Skip to main content

Lithium in the Deep Earth: Mantle and Crustal Systems

  • Chapter
  • First Online:
Advances in Lithium Isotope Geochemistry

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

Chapter 5 summarizes the current status of Li isotopic research in the Earth's mantle and derivative melts as well as magmatic and metamorphic rocks of Earth's crust. During the last decade a number of studies investigated samples from a range of settings and there is now better understanding of processes which drive Li isotopic fractionations at magmatic to sub-magmatic temperatures. Although this endeavor into the inner Earth is far from complete, comprehension of processes taking place in the mantle, during mantle melting, metasomatism, large-scale volcanism, and formation of crust has in recent years substantially increased. We focus on these major Earth reservoirs where Li predominantly resides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelfadil KM, Romer RL, Glodny J (2014) Mantle wedge metasomatism revealed by Li isotopes in orogenic lamprophyres. Lithos 196–197:14–26

    Article  Google Scholar 

  • Ackerman L, Špaček P, Magna T, Ulrych J, Svojtka M, Hegner E, Balogh K (2013) Alkaline and carbonate-rich melt metasomatism and melting of subcontinental Lithospheric mantle: evidence from mantle Xenoliths, NE Bavaria, Bohemian Massif. J Petrol 54:2597–2633

    Article  Google Scholar 

  • Ackerman L, Ulrych J, Řanda Z, Erban V, Hegner E, Magna T, Balogh K, Frána J, Lang M, Novák JK (2015) Geochemical characteristics and petrogenesis of phonolites and trachytic rocks from the České Středohoří Volcanic Complex, the Ohře Rift, Bohemian Massif. Lithos 224–225:256–271

    Article  Google Scholar 

  • Agostini S, Ryan JG, Tonarini S, Innocenti F (2008) Drying and dying of a subducted slab: coupled Li and B isotope variations in Western Anatolia Cenozoic Volcanism. Earth Planet Sci Lett 272:139–147

    Article  Google Scholar 

  • Aulbach S, Rudnick RL, McDonough WF, (2008) Li–Sr–Nd Isotope Signatures of the Plume and Cratonic Lithospheric Mantle Beneath the Margin of the Rifted Tanzanian Craton (Labait). Contrib Mineral Petrol 155:79–92

    Google Scholar 

  • Aulbach S, Rudnick RL, (2009) Origins of non-equilibrium lithium isotopic fractionation in xenolithic peridotite minerals: examples from Tanzania. Chem Geol 258:17–27

    Google Scholar 

  • Barbarin B (1999) A review of the relationship between granitoid types, their origins and their geodynamic environments. Lithos 46:605–626

    Google Scholar 

  • Barnes EM, Weis D, and Groat LA (2012) Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada. Lithos 132/133:21–36

    Google Scholar 

  • Barry PH, Hilton DR, Day JMD, Pernet-Fisher JF, Howarth GH, Magna T, Agashev AM, Pokhilenko NP, Pokhilenko LN, Taylor LA (2015) Helium isotopic evidence for modification of the cratonic lithosphere during the Permo-Triassic Siberian flood basalt event. Lithos 216–217:73–80

    Article  Google Scholar 

  • Bell DR, Hervig RL, Buseck PR, Aulbach S (2009) Lithium isotope analysis of olivine by SIMS: Calibration of a matrix effect and application to magmatic phenocrysts. Chem Geol 258:5–16

    Google Scholar 

  • Bell K (1989) Carbonatites: genesis and evolution. Unwin Hyman, London, 618 pp

    Google Scholar 

  • Bell K (1998) Radiogenic isotope constraints on relationships between carbonatites and associated silicate rocks. J Petrol 39:1987–1996

    Article  Google Scholar 

  • Bell K, Simonetti A (1996) Carbonatite magmatism and plume activity: implications from the Nd, Pb and Sr isotope systematics of Oldoinyo Lengai. J Petrol 37:1321–1339

    Article  Google Scholar 

  • Benton LD, Ryan JG, Savov IP (2004) Lithium abundance and isotope systematics of forearc serpentinites, Conical Seamount, Mariana forearc: insights into the mechanics of slab-mantle exchange during subduction. Geochem Geophys Geosys 5, paper number Q08J12. doi:10.1029/2004GC000708

  • Berger G, Schott J, Guy C (1988) Behavior of Li, Rb and Cs during basalt glass and olivine dissolution and chlorite, smectite and zeolite precipitation from seawater: experimental investigations and modelization between 50 and 300 °C. Chem Geol 71:297–312

    Article  Google Scholar 

  • Bizimis M, Salters VJM, Dawson JB (2003) The brevity of carbonatite sources in the mantle: evidence from Hf isotopes. Contrib Mineral Petrol 145:281–300

    Article  Google Scholar 

  • Blusztajn J, Hart SR, (1989) Sr, Nd and Pb isotopic character of Tertiary basalts from southwest Poland. Geochim Cosmochim Acta 53:2689–2696

    Google Scholar 

  • Bottomley DJ, Chan LH, Katz A, Starinsky A and Clark ID (2003) Lithium Isotope Geochemistry and Origin of Canadian Shield Brines. Groundwater, 41:847–856

    Google Scholar 

  • Bouman C, Elliott T, Vroon PZ (2004) Lithium inputs to subduction zones. Chem Geol 212:59–79

    Article  Google Scholar 

  • Bouman C, Elliott TR, Vroon PZ, Pearson DG (2000) Li isotope evolution of the mantle from analyses of mantle xenoliths. J Conf Abstr 5:239

    Google Scholar 

  • Bouvier A-S, Métrich N, Deloule E (2008) Slab-derived fluids in magma sources of St. Vincent (Lesser Antilles Arc): volatile and light element imprints. J Petrol 49:1427–1448

    Article  Google Scholar 

  • Bradley D, McCauley A (2013) A preliminary deposit model for lithium-cesium-tantalum (LCT) pegmatites. U.S. Geol Surv Open-File Report 2013-1008, 7 pp

    Google Scholar 

  • Brant C, Coogan LA, Gillis KM, Seyfried WE, Pester NJ, Spence J (2012) Lithium and Li-isotopes in young altered upper oceanic crust from the East Pacific Rise. Geochim Cosmochim Acta 96:272–293

    Google Scholar 

  • Brenan JM, Neroda E, Lundstrom CC, Shaw HF, Ryerson FJ, Phinney DL (1998a) Behaviour of boron, beryllium and lithium during melting and crystallization: constraints from mineral-melt partitioning experiments. Geochim Cosmochim Acta 62:2129–2141

