Skip to main content

Nanoparticles Against Schistosomiasis

  • Chapter
  • First Online:
Nanoparticles in the Fight Against Parasites

Part of the book series: Parasitology Research Monographs ((Parasitology Res. Monogr.,volume 8))

  • 1209 Accesses

Abstract

Schistosomiasis is an important parasitic disease caused by trematode worms of the genus Schistosoma. Schistosomiasis control strategies are predominantly based on the treatment of infected individuals with effective drugs. Recently, nanotechnology holds promise for medication and nutrition, because materials at the nanometer dimension exhibit novel properties different from those of both isolated atoms and bulk material. Developed nanoparticles have great potential to overcome the limitations associated with products currently available in the market for the treatment of schistosomiasis. Also, the use of nanotechnology can provide a novel diagnostic assay for Schistosomasis. In this chapter, we showed our results on the effect of nanogold on the S. mansoni induced infection in the brain of mice. Neuroschistosomiasis is the infection of the central nervous system by Schistosoma spp. However, neurological complications generally occur during chronic hepatointestinal schistosomiasis. Gold nanoparticles have anti-neuroschistosomal effects and could decrease the neuro-oxidative stress and regulated the genes expression in brain of mice infected with S. mansoni.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel Ghafar AE, Elkowrany SE, Salem SA, Menaisy AA, Fadel WA, Awara WM (1996) Effect of some parasitic infection on neurotransmitters in the brain of experimentally infected mice before and after treatment. J Egypt Soc Parasitol 26(2):497–508

    CAS  PubMed  Google Scholar 

  • Acosta LP, Waine G, Aligui GD, Tiu WU, Olveda RM, McManus DP (2002) Immune correlate study on human Schistosoma japonicum in a well-defined population in Leyte, Philippines: II. Cellular immune responses to S. japonicum recombinant and native antigens. Acta Trop 84:137–149

    Article  CAS  PubMed  Google Scholar 

  • Akbarieh M, Besner JG, Galal A, Tawafhail R (1992) Liposomal system for the targeting and controlled release of praziquantel. Drug Dev Ind Pharm 18:303–307

    Article  CAS  Google Scholar 

  • Allemann E, Leroux JC, Gurny R (1998) Polymeric nano and microparticles for the oral delivery of peptides and peptidomimetics. Adv Drug Deliv Rev 34:171–189

    Article  CAS  PubMed  Google Scholar 

  • Aly I, Zalat R, El Aswad BW, Moharm IM, Masoud BM, Diab T (2013) Novel nanomagnetic beads based–latex agglutination assay for rapid diagnosis of human schistosomiasis haematobium. Int J Med Health Biomed Pharm Eng 7(12):642–647

    Google Scholar 

  • Amaral RS, Tauil P, Lima DD, Engels D (2006) An analysis of the impact of the schistosomiasis control programme in Brazil. Mem Inst Oswaldo Cruz 101:79–85

    Article  PubMed  Google Scholar 

  • Anderson S, Shires VL, Wilson RA, Mountford AP (1998) In the absence of IL-12, the induction of Th1-mediated protective immunity by the attenuated schistosome vaccine is impaired, revealing an alternative pathway with Th2-type characteristics. Eur J Immunol 28:2827–2838

    Article  CAS  PubMed  Google Scholar 

  • Barnes S, Kelly MEM (2002) Calcium channels at the photoreceptor synapse. Adv Exp Med Biol 514:465–476

    Article  CAS  PubMed  Google Scholar 

  • Bauomy AA (2014) The potential role of Morus alba leaves extract on the brain of mice infected with Schistosoma mansoni. CNS Neurol Disord Drug Targets 13:1513–1519

    Article  CAS  PubMed  Google Scholar 

  • Bauomy AA, Dkhil MA, Diab MSM, Amer OSO, Zrieq RM, Al-Quraishy S (2014) Response of spleen and jejunum of mice infected with Schistosoma mansoni to mulberry treatment. Pak J Zool 46:753–761

    Google Scholar 

  • Best SL, Sadler P (1996) Gold drugs: mechanism of action and toxicity. Gold Bull 29(3):87–93

    Article  CAS  Google Scholar 

  • Bidaud I, Mezghrani A, Swayne LA, Monteil A, Lory P (2006) Voltage-gated calcium channels in genetic diseases. Biochim Biophys Acta 1763:1169–1174

