, Rudnick RL (2003) Lithium isotopic composition of chondritic meteorites. Lunar Planet Sci XXXIV, #1931

    Google Scholar 

  • McKay DS, Gibson EK Jr, Thomas-Keprta KL, Vali H, Romanek CS, Clemett SJ, Chillier XDF, Maechling CR, Zare RN (1996) Search for past life on Mars: possible relic biogenic activity in Martian Meteorite ALH84001. Science 273:924–930

    Article  Google Scholar 

  • McSween HY, Taylor GJ, Wyatt MB (2009) Elemental composition of the Martian crust. Science 324:736–739

    Article  Google Scholar 

  • McSween HY, Grove TL, Lentz RCF, Dann JC, Holzheid AH, Riciputi LR, Ryan JG (2001) Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite. Nature 409:487–490

    Article  Google Scholar 

  • Meneguzzi M, Audouze J, Reeves H (1971) The production of the elements Li, Be, B by Galactic Cosmic Rays in space and its relation with stellar observations. Astron Astrophys 15:337–359

    Google Scholar 

  • Meyer DM, Hawkins I, Wright EL (1993) The interstellar 7Li/6Li isotope ratio towards ζ Ophiuchi and ζ Persei. Astrophys J 409:L61–L64

    Article  Google Scholar 

  • Millot R, Hegan A, Négrel P (2012) Geothermal waters from the Taupo Volcanic Zone, New Zealand: Li, B and Sr isotopes characterization. Appl Geochem 27:677–688

    Article  Google Scholar 

  • Monaco L, Villanova S, Moni Bidin C, Carraro G, Geisler D, Bonifacio P, Gonzalez OA, Zoccali M, Jilkova L (2011) Lithium-rich giants in the Galactic thick disk. Astron Astrophys 529:A90, doi:10.1051/0004-6361/201016285

    Google Scholar 

  • Murty SVS, Shukla PN, Goel PS (1982) Non-cosmogenic lithium-6 in iron meteorites. Earth Planet Sci Lett 60:1–7

    Article  Google Scholar 

  • Murty SVS, Shukla PN, Goel PS (1983) Lithium in stone meteorites and stony irons. Meteoritics 18:123–136

    Article  Google Scholar 

  • Neal CR, Taylor LA (1989) The nature of barium partitioning between immiscible melts: a comparison of experimental and natural systems with reference to lunar granite petrogenesis. Proc Lunar Planet Sci Conf 19:209–218

    Google Scholar 

  • Nichiporuk W, Moore CB (1970) Lithium in chondritic meteorites. Earth Planet Sci Lett 9:280–286

    Article  Google Scholar 

  • Nichiporuk W, Moore CB (1974) Lithium, sodium and potassium abundance in carbonaceous chondrites. Geochim Cosmochim Acta 38:1691–1701

    Article  Google Scholar 

  • Nissen PE, Lambert DL, Primas F, Smith VV (1999) Isotopic lithium abundances in five metal-poor disk stars. Astron Astrophys 348:211–221

    Google Scholar 

  • Nollett KM, Lemoine M, Schramm DN (1997) Nuclear reaction rates and primordial 6Li. Phys Rev C 56:1144–1150

    Article  Google Scholar 

  • Norman MD, Taylor SR (1992) Geochemistry of lunar crustal rocks from breccia 67016 and the composition of the Moon. Geochim Cosmochim Acta 56:1013–1024

    Article  Google Scholar 

  • Nyquist LE, Bogard DD, Shih C-Y, Greshake A, Stöffler D, Eugster O (2001) Ages and geologic histories of Martian meteorites. Space Sci Rev 96:105–164

    Article  Google Scholar 

  • Nyquist LE, Bogard DD, Shih C-Y, Park J, Reese YD, Irving AJ (2009) Concordant Rb–Sr, Sm–Nd, and Ar–Ar ages for Northwest Africa 1460: a 346 Ma old basaltic shergottite related to ‘‘lherzolitic” shergottites. Geochim Cosmochim Acta 73:4288–4309