    Article  Google Scholar 

  • Brenan JM, Ryerson FJ, Shaw HF (1998b) The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium and lithium during subduction: experiments and models. Geochim Cosmochim Acta 62:3337–3347

    Article  Google Scholar 

  • Brens P Jr, Liu X-M, Rudnick R, Turner S, Rushmer T (2013) Lithium isotopic composition of the Tonga-Kermadec arc and its constraints on subduction recycling. Mineral Mag 77:A770

    Google Scholar 

  • Brooker R, Blundy J, James RH (2000) Subduction-related mantle pyroxenites from Zabargad Island, Red Sea. J Conf Abstr 5:249

    Google Scholar 

  • Brooker RA, James RH, Blundy JD (2004) Trace elements and Li isotope systematics in Zabargad peridotites: evidence of ancient subduction processes in the Red Sea mantle. Chem Geol 212:179–204

    Article  Google Scholar 

  • Bryant CJ, Chappell BW, Bennett VC and McCulloch MT (2004) Lithium isotopic composition of the New England Batholith: correlations with inferred source rock compositions. Trans. R. Soc. Edinb. Earth Sci. 95:199–214

    Google Scholar 

  • Cabato J, Altherr R, Ludwig T, Meyer H-P (2013) Li, Be, B concentrations and δ7Li values in plagioclase phenocrysts of dacites from Nea Kameni (Santorini, Greece). Contrib Miner Petrol 165:1135–1154

    Article  Google Scholar 

  • Carlson RW, Lugmair GW, Macdougall JD (1981) Crustal influence in the generation of continental flood basalts. Nature 289:160–162

    Article  Google Scholar 

  • Chakhmouradian A (2006) High-field-strength elements in carbonatitic rocks: geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chem Geol 235:138–160

    Article  Google Scholar 

  • Chan L-H, Edmond JM (1988) Variation of lithium isotope composition in the marine environment: a preliminary report. Geochim Cosmochim Acta 52:1711–1717

    Article  Google Scholar 

  • Chan L-H, Frey FA (2003) Lithium isotope geochemistry of the Hawaiian plume: results from the Hawaii Scientific Drilling Project and Koolau volcano. Geochem Geophys Geosys 4, paper number 8707. doi:10.1029/2002GC000365

  • Chan L-H, Hein JR (2007) Lithium contents and isotopic compositions of ferromanganese deposits from the global ocean. Deep-Sea Res II 54:1147–1162

    Article  Google Scholar 

  • Chan L-H, Kastner M (2000) Lithium isotopic composition of pore fluids and sediments in the Costa Rica subduction zone: implications for fluid processes and sediment contribution to the arc volcanoes. Earth Planet Sci Lett 183:275–290

    Article  Google Scholar 

  • Chan L-H, Leeman WP, You C-F (1999) Lithium isotopic composition of Central American Volcanic Arc lavas: implications for modification of subarc mantle by slab-derived fluids. Chem Geol 160:255–280

    Article  Google Scholar 

  • Chan L-H, Alt JC, Teagle DAH (2002a) Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater-basalt exchange at ODP sites 504B and 896A. Earth Planet Sci Lett 201:187–201

    Article  Google Scholar 

  • Chan L-H, Leeman WP, You C-F (2002b) Lithium isotopic composition of Central American Volcanic Arc lavas: implications for modification of subarc mantle by slab-derived fluids: correction. Chem Geol 182:293–300

    Article  Google Scholar 

  • Chan L-H, Leeman WP, Plank T (2006) Lithium isotopic composition of marine sediments. Geochem Geophys Geosys 7, paper number Q06005. doi: 10.1029/2005GC001202

    Google Scholar 

  • Chan L-H, Edmond JM, Thompson G, Gillis K (1992) Lithium isotopic composition of submarine basalts: implication for the lithium cycle in the oceans. Earth Planet Sci Lett 108:151–160

    Article  Google Scholar 

  • Chan L-H, Gieskes JM, You C-F, Edmond JM (1994) Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California. Geochim Cosmochim Acta 58:4443–4454

    Article  Google Scholar 

  • Chan L-H, Lassiter JC, Hauri EH, Hart SR, Blusztajn J (2009) Lithium isotope systematics of lavas from the Cook-Austral Islands: constraints on the origin of HIMU mantle. Earth Planet Sci Lett 277:433–442

    Article  Google Scholar 

  • Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Austral J Earth Sci 48:489–499

    Google Scholar 

  • Clift PD, Chan L-H, Blusztajn J, Layne GD, Kastner M, Kelly RK (2005) Pulsed subduction accretion and tectonic erosion reconstructed since 2.5 Ma from the tephra record offshore Costa Rica. Geochem Geophys Geosys 6, paper number Q09016. doi:10.1029/2005GC000963

    Google Scholar 

  • Cooper AF, Paterson LA, Reid DL (1995) Lithium in carbonatites: consequence of an enriched mantle source? Mineral Mag 59:401–408

    Article  Google Scholar 

  • Cunningham GJ, Henderson P, Lowry RK, Nolan J, Reed SJB, Long JVP (1983) Lithium diffusion in silicate melts. Earth Planet Sci Lett 65:203–205

    Article  Google Scholar 

  • Debaille V, Trønnes RG, Brandon AD, Waight TE, Graham DW, Lee C-TA (2009) Primitive off-rift basalts from Iceland and Jan Mayen: Os-isotopic evidence for a mantle source containing enriched subcontinental lithosphere. Geochim Cosmochim Acta 73:3423–3449

    Article  Google Scholar 

  • Decitre S, Deloule E, Reisberg L, James RH, Agrinier P, Mével C (2002) Behavior of Li and its isotopes during serpentinization of oceanic peridotites. Geochem Geophys Geosys 3. doi:10.1029/2001GC000178

    Google Scholar 

  • Dohmen R, Kasemann SA, Coogan LA, Chakraborty S (2010) Diffusion of Li in olivine. Part 1: experimental observations and a multiple species diffusion model. Geochim Cosmochim Acta 74:274–292

    Article  Google Scholar 

  • Dostal J, Dupuy C, Dudoignon P (1996) Distribution of boron, lithium and beryllium in ocean island basalts from French Polynesia: implications for B/Be and Li/Be ratios as tracers of subducted components. Mineral Mag 60:563–580

