Skip to main content

Microbial Nanoparticles as Mosquito Control Agents

  • Chapter
  • First Online:
Nanoparticles in the Fight Against Parasites

Part of the book series: Parasitology Research Monographs ((Parasitology Res. Monogr.,volume 8))

  • 1021 Accesses

Abstract

In recent past, the nano-material research is one of the burgeoning field having influence Medicine, Biology and Agriculture. The novel properties of nanoparticles possess enormous potential to delivering capping substances across the cytoplasmic membrane by active transport. It also considered as one of the prime technology of the twenty-first century and made a foot-print for scientists those who interested on green nanoparicles. The manipulation of matters at a nano scale which creates much new innovation and it unique properties could be used to deliver the materials in a specific target sites. However much burdened to use of other chemical substances are hazardous to nature and lead to bio-magnification in living system. In view of that, there is an urgent need to widen environmentally benign procedures could be adopted and explore the unravel living microorganisms like fungi, algae, bacteria, and viruses have been used for the production of proteins and other compounds elicit during the multiplications which could used be as capping agents with metallic nanoparticles to deliver the specific domains. The rapid advancing nanotechnology is recently envisaged in the field of plant secondary metabolites and non-nutrient proteins derived from plants can be used for metallic nanoparticle synthesis which aids to most effective on control the human mosquito vectors and agricultural pests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28:313–318

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003b) Intracellular synthesis of gold nanoparticles by a novel alkalo-tolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828

    Article  CAS  Google Scholar 

  • Anil Kumar S, Majid KA, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan M (2007) Nitrate reductase mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445

    Article  CAS  PubMed  Google Scholar 

  • Ankamwar B, Damle C, Ahmad A, Sastry M (2005) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 5:1665–1671

    Article  CAS  PubMed  Google Scholar 

  • Arora S, Jain J, Rajwade JM, Paknikar KM (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179:93–100

    Article  CAS  PubMed  Google Scholar 

  • Asharani PV, Wu YL, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebra fish models. Nanotechnology 19:255102

    Article  CAS  PubMed  Google Scholar 

  • Bai Wei, Tian Wenjing, Zhang Zhiyoug, He Xiao, Ma Yuhui, Liu Nianqing, Chai Zhifang (2010) Effects of copper nanoparticles on the development of zebra fish embryos. J Nanosci Nanotechnol 10(12):8670–8676

    Google Scholar 

  • Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B 68:88–92

    Article  CAS  Google Scholar 

  • Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23:7–18

    Article  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiotics 58:1–26

    Google Scholar 

  • Bhainsa CK, D’Souza FS (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B 47:160–164

    Article  CAS  Google Scholar 

  • Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306

    Article  CAS  PubMed  Google Scholar 

  • Bosetti M, Masse A, Tobin Ea Cannas M (2002) Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials 23:887–892

    Article  CAS  PubMed  Google Scholar 

  • Chae YJ, Chi Pham CH, Lee J, Bae E, Yi J, Gu MB (2009) Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat Toxicol 94:320–327

    Article  CAS  PubMed  Google Scholar 

  • Chimentao RJ, Kirm I, Medina F, Rodriguez X, Cesteros Y, Salagre P, Sueiras JE (2004) Different morphologies of silver nanoparticles as catalysts for the selective oxidation of styrene in the gas phase. Chem Commun 7:846–847

    Article  Google Scholar 

  • Cho M, Chung H, Choi W, Yoon J (2005) Different inactivation behavior of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl Environ Microbiol 71:270–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi H, Stathathos E, Dionysiou D (2007) Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems. Desalination 202:199–206

    Article  CAS  Google Scholar 

  • Cristina I, Danel A, Avni P, Dan V, Silvana A, Kenneth N, Wallance (2009) Toxicity and developmental defects of different sizes and shape nickel nanoparticles in Zebra fish Enviro Sci Tech 43:6349–6356

    Google Scholar 

  • Das VL, Thomas R, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK (2014) Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech 4:121–126

    Article  PubMed  Google Scholar 

  • Deng Z, Chen M, Wu L (2007) Novel method to fabricate SiO2/Ag composite spheres and their catalytic, surface-enhanced raman scattering properties. J Phys Chem C 31:11692–11698

    Article  Google Scholar 

  • Dhanasekaran D, Thangaraj R (2013) Evaluation of larvicidal activity of biogenic nanoparticles against filariasis causing Culex mosquito vector. Asi Pac J Trop Dis 3:174–179