    Article  CAS  PubMed  Google Scholar 

  • Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brito CF, Caldas IR, Coura Filho P, Correa-Oliveira R, Oliveira SC (2000) CD4+ T cells of schistosomiasis naturally resistant individuals living in an endemic area produce interferon-gamma and tumour necrosis factor-alpha in response to the recombinant 14KDA Schistosoma mansoni fatty acid-binding protein. Scand J Immunol 51:595–601

    Article  CAS  PubMed  Google Scholar 

  • Brooking J, Davis SS, Illum L (2001) Transport of nanoparticles across the rat nasal mucosa. J Drug Target 9:267–279

    Article  CAS  PubMed  Google Scholar 

  • Cardoso FC, Macedo GC, Gava E, Kitten GT, Mati VL, de Melo AL et al (2008) Schistosoma mansoni tegument protein Sm29 is able to induce a Th1-type of immune response and protection against parasite infection. PLoS Negl Trop Dis 2:e308

    Article  PubMed  PubMed Central  Google Scholar 

  • Catterall WA, Few AP (2008) Calcium channel regulation and presynaptic plasticity. Neuron 59:882–901

    Article  CAS  PubMed  Google Scholar 

  • Chalphin AV, Saha MS (2010) The specification of glycinergic neurons and the role of glycinergic transmission in development. Front Mol Neurosci 3:11

    PubMed  PubMed Central  Google Scholar 

  • Chen PC, Mwakwari SC, Oyelere AK (2008) Gold nanoparticles: from nanomedicine to nanosensing. Nanotechnol Sci Appl 2:45–66

    Google Scholar 

  • Chitsulo L, Engels D, Montresor A, Savioli L (2000) The global status of schistosomiasis and its control. Acta Trop 77:41–51

    Article  CAS  PubMed  Google Scholar 

  • Cízková A, Stránecký V, Mayr JA, Tesarová M, Havlícková V, Paul J, Ivánek R, Kuss AW, Hansíková H, Kaplanová V, Vrbacký M, Hartmannová H, Nosková L, Honzík T, Drahota Z, Magner M, Hejzlarová K, Sperl W, Zeman J, Houstek J, Kmoch S (2008) TMEM70 mutations cause isolated ATP synthase deficiency and neonatal mitochondrial encephalocardiomyopathy. Nat Genet 40:1288–1290

    Article  PubMed  Google Scholar 

  • Corachan M (2002) Schistosomiasis and international travel. Clin Infect Dis 35:446–450

    Article  PubMed  Google Scholar 

  • Das S, Khan W, Mohsin S, Kumar N (2011) Miltefosine loaded albumin microparticles for treatment of visceral leishmaniasis: formulation development and in vitro evaluation. Polym Adv Technol 22(1):172–179

    Article  CAS  Google Scholar 

  • De Araújo SC, De Mattos ACA, Teixeira HF, Coelho PMZ, Nelson DL, De Oliveira MC (2007) Improvement of in vitro efficacy of a novel schistosomicidal drug by incorporation into nanoemulsions. Int J Pharm 337:307–315

    Article  PubMed  Google Scholar 

  • de Oliveira RB, Senger MR, Vasques LM et al (2013) Schistosoma mansoni infection causes oxidative stress and alters receptor for advanced glycation endproduct (RAGE) and tau levels in multiple organs in mice. Int J Parasitol 43(5):371–379

    Article  PubMed  Google Scholar 

  • Desruisseaux MS, Iacobas DA, Iacobas S, Mukherjee S, Weiss LM, Tanowitz HB, Spray DC (2010) Alterations in the brain transcriptome in Plasmodium berghei ANKA infected mice. J Neuroparasitol 1:1–11

    Article  Google Scholar 

  • Diab MSM, Bauomy AA, Dkhil MA, Amer OSO, Al-Quraishy S (2013) Role of Morus alba in ameliorating Schistosoma mansoni-induced renal and testicular injuries in mice. Pak J Zool 45:1367–1375

    Google Scholar 

  • Dkhil MA (2014) Role of berberine in ameliorating Schistosoma mansoni-induced hepatic injury in mice. Biol Res 47(1):8

    PubMed  PubMed Central  Google Scholar 

  • Dkhil MA, Bauomy AA, Diab MSM, Wahab R, Delic D, Al-Quraishy S (2015) Impact of gold nanoparticles on brain of mice infected with Schistosoma mansoni. Parasitol Res 114(10):3711-3719