    Article  Google Scholar 

  • Eggins SM, Rudnick RL, McDonough WF (1998) The composition of peridotites and their minerals: a laser-ablation ICP-MS study. Earth Planet Sci Lett 154:53–71

    Article  Google Scholar 

  • Elliott T, Jeffcoate A, Bouman C (2004) The terrestrial Li isotope cycle: light-weight constraints on mantle convection. Earth Planet Sci Lett 220:231–245

    Article  Google Scholar 

  • Elliott T, Thomas A, Jeffcoate A, Niu Y (2006) Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature 443:565–568

    Article  Google Scholar 

  • Ferry JM (1994) Role of fluid flow in the contact metamorphism of siliceous dolomitic limestones. Am Mineral 79:719–736

    Google Scholar 

  • Foley SF, Prelevic D, Rehfeldt T, Jacob DE (2013) Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth Planet Sci Lett 363:181–191

    Article  Google Scholar 

  • Foustoukos DI, James RH, Berndt ME and Seyfried WEJ (2004) Lithium isotopic systematics of hydrothermal vent fluids at the Main Endeavour Field, Northern Juan de Fuca Ridge. Chem Geol 212:17–26

    Google Scholar 

  • Gallagher K, Elliott T (2009) Fractionation of lithium isotopes in magmatic systems as a natural consequence of cooling. Earth Planet Sci Lett 278:286–296

    Google Scholar 

  • Gao Y, Snow JE, Casey JF, Yu J (2011) Cooling-induced fractionation of mantle Li isotopes from the ultraslow-spreading Gakkel Ridge. Earth Planet Sci Lett 301:231–240

    Article  Google Scholar 

  • Gao Y, Vils F, Cooper KM, Banerjee N, Harris M, Hoefs J, Teagle DAH, Casey JF, Elliott T, Laverne C, Alt JC, Muehlenbachs K (2012) Downhole variation of lithium and oxygen isotopic compositions of oceanic crust at East Pacific Rise, ODP Site 1256. Geochem Geophys Geosys 13, paper number Q10001. doi: 10.1029/2012GC004207

    Google Scholar 

  • Genske FS, Turner SP, Beier C, Chu MF, Tonarini S, Pearson NJ, Haase KM (2014) Lithium and boron isotope systematics in lavas from the Azores islands reveal crustal assimilation. Chem Geol 373:27–36

    Article  Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, Berlin. 391 pp

    Book  Google Scholar 

  • Godfrey LV, Chan LH, Alonso RN, Lowenstein TK, McDonough WF, Houston J, Li J, Bobst A, Jordan TE (2013) The role of climate in the accumulation of lithium-rich brine in the Central Andes. Appl Geochem 38:92–102

    Google Scholar 

  • Gordienko VV, Gordienko VlVl, Sergeev AS, Levskii LK, Lokhov KI, Kapitonov IN, Sergeev SA (2007) Doklady Akad Nauk 413:676–678

    Google Scholar 

  • Grove TL, Parman SW, Bowring SA, Price RC, Baker MB (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib Mineral Petrol 142:375–396

    Article  Google Scholar 

  • Gurenko AA, Trumbull RB, Thomas R, Lindsay JM (2005) A melt inclusion record of volatiles, trace elements and Li–B isotope variations in a single magma system from the Plat Pays Volcanic Complex, Dominica, Lesser Antilles. J Petrol 46:2495–2526

    Article  Google Scholar 

  • Gurenko AA, Schmincke H-U (2002) Orthopyroxene-bearing tholeiites of the Iblean Plateau (Sicily): constraints on magma origin and evolution from glass inclusions in olivine and orthopyroxene. Chem Geol 183:305–331

    Article  Google Scholar 

  • Halama R, McDonough WF, Rudnick RL, Keller J, Klaudius J (2007) The Li isotopic composition of Oldoinyo Lengai: nature of the mantle sources and lack of isotopic fractionation during carbonatite petrogenesis. Earth Planet Sci Lett 254:77–89

    Article  Google Scholar 

  • Halama R, McDonough WF, Rudnick RL, Bell K (2008) Tracking the lithium isotopic evolution of the mantle using carbonatites. Earth Planet Sci Lett 265:726–742

    Article  Google Scholar 

  • Halama R, Savov IP, Rudnick RL, McDonough WF (2009) Insights into Li and Li isotope cycling and sub-arc metasomatism from veined mantle xenoliths, Kamchatka. Contrib Mineral Petrol 158:197–222

    Article  Google Scholar 

  • Hamelin C, Seitz HM, Barrat JA, Dosso L, Maury R, Chaussidon M (2009) A low δ7Li lower crustal component: evidence from an alkalic intraplate volcanic series (Chaîne des Puys, French Massif Central). Chem Geol 266:205–217

    Article  Google Scholar 

  • Hansen H-E, Magna T, Košler J, Pedersen R-B (2011) Lithium isotope perspective on the Iceland mantle plume. Mineral Mag 75:A977

    Google Scholar 

  • Henderson GS (2005) The structure of silicate melts: a glass perspective. Can Mineral 43:1921–1958

    Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:218–229

    Article  Google Scholar 

  • Hofmann AW, White WM (1982) Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett 57:421–436

    Article  Google Scholar 

  • Ionov DA, Seitz H-M (2008) Lithium abundances and isotopic compositions in mantle xenoliths from subduction and intra-plate settings: mantle sources vs. eruption histories. Earth Planet Sci Lett 266:316–331

    Article  Google Scholar 

  • Jagoutz E, Palme H, Baddenhausen H, Blum K, Cendales M, Dreibus G, Spettel B, Lorenz V, Wänke H (1979) The abundances of major, minor and trace elements in the earth’s mantle as derived from primitive ultramafic nodules. Lunar Planet Sci Conf 10th:2031–2050

    Google Scholar 

  • Jambon A, Semet MP (1978) Lithium diffusion in silicate glasses of albite, orthoclase, and obsidian composition: an ion-microprobe determination. Earth Planet Sci Lett 37:445–450

    Article  Google Scholar 

  • James RH, Allen DE, Seyfried WE Jr (2003) An experimental study of alteration of oceanic crust and terrigenous sediments at moderate temperatures (51 to 350 °C): insights as to chemical processes in near-shore ridge-flank hydrothermal systems. Geochim Cosmochim Acta 67:681–691

    Article  Google Scholar 

  • Janoušek V, Erban V, Holub FV, Magna T, Bellon H, Mlčoch B, Wiechert U, Rapprich V (2010) Geochemistry and genesis of behind-arc basaltic lavas from eastern Nicaragua. J Volcanol Geotherm Res 192:232–256