    Article  Google Scholar 

  • Nyquist LE, Shih C-Y, Peng ZX, Agee C (2013) NWA 7034 Martian breccia: disturbed Rb-Sr systematics, preliminary ~4.4 Ga Sm-Nd age. Meteorit Planet Sci 48:A208

    Google Scholar 

  • Ollila AM, Newsom HE, Clark B, Wiens RC, Cousin A, Blank JG, Mangold N, Sautter V, Maurice S, Clegg SM, Gasnault O, Forni O, Tokar R, Lewin E, Darby Dyar M, Lasue J, Anderson R, McLennan SM, Bridges J, Vaniman D, Lanza N, Fabre C, Melikechi N, Perrett G M, Campbell JL, King PL, Barraclough B, Delapp D, Johnstone S, Meslin P-Y, Rosen-Gooding A, Williams J, MSL Science Team (2014) Trace element geochemistry (Li, Ba, Sr, and Rb) using Curiosity’s ChemCam: early results for Gale crater from Bradbury Landing Site to Rocknest. J Geophys Res Planets 119:255–285

    Google Scholar 

  • Pahlevan K, Stevenson DJ (2007) Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet Sci Lett 262:438–449

    Article  Google Scholar 

  • Palme H, O’Neill HSC (2014) Cosmochemical estimates of mantle composition. In: Carlson RW (ed) Treatise on Geochemistry, vol 3, 2nd edn. Elsevier Ltd., Oxford, UK, pp 1–39

    Google Scholar 

  • Palme C, Lodders K, Jones A (2014) Solar System abundances of the elements. In: Davis AM (ed.), Treatise on Geochemistry, vol 1, 2nd edition. Elsevier Ltd., Oxford, UK, pp. 15–36

    Google Scholar 

  • Paniello RC, Moynier F, Beck P, Barrat JA, Podosek FA, Pichat S (2012) Zinc isotopes in HEDs: Clues to the formation of 4-Vesta, and the unique composition of Pecora Escarpment 82502. Geochim Cosmochim Acta 86:76–87

    Article  Google Scholar 

  • Parkinson IJ, Hammond SJ, James RH, Rogers NW (2007) High-temperature lithium isotope fractionation: insights from lithium isotope diffusion in magmatic systems. Earth Planet Sci Lett 257:609–621

    Article  Google Scholar 

  • Piau L (2008) Lithium isotopes in Population II dwarfs. Astrophys J 689:1279–1288

    Article  Google Scholar 

  • Pogge von Strandmann PAE, Elliott T, Marschall HR, Coath C, Lai Y-J, Jeffcoate AB, Ionov DA (2011) Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths. Geochim Cosmochim Acta 75:5247–5268

    Article  Google Scholar 

  • Poitrasson F, Halliday AN, Lee D-C, Levasseur S, Teutsch N (2004) Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms. Earth Planet Sci Lett 223:253–266

    Article  Google Scholar 

  • Poschenrieder WP, Herzog RF, Barrington AE (1965) The relative abundance of the lithium isotopes in the Holbrook meteorite. Geochim Cosmochim Acta 29:1193–1195

    Article  Google Scholar 

  • Prantzos N (2012) Production and evolution of Li, Be, and B isotopes in the Galaxy. Astron Astrophys 542, paper number A67, doi:10.1051/0004-6361/201219043

    Google Scholar 

  • Pringle EA, Savage PS, Badro J, Barrat JA, Moynier F (2013) Redox state during core formation on asteroid 4-Vesta. Earth Planet Sci Lett 373:75–82

    Article  Google Scholar 

  • Rajan RS, Brown L, Tera F, Whitford DJ (1980) Lithium isotopic composition in some stone meteorites. Earth Planet Sci Lett 51:41–44