    Article  PubMed  Google Scholar 

  • el-Arini SK, Giron D, Leuenberger H (1998) Solubility properties of racemic praziquantel and its enantiomers. Pharm Dev Technol 3(4):557–564

    Article  CAS  PubMed  Google Scholar 

  • Farias LP, Cardoso FC, Miyasato PA, Montoya BO, Tararam CA, Roffato HK et al (2010) Schistosoma mansoni Stomatin like protein-2 is located in the tegument and induces partial protection against challenge infection. PLoS Negl Trop Dis 4:e597

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrari TC (2004) Involvement of central nervous system in the schistosomiasis. Mem Inst Oswaldo Cruz 99:59–62

    Article  PubMed  Google Scholar 

  • Ferrari TC, Moreira PR (2011) Neuroschistosomiasis: clinical symptoms and pathogenesis. Lancet Neurol 10(9):853–864

    Article  PubMed  Google Scholar 

  • Fuaad AH, Roubille R, Pearson MS, Pickering DA, Loukas AC, Skwarczynski M, Toth I (2015) The use of a conformational cathepsin D-derived epitope for vaccine development against Schistosoma mansoni. Bioorg Med Chem 23:1307–1312

    Article  Google Scholar 

  • Görner T, Gref R, Michenot D, Sommer F, Tran MN, Dellacherie E (1999) Lidocaine-loaded biodegradable nanospheres. I Optimization of the drug incorporation into the polymer matrix. J Control Release 57:259–268

    Article  PubMed  Google Scholar 

  • Haeseleer F, Imanishi Y, Maeda T, Possin DE, Maeda A, Lee A, Rieke F, Palczewski K (2004) Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function. Nat Neurosci 7(10):1079–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hans ML, Lowman AM (2002) Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 6:319–327

    Article  CAS  Google Scholar 

  • He S, Yang L, Lv Z, Hu W, Cao J, Wei J et al (2010) Molecular and functional characterization of a mortalin-like protein from Schistosoma japonicum (SjMLP/hsp70) as a member of the HSP70 family. Parasitol Res 107:955–966

    Article  PubMed  Google Scholar 

  • Hewitson JP, Hamblin PA, Mountford AP (2005) Immunity induced by the radiation- attenuated schistosome vaccine. Parasite Immunol 27:271–280

    Article  CAS  PubMed  Google Scholar 

  • Isaac RSR, Sakthivel G, Murthy C (2013) Green synthesis of gold and silver nanoparticles using Averrhoa bilimbi fruit extract. J Nanotechnol 2013:6. doi:10.1155/2013/906592

    Article  Google Scholar 

  • Jain KK (2005) Nanotechnology in clinical laboratory diagnostics. Clin Chim Acta 358:37–54

    Article  CAS  PubMed  Google Scholar 

  • Jeon HJ, Jeong YL, Jang MK, Park YH, Nah JW (2000) Effect of solvent on the preparation of surfactant-free poly(d, llactide-co-glycolide) nanoparticles and norfloxacin release characteristics. Int J Pharm 207:99–108

    Article  CAS  PubMed  Google Scholar 

  • Kaittanis C, Santra S, Perez JM (2010) Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv Drug Deliv Rev 62:408–423

    Article  CAS  PubMed  Google Scholar 

  • King CH (2009) Global health: toward the elimination of schistosomiasis. N Engl J Med 360:106–109

    Article  CAS  PubMed  Google Scholar 

  • Kumar DS, Banji D, Madhavi B, Bodanapu V, Dondapati S, Sri AP (2009) Nanostructured porous silicon—a novel biomaterial for drug delivery. Int J Pharm Pharm Sci 1(2):8–16

    Google Scholar 

  • Lakshmi SN, Cato TL (2006) Polymers as biomaterials for tissue engineering and controlled drug delivery. Adv Biochem Eng Biotechnol 102:47–90

    Google Scholar 

  • Lambertucci JR (2010) Acute schistosomiasis mansoni: revisited and reconsidered. Mem Inst Oswaldo Cruz 105:422–435

    Article  PubMed  Google Scholar 

  • Lee CG, Kwon MJ, Yu HJ, Nam SH, Lee J, Ki CS, Lee M (2013) Clinical features and genetic analysis of children with hyperekplexia in Korea. J Child Neurol 28:90–94