    Article  Google Scholar 

  • Jeffcoate AB, Elliott T, Kasemann SA, Ionov D, Cooper KM (2007) Li isotope fractionation in peridotites and mafic melts. Geochim Cosmochim Acta 71:202–218

    Article  Google Scholar 

  • John T, Gussone N, Podladchikov YY, Bebout GE, Dohmen R, Halama R, Klemd R, Magna T, Seitz H-M (2012) Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nature Geosci 5:489–492

    Article  Google Scholar 

  • Kaliwoda M, Ludwig T, Altherr R (2008) A new SIMS study of Li, Be, B and δ7Li in mantle xenoliths from Harrat Uwayrid (Saudi Arabia). Lithos 106:261–279

    Article  Google Scholar 

  • Kaminsky FV, Zakharchenko OD, Davies R, Griffin WL, Khachatryan-Blinova GK, Shiryaev AA (2001) Superdeep diamonds from the Juina area, Matto Grosso State, Brazil. Contrib Mineral Petrol 140:734–753

    Article  Google Scholar 

  • Kil Y (2010) Lithium isotopic disequilibrium of minerals in the spinel lherzolite xenoliths from Boeun, Korea. J Geochem Explor 107:56–62

    Article  Google Scholar 

  • Kim T, Nakai S, Gasperini D (2011) Lithium abundance and isotope composition of Logudoro basalts, Sardinia: origin of light Li signature. Geochem J 45:323–340

    Article  Google Scholar 

  • Kisakürek B, Widdowson M, James RH (2004) Behaviour of Li isotopes during continental weathering: the Bidar laterite profile, India. Chem Geol 212:27–44

    Google Scholar 

  • Kobayashi K, Tanaka R, Moriguti T, Shimizu K, Nakamura E (2004) Lithium, boron and lead isotope systematics of glass inclusions in olivines from Hawaiian lavas: evidence for recycled components in the Hawaiian plume. Chem Geol 212:143–161

    Article  Google Scholar 

  • Košler J, Magna T, Mlčoch B, Mixa P, Nývlt D, Holub FV (2009) Combined Sr, Nd, Pb and Li isotope geochemistry of alkaline lavas from northern James Ross Island (Antarctic Peninsula) and implications for back-arc magma formation. Chem Geol 258:207–218

    Article  Google Scholar 

  • Krienitz M-S, Garbe-Schönberg C-D, Romer RL, Meixner A, Haase KM, Stroncik NA (2012) Lithium isotope variations in ocean island basalts: implications for the development of mantle heterogeneity. J Petrol 53:2333–2347

    Article  Google Scholar 

  • Lai Y-J, Pogge von Strandmann PAE, Dohmen R, Takazawa E, Elliott T (2015) The influence of melt infiltration on the Li and Mg isotopic composition of the Horoman Peridotite Massif. Geochim Cosmochim Acta 164:318–332

    Article  Google Scholar 

  • Leeman WP, Tonarini S, Chan L-H, Borg LE (2004) Boron and lithium isotopic variations in a hot subduction zone: the southern Washington Cascades. Chem Geol 212:101–124

    Article  Google Scholar 

  • Liu X-M, Rudnick RL, Hier-Majumder S, Sirbescu MLC (2010) Processes controlling lithium isotopic distribution in contact aureoles: a case study of the Florence County pegmatites, Wisconsin. Geochem Geophys Geosys 11, paper number Q08014. doi:10.1029/2010GC003063

    Google Scholar 

  • Liu X-M, Rudnick RL, McDonough WM, Cummings ML (2013) Influence of chemical weathering on the composition of the continental crust: Insights from Li and Nd isotopes in bauxite profiles developed on Columbia River Basalts. Geochim Cosmochim Acta 115:73–91

    Article  Google Scholar 

  • London D (2008) Pegmatites. Can Mineral Spec Publ 10, 368 pp

    Google Scholar 

  • London D (2009) The origin of primary textures in granitic pegmatites. Can Mineral 47:697–724

    Google Scholar 

  • Lowry RK, Reed SJB, Nolan J, Henderson P, Long JVP (1981) Lithium tracer diffusion in an alkali-basaltic melt: an ion-microprobe determination. Earth Planet Sci Lett 53:36–40

    Article  Google Scholar 

  • Ludwig T, Marschall HR, Pogge von Strandmann PAE, Shabaga BM, Fayek M, Hawthorne FC (2011) A secondary ion mass spectrometry (SIMS) re-evaluation of B and Li isotopic compositions of Cu-bearing elbaite from three global localities. Mineral Mag 75:2485–2494

    Google Scholar 

  • Lundstrom CC, Chaussidon M, Hsui AT, Kelemen P, Zimmerman M (2005) Observations of Li isotopic variations in the Trinity Ophiolite: evidence for isotopic fractionation by diffusion during mantle melting. Geochim Cosmochim Acta 69:735–751

    Article  Google Scholar 

  • Lynton SJ, Walker RJ, Candela PA (2005) Lithium isotopes in the system Qz-Ms-fluid: an experimental study. Geochim Cosmochim Acta 69:3337–3347

    Google Scholar 

  • Magna T, Rapprich V (2012) The lithium isotope composition of volcanic sequences of the Český ráj region and Doupovské hory Mts. (in Czech). In: 3rd volcanology group meeting of the Czech geological society, Křivoklát, Czech Republic. Sb Západočeského Muzea Plzeň, Příroda, 116, 11–12

    Google Scholar 

  • Magna T, Wiechert U, Halliday AN (2006a) New constraints on the lithium isotope compositions of the moon and terrestrial planets. Earth Planet Sci Lett 243:336–353

    Article  Google Scholar 

  • Magna T, Wiechert U, Grove TL, Halliday AN (2006b) Lithium isotope fractionation in the Southern Cascadia subduction zone. Earth Planet Sci Lett 250:428–443

    Article  Google Scholar 

  • Magna T, Ionov DA, Oberli F, Wiechert U (2008) Links between mantle metasomatism and lithium isotopes: evidence from glass-bearing and cryptically metasomatized xenoliths from Mongolia. Earth Planet Sci Lett 276:214–222

    Article  Google Scholar 

  • Magna T, Janousek V, Kohút M, Oberli F and Wiechert U (2010) Fingerprinting sources of orogenic plutonic rocks from Variscan belt with lithium isotopes and possible link to subduction-related origin of some A-type granites. Chem Geol 274:94–107