    Article  Google Scholar 

  • Ramírez I, Fish JR, Lambert DL, Allende Prieto C (2012) Lithium abundances in nearby FGK dwarf and subgiant stars: Internal destruction, Galactic chemical evolution, and exoplanets. Astrophys J 756, paper number 46, doi:10.1088/0004-1637X/1756/1081/1046

  • Reeves H (1994) On the origin of the light elements (Z < 6). Rev Modern Phys 66:193–216

    Article  Google Scholar 

  • Reynolds VS, McSween Jr HY, McDonough WF, McCoy T (2006) Lithium isotopes in basaltic shergottites: evidence for a hydrated assimilant. Lunar Planet Sci XXXVII, #2206

    Google Scholar 

  • Ritzenhoff S, Schröter EH, Schmidt W (1997) The lithium abundances in sunspots. Astron Astrophys 328:695–701

    Google Scholar 

  • Robert F, Chaussidon M (2003) Boron and lithium isotopic composition in chondrules from the Mokoia meteorite. Lunar Planet Sci Conf XXXIV, #1344

    Google Scholar 

  • Romano D, Matteucci F, Ventura P, D’Antona F (2001) The stellar origin of 7Li. Do AGB stars contribute a substantial fraction of the local Galactic lithium abundance? Astron Astrophys 374:646–655

    Article  Google Scholar 

  • Ryan SG, Beers TC, Olive KA, Fields BD, Norris JE (2000) Primordial lithium and Big Bang Nucleosynthesis. Astrophys J 530:L57–L60

    Article  Google Scholar 

  • Saal AE, Hauri EH, Lo Cascio M, Van Orman JA, Rutherford MC, Cooper RF (2008) Volatile content of lunar volcanic glasses and the presence of water in the Moon´s interior. Nature 454:192–196

    Article  Google Scholar 

  • Sbordone L, Bonifacio P, Caffau E, Ludwig H-G, Behara NT, González Hernández JI, Steffen M, Cayrel R, Freytag B, Van’t Veer C, Molaro P, Plez B, Sivarani T, Spite M, Spite F, Beers TC, Christlieb N, François P, Hill V (2010) The metal-poor end of the Spite plateau. I. Stellar parameters, metallicities, and lithium abundances. Astron Astrophys 522, A26, doi: 10.1051/0004-6361/200913282

    Google Scholar 

  • Scalo JM (1976) Production of Galactic 7Li by slow mass loss. Astrophys J 206:795–799

    Article  Google Scholar 

  • Scott ERD, Greenwood RC, Franchi IA, Sanders IS (2009) Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites. Geochim Cosmochim Acta 73:5835–5853

    Article  Google Scholar 

  • Sedaghatpour F, Teng F-Z, Liu Y, Sears DWG, Taylor LA (2013) Magnesium isotopic composition of the Moon. Geochim Cosmochim Acta 120:1–19

    Article  Google Scholar 

  • Seitz H-M, Brey GP, Weyer S, Durali S, Ott U, Münker C, Mezger K (2006) Lithium isotope compositions of Martian and lunar reservoirs. Earth Planet Sci Lett 245:6–18

    Article  Google Scholar 

  • Seitz H-M, Brey GP, Zipfel J, Ott U, Weyer S, Durali S, Weinbruch S (2007) Lithium isotope composition of ordinary and carbonaceous chondrites, and differentiated planetary bodies: Bulk solar system and solar reservoirs. Earth Planet Sci Lett 260:582–596

    Article  Google Scholar 

  • Seitz H-M, Zipfel J, Brey GP, Ott U (2012) Lithium isotope compositions of chondrules, CAI and a dark inclusion from Allende and ordinary chondrites. Earth Planet Sci Lett 329–330:51–59

    Article  Google Scholar 

  • Sephton MA, James RH, Bland PA (2004) Lithium isotope analyses of inorganic constituents from the Murchison meteorite. Astrophys J 612:588–591

    Article  Google Scholar 

  • Sephton MA, James RH, Zolensky ME (2006) The origin of dark inclusions in Allende: new evidence from lithium isotopes. Meteorit Planet Sci 41:1039–1043