    Article  PubMed  Google Scholar 

  • Liu J, Wang X, Shigenaga MK, Yeo HC, Mori A, Ames BN (1996) Immobilization stress causes oxidative damage to lipid, protein, and DNA in the brain of rats. FASEB J 10:1532–1538

    CAS  PubMed  Google Scholar 

  • Liu R, Liu IY, Bi X, Thompson RF, Doctrow SR, Malfroy B, Baudry M (2003) Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc Natl Acad Sci U S A 100:8526–8531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luz PP, Magalhães LG, Pereira AC, Cunha WR, Rodrigues V, Andrade E, Silva ML (2012) Curcumin-loaded into PLGA nanoparticles: preparation and in vitro schistosomicidal activity. Parasitol Res 110:593–598

    Article  PubMed  Google Scholar 

  • Matthews KR (2001) Controlling and coordinating development in vector-transmitted parasites. Science 331(6021):1149–1153

    Article  Google Scholar 

  • Mbanefo EC, Kumagai T, Kodama Y, Kurosak T, Furushima-Shimogawara R, Cherif MS, Mizukami S, Kikuchi M, Huy NT, Ohta N, Sasaki H, Hirayama K (2015) Immunogenicity and antifecundity effect of nanoparticle coated glutathione S-transferase (SjGST) DNA vaccine against murine Schistosoma japonicum infection. Parasitol Int 64:24–31

    Article  CAS  PubMed  Google Scholar 

  • Mitchell KJ, Pinson KI, Kelly OG, Brennan J, Zupicich J, Scherz P, Leighton PA, Goodrich LV, Lu X, Avery BJ, Tate P, Dill K, Pangilinan E, Wakenight P, Tessier-Lavigne M, Skarnes WC (2001) Functional analysis of secreted and transmembrane proteins critical to mouse development. Nat Genet 28:241–249

    Article  CAS  PubMed  Google Scholar 

  • Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73:209–12

    Google Scholar 

  • Moustafa NE, Hegab MH, Hassan MM (1998) Role of ELISA in early detection of Fasciola coproantigens in experimentally infected animals. J Egypt Soc Parasitol 28(2):379–387

    CAS  PubMed  Google Scholar 

  • Navarro M, Hernandez C, Colmenares I, Hernandez P, Fernandez M, Sierraalta A (2007) Synthesis and characterization of [Au(dppz)2] Cl3. DNA interaction studies and biological activity against Leishmania (L) Mexicana. J Inorg Biochem 101:111–116

    Article  CAS  PubMed  Google Scholar 

  • Nayaka AP, Tiyaboonchai W, Patankar S, Madhusudhan B, Souto EB (2010) Curcuminoids-loaded lipid nanoparticles: a novel approach towards malaria treatment. Colloids Surf B Biointerfaces 81(1):263–273

    Article  Google Scholar 

  • Nishioka Y, Yoshino H (2001) Lymphatic targeting with nanoparticulate system. Adv Drug Deliv Rev 47:55–64

    Article  CAS  PubMed  Google Scholar 

  • Nunes A, Al-Jama KT, Kostarelos K (2012) Therapeutics, imaging and toxicity of nanomaterials in the central nervous system. J Control Release 161:290–296

    Article  CAS  PubMed  Google Scholar 

  • Oliveira CR, Rezende CM, Silva MR, Pêgo AP, Borges O, Goes AM (2012) A new strategy based on SmRho protein loaded chitosan nanoparticles as a candidate oral vaccine againstschistosomiasis. PLoS Negl Trop Dis 6(11):e1894

    Article  PubMed  PubMed Central  Google Scholar 

  • Panyala NR, Peña-Méndez EM, Havel J (2009) Gold and nano-gold in medicine: overview, toxicology and perspectives. J Appl Biomed 7:75–91

    CAS  Google Scholar 

  • Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Wu J, Wang J, Li W, Yu S (2012) Study and evaluation of Wondfo rapid diagnostic kit based on nano-gold immunochromatography assay for diagnosis of Plasmodium falciparum.ParasitolRes 110:1421–1425

    Google Scholar 

  • Rabello AL, Pontes LA, Dias-neto A (2002) Recent advances in the diagnosis of schistosoma infection: the detection of parasite DNA. Mem Inst Oswaldo Cruz 97:171–172