    Google Scholar 

  • Magna T, Wiechert U, Stuart FM, Halliday AN, Harrison D (2011) Combined Li–He isotopes in Iceland and Jan Mayen basalts and constraints on the nature of the North Atlantic mantle. Geochim Cosmochim Acta 75:922–936

    Article  Google Scholar 

  • Magna T, Novák M, Janoušek V (2013) Lithium isotopes in giant pegmatite bodies—implications for their sources and evolution. In: Geological Association of Canada and Mineralogical Association of Canada annual meeting, Winnipeg, Canada. Abstract volume, p 135

    Google Scholar 

  • Maloney JS, Nabelek PI, Sirbescu M-LC, Halama R (2008) Lithium and its isotopes in tourmaline as indicators of the crystallization process in the San Diego County pegmatites, California, USA. Eur J Mineral 20:905–916

    Google Scholar 

  • Marks MAW, Rudnick RL, McCammon C, Vennemann T, Markl G, (2007) Arrested kinetic Li isotope fractionation at the margin of the Ilímaussaq complex, South Greenland: Evidence for open-system processes during final cooling of peralkaline igneous rocks. Chem Geol 246:207–230

    Google Scholar 

  • Marschall H, Altherr R, Lüpke L (2007a) Squeezing out the slab: modelling the release of Li, Be, and B during progressive high-pressure metamorphism. Chem Geol 239:323–335

    Article  Google Scholar 

  • Marschall HR, Altherr R, Ludwig T, Kalt A, Gméling K, Kasztovszky Z (2006) Partitioning and budget of Li, Be and B in high-pressure metamorphic rocks. Geochim Cosmochim Acta 70:4750–4769

    Article  Google Scholar 

  • Marschall HR, Pogge von Strandmann PAE, Seitz H-M, Elliott T, Niu Y (2007b) The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth Planet Sci Lett 262:563–580

    Article  Google Scholar 

  • McCauley A, Bradley DC (2014) The global age distribution of granitic pegmatites. Can Mineral 52:183–190

    Google Scholar 

  • McDade P, Blundy JD, Wood BJ (2003) Trace element partitioning on the Tinaquillo Lherzolite solidus at 1.5 GPa. Phys Earth Planet Int 139:129–147

    Article  Google Scholar 

  • Medaris GL Jr, Ackerman L, Jelínek E, Magna T (2015) Depletion, cryptic metasomatism, and modal metasomatism of central European lithospheric mantle: evidence from elemental and Li isotope compositions of spinel peridotite xenoliths, Kozákov volcano, Czech Republic. Int J Earth Sci 104:1925–1956

    Article  Google Scholar 

  • Mengel K, Hoefs J (1990) Li-δ18O-SiO2 systematics in volcanic rocks and mafic lower crustal granulite xenoliths. Earth Planet Sci Lett 101:42–53

    Google Scholar 

  • Millot R, Négrel Ph, Petelet-Giraud E (2007) Multi-isotopic (Li, B, Sr, Nd) approach for geothermal reservoir characterization in the Limagne Basin (Massif Central, France). Appl Geochem 22:2307–2325

    Google Scholar 

  • Morgan VI GB, London D (1987) Alteration of amphibolitic wallrocks around the Tanco rare-element pegmatite, Bernic Lake, Manitoba. Am Mineral 72:1097–1121

    Google Scholar 

  • Moriguti T, Nakamura E (1998) Across-arc variation of Li isotopes in lavas and implication for crust/mantle recycling at subduction zones. Earth Planet Sci Lett 163:167–174

    Article  Google Scholar 

  • Moriguti T, Shibata T, Nakamura E (2004) Lithium, boron and lead isotope and trace element systematics of Quaternary basaltic volcanic rocks in northeastern Japan: mineralogical controls on slab-derived fluid composition. Chem Geol 212:81–100

    Article  Google Scholar 

  • Masukawa K, Nishio Y, Hayashi KI (2013) Lithium–strontium isotope and heavy metal content of fluid inclusions and origin of ore-forming fluid responsible for tungsten mineralization at Takatori mine, Japan. Geochem J 47:309–319

    Article  Google Scholar 

  • Nabelek PI, Labotka TC, O’Neil JR, Papike JJ (1984) Contrasting fluid/rock interaction between the Notch Peak granitic intrusion and argillites and limestones in western Utah: evidence from stable isotopes and phase assemblages. Contrib Mineral Petrol 86:25–34

    Google Scholar 

  • Nishio Y, Nakai S, Kogiso T, Barsczus HG (2005) Lithium, strontium, and neodymium isotopic compositions of oceanic island basalts in the Polynesian region: constraints on a Polynesian HIMU origin. Geochem J 39:91–103

    Article  Google Scholar 

  • Nishio Y, Nakai S, Ishii T, Sano Y (2007) Isotope systematics of Li, Sr, Nd, and volatiles in Indian Ocean MORBs of the Rodriguez Triple Junction: constraints on the origin of the DUPAL anomaly. Geochim Cosmochim Acta 71:745–759

    Article  Google Scholar 

  • Nishio Y, Nakai S, Yamamoto J, Sumino H, Matsumoto T, Prikhod’ko VS, Arai S (2004) Lithium isotopic systematics of the mantle-derived ultramafic xenoliths: implications for EM1 origin. Earth Planet Sci Lett 217:245–261

    Google Scholar 

  • Ottolini L, Le Fèvre B, Vannucci R (2004) Direct assessment of mantle boron and lithium contents and distribution by SIMS analyses of peridotite minerals. Earth Planet Sci Lett 228:19–36

    Article  Google Scholar 

  • Ottolini L, Laporte D, Raffone N, Devidal J-L, Le Fèvre B (2009) New experimental determination of Li and B partition coefficients during upper mantle partial melting. Contrib Mineral Petrol 157:313–325

    Article  Google Scholar 

  • Parkinson IJ, Hammond SJ, James RH, Rogers NW, (2007) High-temperature lithium isotope fractionation: Insights from lithium isotope diffusion in magmatic systems. Earth Planet Sci Lett 257:609–621

    Google Scholar 

  • Penniston-Dorland SC, Bebout GE, Pogge von Strandmann PA, Elliott T and Sorensen SS (2012) Lithium and its isotopes as tracers of subduction zone fluids and metasomatic processes: evidence from the Catalina Schist, California, USA. Geochim Cosmochim Acta 77:530–545

    Google Scholar 

  • Penniston-Dorland SC, Sorensen SS, Ash RD and Khadke SV (2010) Lithium isotopes as a tracer of fluids in a subduction zone melange: Franciscan complex, CA. Earth Planet Sci Lett 292:181–190.