    Article  Google Scholar 

  • Sephton MA, James RH, Fehr MA, Bland PA, Gounelle M (2013) Lithium isotopes as indicators of meteorite parent body alteration. Meteorit Planet Sci 48:872–878

    Article  Google Scholar 

  • Sharp ZD, Shearer CK, McKeegan KD, Barnes JD, Wang YQ (2010) The chlorine isotope composition of the Moon and implications for an anhydrous mantle. Science 329:1050–1053

    Article  Google Scholar 

  • Shearer CK, Layne GD, Papike JJ (1994) The systematics of light lithophile elements (Li, Be and B) in lunar picritic glasses: implications for basaltic magmatism on the Moon and the origin of the Moon. Geochim Cosmochim Acta 58:5349–5362

    Article  Google Scholar 

  • Shearer CK, Hess PC, Wieczorek MA, Pritchard ME, Parmentier EM, Borg LE, Longhi J, Elkins-Tanton LT, Neal CR, Antonenko I, Canup RM, Halliday AN, Grove TL, Hager BH, Lee D-C, Wiechert U (2006) Thermal and magmatic evolution of the Moon. Rev Mineral Geochem 60:365–518

    Article  Google Scholar 

  • Shima M, Honda M (1966) Distribution and isotopic composition of lithium in stone meteorites. Geochem J 1:27–34

    Article  Google Scholar 

  • Schönbächler M, Baker RGA, Williams H, Halliday AN, Rehkämper M (2008) The cadmium isotope composition of chondrites and eucrites. Meteorit Planet Sci 43:A139

    Google Scholar 

  • Singletary SJ, Bell DR, Buseck PR (2008) SIMS analysis of ureilite lithium isotopic composition. Lunar Planet Sci Conf XXXIX, #2217

    Google Scholar 

  • Smith VV, Plez B, Lambert DL, Lubowich DA (1995) A survey of lithium in the red giants of the Magellanic Clouds. Astrophys J 441:735–746

    Article  Google Scholar 

  • Snyder GA, Neal CR, Taylor RA, Halliday AN (1997) Anatexis of lunar cumulate mantle in time and space: Clues from trace element, strontium and neodymium isotopic chemistry of parental Apollo 12 basalts. Geochim Cosmochim Acta 61:2731–2747

    Article  Google Scholar 

  • Snyder GA, Taylor LA, Neal CR (1992) A chemical model for generating the sources of mare basalts: combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim Cosmochim Acta 56:3809–3823

    Article  Google Scholar 

  • Spicuzza MJ, Day JMD, Taylor LA, Valley JW (2007) Oxygen isotope constraints on the origin and differentiation of the Moon. Earth Planet Sci Lett 253:254–265

    Article  Google Scholar 

  • Spite F, Spite M (1982) Abundance of lithium in unevolved halo stars and old disk stars: interpretation and consequences. Astron Astrophys 115:357–366

    Google Scholar 

  • Sprague AL, Hunten DM, Grosse FA (1996) Upper limit for lithium in Mercury’s atmosphere. Icarus 123:345–349

    Article  Google Scholar 

  • Steele IM, Hutcheon ID, Smith JV (1980) Ion microprobe analysis and petrogenetic interpretations of Li, Mg, Ti, K, Sr, Ba in lunar plagioclase. Proc Lunar Planet Sci Conf 11:571–590

    Google Scholar 

  • Steigman G (1993) The significance of the interstellar 7Li/6Li ratio. Astrophys J 413:L73–L76

    Article  Google Scholar 

  • Steigman G, Walker TP (1992) Production of Li, Be, and B in the early Galaxy. Astrophys J 385:L13–L16

    Article  Google Scholar 

  • Stolper EM, Baker MB, Newcombe ME, Schmidt ME, Treiman AH, Cousin A, Dyar MD, Fisk MR, Gellert R, King PL, Leshin L, Maurice S, McLennan SM, Minitti ME, Perrett G, Rowland S, Sautter V, Wiens RC, MSL Science Team (2013) The petrochemistry of Jake_M: A martian mugearite. Science 341, paper number: 1239463. doi:10.1231126/science.1239463