    Article  PubMed  Google Scholar 

  • Richards DG, McMillin DL, Mein EA, Nelson CD (2002) Gold and its relationship to neurological/glandular conditions. Int J Neurosci 112:31–53

    Article  PubMed  Google Scholar 

  • Romero EL, Morilla MJ (2010) Nanotechnological approaches against Chagas disease. Adv Drug Deliv Rev 62(4–5):576–588

    Article  CAS  PubMed  Google Scholar 

  • Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  CAS  PubMed  Google Scholar 

  • Sadowski Z (2010) Biosynthesis and application of silver and gold nanoparticles, chap 13. In: Perez DP (ed) (2010) Silver nanoparticles, Nanotechnology and nanomaterials. InTech

    Google Scholar 

  • Sagane K, Yamazaki K, Mizui Y, Tanaka I (1999) Cloning and chromosomal mapping of mouse. ADAM11, ADAM22 and ADAM23. Gene 236:79–86

    Article  CAS  PubMed  Google Scholar 

  • Salah F, El Bassiouny A, Rabia I, Demerdash Z, Roshdy M, Shaker Z (2006) Human schistosomiasis haematobium: effective diagnosis of active infection using a pair of monoclonal antibodies against soluble egg antigen. Parasitol Res 99:528–553

    Article  CAS  PubMed  Google Scholar 

  • Saritha K, Saraswathi U, Singaravelu G, Revathi S, Jayanthi V (2014) Biological synthesis and characterization of gold nanoparticles using Lemna minor. Asian J Pharm Clin Res 7(2):165–167

    Google Scholar 

  • Sher A, Jankovic D, Cheever A, Wynn T (1996) An IL-12-based vaccine approach for preventing immunopathology in schistosomiasis. Ann N Y Acad Sci 795:202–207

    Article  CAS  PubMed  Google Scholar 

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    Article  CAS  PubMed  Google Scholar 

  • Steinfelder S, Andersen JF, Cannons JL, Feng CG, Joshi M, Dwyer D et al (2009) The major component in schistosome eggs responsible for conditioning dendritic cells for Th2 polarization is a T2 ribonuclease (omega-1). J Exp Med 206:1681–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tadmouri A, Kiyonaka S, Barbado M, Rousset M, Fablet K, Sawamura S, Bahembera E, Pernet-Gallay K, Arnoult C, Miki T, Sadoul K, Gory-Faure S, Lambrecht C, Lesage F, Akiyama S, Khochbin S, Baulande S, Janssens V, Andrieux A, Dolmetsch R, Ronjat M, Mori Y, De Waard M (2012) Cacnb4 directly couples electrical activity to gene expression, a process defective in juvenile epilepsy. EMBO J 31(18):3730–3744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Jin H, Du X, Cai C, Yu Y, Zhao G et al (2008) The protective efficacy against Schistosoma japonicum infection by immunization with DNA vaccine and levamisole as adjuvant in mice. Vaccine 26:1832–1845

    Article  CAS  PubMed  Google Scholar 

  • Watford WT, Moriguchi M, Morinobu A, O’Shea JJ (2003) The biology of IL-12: innate and adaptive immune responses. Cytokine Growth Factor Rev 14:361-368

    Google Scholar 

  • WHO (2015) World schistosomiasis report. World Health Organization, Geneva

    Google Scholar 

  • Xu X, Zhang D, Sun W, Zhang Q, Zhang J, Xue X et al (2009) A Schistosoma japonicum chimeric protein with a novel adjuvant induced a polarized Th1 immune response and protection against liver egg burdens. BMC Infect Dis 9:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng S, Yong K, Roy I, Dinh X, Yu X, Luan F (2011) A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 6:491–506

    Article  CAS  Google Scholar 

  • Zhang Y, Taylor G, Johansen V, Bickle QD (2001) Vaccination of mice with a cocktail DNA vaccine induces a Th1-type immune response and partial protection against Schistosoma japonicum infection. Vaccine 20:724–730

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Paul WE (2008) CD4 T cells: fates, functions, and faults. Blood 112:1557–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Dkhil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dkhil, M.A., Nafady, D.A., Diab, M.S.M., Bauomy, A.A., Al-Quraishy, S. (2016). Nanoparticles Against Schistosomiasis. In: Mehlhorn, H. (eds) Nanoparticles in the Fight Against Parasites. Parasitology Research Monographs, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-25292-6_10

Download citation

Publish with us

Policies and ethics