    Google Scholar 

  • Pistiner JS, Henderson GM (2003) Lithium-isotope fractionation during continental weathering processes. Earth Planet Sci Lett 214:327–339

    Article  Google Scholar 

  • Plank T (2014) The chemical composition of subducting sediments. In: Rudnick RL (ed) Treatise on geochemistry, vol 4, 2nd edn. Elsevier Ltd., Oxford, pp 607–629

    Chapter  Google Scholar 

  • Plyusnin GS, Posokhov VF, Sandimirova GP (1979) Magmatic differentiation and reliationship of 7Li/6Li ratio to fluorine content. Doklady Acad Sci USSR, Earth Sci 248:187–189

    Google Scholar 

  • Pogge von Strandmann PAE, Elliott T, Marschall HR, Coath C, Lai Y-J, Jeffcoate AB, Ionov DA (2011) Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths. Geochim Cosmochim Acta 75:5247–5268

    Article  Google Scholar 

  • Pogge von Strandmann PAE, Opfergelt S, Lai YJ, Sigfússon B, Gislason SR, Burton KW (2012) Lithium, magnesium and silicon isotope behaviour accompanying weathering in a basaltic soil and pore water profile in Iceland. Earth Planet Sci Lett 339/340:11–23

    Google Scholar 

  • Richter FM, Davis AM, DePaolo DJ, Watson EB (2003) Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim Cosmochim Acta 67:3905–3923

    Google Scholar 

  • Romer RL, Meixner A (2014) Lithium and boron isotopic fractionation in sedimentary rocks during metamorphism: the role of rock composition and protolith mineralogy. Geochim Cosmochim Acta 128:158–177

    Article  Google Scholar 

  • Romer RL, Heinrich W, Schröder-Smeibidl B, Meixner A, Fischer K-O, Schulz C (2005) Elemental dispersion and stable isotope fractionation during reactive fluid-flow and fluid immiscibility in the Bufa del Diente aureole, NE-Mexico: evidence from radiographies and Li, B, Sr, Nd, and Pb isotope systematics. Contrib Mineral Petrol 149:400–429

    Article  Google Scholar 

  • Romer RL, Meixner A, Förster H-J (2014) Lithium and boron in late-orogenic granites: isotopic fingerprints for the source of crustal melts? Geochim Cosmochim Acta 131:98–114

    Article  Google Scholar 

  • Rudnick RL, Ionov DA (2007) Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from far-east Russia: Product of recent melt/fluid–rock reaction. Earth Planet Sci Lett 256:278-293

    Google Scholar 

  • Rudnick RL, Tomascak PB, Njo HB, Gardner LR (2004) Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina. Chem Geol 212:45–57

    Google Scholar 

  • Ryan JG, Langmuir CH (1987) The systematics of lithium abundances in young volcanic rocks. Geochim Cosmochim Acta 51:1727–1741

    Article  Google Scholar 

  • Ryan JG, Kyle PR (2004) Lithium abundance and lithium isotope variations in the mantle sources: insights from intraplate volcanic rocks from Ross Island and Marie Byrd Land (Antarctica) and other oceanic islands. Chem Geol 212:125–142

    Article  Google Scholar 

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosys 5, paper number Q05004. doi: 10.1029/2003GC000597

    Google Scholar 

  • Schiavi F, Kobayashi K, Nakamura E, Tiepolo M, Vannucci R (2012) Trace element and Pb-B-Li isotope systematics of olivine-hosted melt inclusions: insights into source metasomatism beneath Stromboli (southern Italy). Contrib Mineral Petrol 163:1011–1031

    Article  Google Scholar 

  • Schiavi F, Kobayashi K, Moriguti T, Nakamura E, Pompilio M, Tiepolo M, Vannucci R (2010) Degassing, crystallization and eruption dynamics at Stromboli: trace element and lithium isotopic evidence from 2003 ashes. Contrib Mineral Petrol 159:541–561

    Article  Google Scholar 

  • Schuessler JA, Schoenberg R, Sigmarsson O (2009) Iron and lithium isotope systematics of the Hekla volcano, Iceland: evidence for Fe isotope fractionation during magma differentiation. Chem Geol 258:78–91

    Article  Google Scholar 

  • Seitz H-M, Woodland AB (2000) The distribution of lithium in peridotitic and pyroxenitic mantle lithologies: an indicator of magmatic and metasomatic processes. Chem Geol 166:47–64

    Article  Google Scholar 

  • Seitz H-M, Brey GP, Stachel T, Harris JW (2003) Li abundances in inclusions in diamonds from the upper and lower mantle. Chem Geol 201:307–318

    Article  Google Scholar 

  • Seitz H-M, Brey GP, Harris JW, Ludwig T (2006) Lithium isotope composition of lower mantle ferropericlase inclusions in diamanods from Sao Luiz, Brazil. Geochim Cosmochim Acta 70:A569

    Article  Google Scholar 

  • Seitz H-M, Brey GP, Lahaye Y, Durali S, Weyer S (2004) Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes. Chem Geol 212:163–177

    Article  Google Scholar 

  • Seyfried WEJ, Chen X, Chan L-H (1998) Trace element mobility and lithium isotope exchange during hydrothermal alteration of seafloor weathered basalt: An experimental study at 350 °C, 500 bars. Geochim Cosmochim Acta 62:949–960

    Article  Google Scholar 

  • Shabaga BM, Fayek M, Hawthorne FC (2010) Boron and lithium isotopic compositions as provenance indicators of Cu-bearing tourmalines. Mineral Mag 74:241–255

    Article  Google Scholar 

  • Simons KK, Harlow GE, Brueckner HK, Goldstein SL, Sorensen SS, Hemming NG, Langmuir CH (2010) Lithium isotopes in Guatemalan and Franciscan HP–LT rocks: insights into the role of sediment-derived fluids during subduction. Geochim Cosmochim Acta 74:3621–3641

    Google Scholar 

  • Sirbescu M-LC and Nabelek PI (2003) Crustal melts below 400°C. Geology 31:685–688

    Google Scholar 

  • Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GA, Arndt NT, Chung S-L, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412–417

    Article  Google Scholar 

  • Soltay LG, Henderson GS (2005) Structural differences between lithium silicate and lithium germanate glasses by Raman spectroscopy. Phys Chem Glasses 46:381–384