  • Sturchio NC, Chan LH (2003) Lithium isotope geochemistry of the Yellowstone hydrothermal system. Soc Econ Geol Spec Publ 10:171–180

    Google Scholar 

  • Tajitsu A, Sadakane K, Naito H, Arai A, Aoki W (2015) Explosive lithium production in the classical nova V339 Del (Nova Delphini 2013). Nature 518:381–384

    Article  Google Scholar 

  • Taylor SR (1982) Planetary science: a lunar perspective. Lunar Planet Inst, Houston, USA, 502 pp

    Google Scholar 

  • Taylor SR, Jakeš P (1974) The geochemical evolution of the moon. Proc Lunar Sci Conf 5:1287–1305

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, UK, 312 pp

    Google Scholar 

  • Taylor SR, McLennan SM (2009) Planetary crusts: their composition, origin, and evolution. Cambridge University Press, Cambridge, UK, 378 pp

    Google Scholar 

  • Teng F-Z, McDonough WF, Rudnick RL, Dalpé C, Tomascak PB, Chappell BW, Gao S (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochim Cosmochim Acta 68:4167–4178

    Article  Google Scholar 

  • Tera F, Eugster O, Burnett DS, Wasserburg GJ (1970) Comparative study of Li, Na, K, Rb, Cs, Ca, Sr and Ba abundances in achondrites and in Apollo 11 lunar samples. Proc Apollo 11 Lunar Sci Conf, 1637–1657

    Google Scholar 

  • Tomascak PB, Tera F, Helz RT, Walker RJ (1999) The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS. Geochim Cosmochim Acta 63:907–910

    Article  Google Scholar 

  • Vangioni-Flam E, Casse M, Audouze J (2000) Lithium-beryllium-boron: origin and evolution. Phys Reports 333–334:365–387

    Article  Google Scholar 

  • Vangioni-Flam E, Casse M, Cayrel R, Audouze J, Spite M, Spite F (1999) Lithium-6: evolution from Big Bang to present. New Astron 4:245–254

    Article  Google Scholar 

  • Wallerstein G, Sneden C (1982) A K giant with unusually high abundance of lithium: HD 112127. Astrophys J 255:577–584

    Article  Google Scholar 

  • Wang K, Moynier F, Dauphas N, Barrat JA, Craddock P, Sio CK (2012) Iron isotope fractionation in planetary crusts. Geochim Cosmochim Acta 89:31–45

    Article  Google Scholar 

  • Warren PH (2011) Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth Planet Sci Lett 311:93–100

    Article  Google Scholar 

  • Warren PH, Wasson JT (1979) The origin of KREEP. Rev Geophys Space Phys 17:73–88

    Article  Google Scholar 

  • Webber WR, Lukasiak A, McDonald FB (2002) Voyager measurements of the charge and isotopic composition of cosmic ray Li, Be, and B nuclei and implications for their production in the Galaxy. Astrophys J 568:210–215

    Article  Google Scholar 

  • Wiechert UH, Halliday AN, Palme H, Rumble D (2004) Oxygen isotope evidence for rapid mixing of the HED meteorite parent body. Earth Planet Sci Lett 221:373–382

    Article  Google Scholar 

  • Woosley SE, Hartmann DH, Hoffman RD, Haxton WC (1990) The neutrino-process. Astrophys J 356:272–301

    Article  Google Scholar 

  • Yanagita S, Gensho R (1977) Isotopic composition of lithium in the Allende meteorite. Geochem J 11:41–44

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. Tomascak .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tomascak, P.B., Magna, T., Dohmen, R. (2016). Cosmochemistry of Lithium. In: Advances in Lithium Isotope Geochemistry. Advances in Isotope Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-01430-2_3

Download citation

Publish with us

Policies and ethics