    Google Scholar 

  • Sturchio NC and Chan L-H (2003) Lithium isotope geochemistry of the Yellowstone hydrothermal system. Soc Econ Geol Spec Publ 10:171–180

    Google Scholar 

  • Stracke A, Hofmann AW, Hart SR (2005) FOZO, HIMU, and the rest of the mantle zoo. Geochem Geophys Geosys 6, paper number Q05007. doi: 10.1029/2004GC000824

    Google Scholar 

  • Stracke A, Snow JE, Hellebrand E, von der Handt A, Bourdon B, Birbaum K, Günther D (2011) Abyssal peridotite Hf isotopes identify extreme mantle depletion. Earth Planet Sci Lett 308:359–368

    Article  Google Scholar 

  • Su B-X, Zhang H-F, Deloule E, Asamoah Sakyi P, Xiao Y, Tang Y-J, Hu Y, Ying J-F, Liu P-P (2012) Extremely high and low δ7Li signatures in the lithospheric mantle. Chem Geol 292–293:149–157

    Article  Google Scholar 

  • Tang M, Rudnick RL, Chauvel C (2014a) Sedimentary input to the source of Lesser Antilles lavas: a Li perspective. Geochim Cosmochim Acta 144:43–58

    Article  Google Scholar 

  • Tang Y-J, Zhang H-F, Ying J-F (2010) A brief review of isotopically light Li: a feature of the enriched mantle? Int Geol Rev 52:964–976

    Google Scholar 

  • Tang Y-J, Zhang H-F, Nakamura E, Ying J-F (2011) Multistage melt/fluid-peridotite interactions in the refertilized lithospheric mantle beneath the North China Craton: constraints from the Li–Sr–Nd isotopic disequilibrium between minerals of peridotite xenoliths. Contrib Mineral Petrol 161:845–861

    Article  Google Scholar 

  • Tang Y-J, Zhang H-F, Nakamura E, Moriguti T, Kobayashi K, Ying J-F (2007) Lithium isotopic systematics of peridotite xenoliths from Hannuoba, North China Craton: implications for melt-rock interaction in the considerably thinned lithospheric mantle. Geochim Cosmochim Acta 71:4327–4341

    Article  Google Scholar 

  • Tang Y-J, Zhang H-F, Deloule E, Su B-X, Ying J-F, Xiao Y, Hu Y (2012) Slab-derived lithium isotopic signatures in mantle xenoliths from northeastern North China Craton. Lithos 149:79–90

    Article  Google Scholar 

  • Tang Y-J, Zhang H-F, Deloule E, Su B-X, Ying J-F, Santosh M, Xiao Y (2014b) Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the North China Craton. Sci Rep 4:4274. doi:10.1038/srep04274

  • Taylor SR and McLennan SM (1985) The continental crust: Its composition and evolution. Oxford, London, xvi + 312 pp

    Google Scholar 

  • Teng F-Z, Rudnick RL, McDonough WF, Gao S, Tomascak PB, Liu Y (2008) Lithium isotopic composition and concentration of the deep continental crust. Chem Geol 255:47–59

    Article  Google Scholar 

  • Teng F-Z, Rudnick RL, McDonough WF, Wu F-Y (2009) Lithium isotopic systematics of A-type granites and their mafic enclaves: further constraints on the Li isotopic composition of the continental crust. Chem Geol 262:370–379

    Google Scholar 

  • Teng F-Z, McDonough WF, Rudnick RL, Dalpé C, Tomascak PB, Chappell BW, Gao S (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochim Cosmochim Acta 68:4167–4178

    Article  Google Scholar 

  • Teng F-Z, McDonough WF, Rudnick RL, Walker RJ, Sirbescu M-L (2006a) Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota. Am Mineral 91:1488–1498

    Google Scholar 

  • Teng F-Z, McDonough WF, Rudnick RL, Walker RJ (2006b) Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth Planet Sci Lett 243:701–710

    Google Scholar 

  • Tian S, Hou Z, Su A, Qiu L, Mo X, Hou K, Zhao Y, Hu W, Yang Z (2015) The anomalous lithium isotopic signature of Himalayan collisional zone carbonatites in western Sichuan, SW China: enriched mantle source and petrogenesis. Geochim Cosmochim Acta 159:42–60

    Google Scholar 

  • Tkachev AV (2011) Evolution of metallogeny of granitic pegmatites associated with orogens throughout geologic time. In: Sial AN, Bettencourt JS, De Campos CP (eds) Granite-related ore deposits. Geol Soc Lond Spec Publ 350:7–23

    Google Scholar 

  • Tomascak PB (2004) Developments in the understanding and application of lithium isotopes in the Earth and planetary sciences. In: Johnson CM, Beard BL, Albarède F (eds) Geochemistry of non-traditional stable isotopes. Rev Mineral Geochem 55:153–195

    Google Scholar 

  • Tomascak PB (2015) Lithium and sediment: the Martinique connection. Sci Bull 60:1136–1137

    Google Scholar 

  • Tomascak PB, Magna T (2014) Lithium isotopes in magmatic rocks from the Crazy Mountains, Montana. 4th Meeting of the Expert Volcanology Group of the Czech Geological Society. pp 27–28

    Google Scholar 

  • Tomascak PB, Ryan JG, Defant MJ (2000) Lithium isotope evidence for light element decoupling in the Panama subarc mantle. Geology 28:507–510

    Article  Google Scholar 

  • Tomascak PB, Lynton SJ, Walker RJ, Krogstad EJ (1995) Li isotope geochemistry of the Tin Mountain pegmatite, Black Hills, South Dakota. In: Brown M, Piccoli PM (eds) The origin of granites and related rocks. U.S. Geol Surv Circular, vol 1129, pp 151–152

    Google Scholar 

  • Tomascak PB, Tera F, Helz RT, Walker RJ (1999) The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS. Geochim Cosmochim Acta 63:907–910

    Article  Google Scholar 

  • Tomascak PB, Langmuir CH, le Roux PJ, Shirey SB (2008) Lithium isotopes in global mid-ocean ridge basalts. Geochim Cosmochim Acta 72:1626–1637

    Article  Google Scholar 

  • Tomascak PB, Widom E, Benton LD, Goldstein SL, Ryan JG (2002) The control of lithium budgets in island arcs. Earth Planet Sci Lett 196:227–238

    Article  Google Scholar 

  • van Hinsberg, Marschall VJ, HR (2007) Boron isotope and light element sector zoning in tourmaline: Implications for the formation of B-isotopic signatures. Chem Geol 238:141–148

    Google Scholar 

  • Vils F, Pelletier L, Kalt A, Müntener O, Ludwig T (2008) The lithium, boron and beryllium content of serpentinized peridotites from ODP leg 209 (sites 1272A and 1274A): implications for lithium and boron budgets of oceanic lithosphere. Geochim Cosmochim Acta 72:5475–5504

    Article  Google Scholar 

  • Vils F, Tonarini S, Kalt A, Seitz H-M (2009) Boron, lithium and strontium isotopes as tracers of seawater–serpentinite interaction at Mid-Atlantic ridge, ODP Leg 209. Earth Planet Sci Lett 286:414–425

    Article  Google Scholar 

  • Vlastélic I, Koga K, Chauvel C, Jacques G, Télouk P (2009) Survival of lithium isotopic heterogeneities in the mantle supported by HIMU-lavas from Rurutu Island, Austral Chain. Earth Planet Sci Lett 286:456–466

    Article  Google Scholar 

  • Vocke RD, Beary ES, Walker RJ (1990) High precision lithium isotope ratio measurement of samples from a variety of natural sources. In: Abstract in VM Goldschmidt conference program, p 89

    Google Scholar 

  • Wagner C, Deloule E, (2007) Behaviour of Li and its isotopes during metasomatism of French Massif Central lherzolites. Geochim Cosmochim Acta 71:4279–4296

    Google Scholar 

  • Walker JA, Teipel AP, Ryan JG, Syracuse E (2009) Light elements and Li isotopes across the northern portion of the Central American subduction zone. Geochem Geophys Geosys 10, paper number Q06S16. doi:10.1029/2009GC002414

    Google Scholar 

  • Weyer S, Seitz H-M (2012) Coupled lithium- and iron isotope fractionation during magmatic differentiation, Chem Geol 294/295:42–50

    Google Scholar 

  • Willbold M, Stracke A (2006) Trace element composition of mantle end-members: implications for recycling of oceanic and upper and lower continental crust. Geochem Geophys Geosys 7, paper number Q04004. doi: 10.1029/2005GC001005

    Google Scholar 

  • Wilson M, Downes H (1991) Tertiary-Quaternary extension related alkaline magmatism in western and central Europe. J Petrol 32:811–849

    Article  Google Scholar 

  • Wimpenny J, Gíslason SR, James RH, Gannoun A, Pogge von Strandmann PAE, Burton KW (2010) The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt. Geochim Cosmochim Acta 74:5259–5279

    Google Scholar 

  • Woodland AB, Seitz H-M, Altherr R, Marschall H, Olker B, Ludwig T (2002) Li abundances in eclogite minerals: a clue to a crustal or mantle origin? Contrib Mineral Petrol 143:587–601

    Article  Google Scholar 

  • Woodland AB, Seitz H-M, Yaxley GM, (2004) Varying behaviour of Li in metasomatised spinel peridotite xenoliths from Western Victoria, Australia. Lithos 75:55–66.

    Google Scholar 

  • Wunder B, Meixner A, Romer RL, Feenstra A, Schettler G, Heinrich W (2007) Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: an experimental study. Chem Geol 238:277–290

    Google Scholar 

  • Wunder B, Meixner A, Romer RL, Heinrich W (2006) Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids. Contrib Mineral Petrol 151:112–120

    Article  Google Scholar 

  • Wunder B, Meixner A, Romer RL, Jahn S (2011) Li-isotope fractionation between silicates and fluids: Pressure dependence and influence of the bonding environment. Eur J Mineral 23:333–342

    Google Scholar 

  • Xiao Y, Hoefs J, Hou Z, Simon K, Zhang Z (2011) Fluid/rock interaction and mass transfer in continental subduction zones: constraints from trace elements and isotopes (Li, B, O, Sr, Nd, Pb) in UHP rocks from the Chinese Continental Scientific Drilling Program, Sulu, East China. Contrib Mineral Petrol 162:797–819

    Article  Google Scholar 

  • Xiao Y, Zhang H-F, Deloule E, Su B-X, Tang Y-J, Sakyi P, Hu Y, Ying J-F (2015) Large lithium isotopic variations in minerals from peridotite xenoliths from the Eastern North China Craton. J Geol 123:79–94

    Article  Google Scholar 

  • Xu R, Liu Y, Tong X, Hu Z, Zong K, Gao S (2013) In-situ trace elements and Li and Sr isotopes in peridotite xenoliths from Kuandian, North China Craton: insights into Pacific slab subduction-related mantle modification. Chem Geol 354:107–123

    Article  Google Scholar 

  • Yamaji K, Makita Y, Watanabe H, Sonoda A, Kanoh H, Hirotsu T, Ooi K (2001) Theoretical estimation of lithium isotopic reduced partition function ratio for lithium ions in aqueous solution. J Phys Chem A 105:602–613

    Article  Google Scholar 

  • Yang H, Konzett J, Downs RT, Frost DL (2009) Crystal structure and Raman spectrum of a high-pressure Li-rich majoritic garnet, (Li2Mg)Si2(SiO4)3. Am Mineral 94:630–633

    Article  Google Scholar 

  • Zack T, Tomascak PB, Rudnick RL, Dalpé C, McDonough WF (2003) Extremely light Li in orogenic eclogites: the role of isotope fractionation during dehydration in subducted oceanic crust. Earth Planet Sci Lett 208:279–290

    Article  Google Scholar 

  • Zhang L, Chan L-H, Gieskes JM (1998) Lithium isotope geochemistry of pore waters from Ocean Drilling Program Sites 918 and 919, Irminger Basin. Geochim Cosmochim Acta 62:2437–2450

    Article  Google Scholar 

  • Zhang H-F, Deloule E, Tang Y-J, Ying J-F (2010) Melt/rock interaction in the remains of refertilized Archean lithospheric mantle in Jiaodong Peninsula, North China Craton: Li isotopic evidence. Contrib Mineral Petrol 160:261–277

    Article  Google Scholar 

  • Zindler A, Hart SR (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493–571

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. Tomascak .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tomascak, P.B., Magna, T., Dohmen, R. (2016). Lithium in the Deep Earth: Mantle and Crustal Systems. In: Advances in Lithium Isotope Geochemistry. Advances in Isotope Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-01430-2_5

Download citation

Publish with us

Policies and ethics