    Article  CAS  Google Scholar 

  • Duran N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Nanobiotechnology 3:8–14

    Article  Google Scholar 

  • Duran N, Marcato PD, DeS, Gabriel IH, Alves OL, Esposito E (2007) Antimicrobial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotech 3:203–208

    Google Scholar 

  • Evanoff DD Jr, Chumanov G (2004) Size-controlled synthesis of nanoparticles. Silver-only aqueous suspensions via hydrogen reduction. J Phys Chem B 108:13948–13956

    Article  CAS  Google Scholar 

  • Fent K, Weisbrod CJ, Wirth-Yeller A, Pieles U (2010) Assesment of uptake and toxicity of fluorescent silica nanoparticles in Zebrafish (Danio rerio) early life stages. Aquat Toxicol Nanomat 2:218–228

    Article  Google Scholar 

  • Fernandez EJ, Barrrasa JC, Laguna A, Lopez de-Luzuriaga JM, Monge M, Torres C (2008) The preparation of highly active antimicrobial silver nanoparticles by an organometallic approach. Nanotechnology 19:185602

    Article  PubMed  Google Scholar 

  • Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H (2009) PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 190:156–162

    Article  CAS  PubMed  Google Scholar 

  • Foot Defense (2010) Silver: a study of this precious metal and its use in foot care. http://www.acor.com/Downloads/ebSilverFoot.pdf. Date accessed Feb 2010

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  • Gogoi SK, Gopinath P, Paul A, Ramesh A, Ghosh SS, Chattopadhyay A (2006) Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir 22:9322–9328

    Article  CAS  PubMed  Google Scholar 

  • Gopinath P, Gogoi SK, Chattopadhyay A, Ghosh SS (2008) Implications of silver nanoparticle induced cell apoptosis for in vitro gene therapy. Nanotechnology 19:075104

    Article  CAS  PubMed  Google Scholar 

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B 74:328–335

    Article  CAS  Google Scholar 

  • He B, Tan J, Liew K, Liu H (2004) Synthesis of size controlled Ag nanoparticles. J Mol Catal A Chem 221:121–126

    Article  CAS  Google Scholar 

  • History of Silver (2010) http://www.painreliefwellness.com/clients/2842/documents/History_of_Silver_Usage.pdf. Date accessed Feb 2010

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105

    Google Scholar 

  • Hutter E, Fendler J (2004) Exploitation of localized surface Plasmon resonance. Adv Mater 16:1685–1706

    Article  CAS  Google Scholar 

  • Information and History of Silver (2010) http://www.cctechnologies.com.au/PDF/Information%20and%20history%20of%20silver.pdf

  • Ingle A, Gade A, Pierrat S, Sönnichsen C, Mahendra R (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    Article  CAS  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    Article  CAS  Google Scholar 

  • Iyer KS, Raston CL, Saunders M (2007) Continuous flow nano-technology: manipulating the size, shape, agglomeration, defects and phases of silver nanoparticles. Lab Chip 7:1800–1805

    Article  CAS  PubMed  Google Scholar 

  • Jain D, Kachhwaha S, Jain R, Srivastava G, Kothari SL (2010) Novel microbial route to synthesize silver nanoparticles using spore crystal mixture of Bacillus thuringiensis. Indian J Exp Biol 48:1152–1156

    CAS  PubMed  Google Scholar 

  • Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V (2010) A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40:328–346

    Article  CAS  PubMed  Google Scholar 

  • Kalimuthu K, Babu SR, Venkataraman DM, Bilal Gurunathan S (2008) Biosynthesis of silver nanoparticles by Bacillus licheniformis. Colloids Surf B 65:150–153

    Article  CAS  Google Scholar 

  • Kalimuthu K, Vijayakumar S, Senthilkumar R (2010) Antimicrobial activity of the biodiesel plant, Jatropha curcas L. Int J Pharm Bio Sci 1:1–5

    Google Scholar 

  • Kalishwaralal K, Deepak V, Pandian SRK, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mat Lett 62:4411–4413

    Article  CAS  Google Scholar 

  • Kalishwaralal K, Banumathi E, Pandian SRK (2009) Silver nano particles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids and surface B Biointerfacs 73:51–57

    Google Scholar 

  • Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, BarathManiKanth S, Karthikeyan S, Gurunathan S (2010) Biosynthesis of silver and gold nanoparticles Brevibacterium casei. Colloids Surf B 77:257–262

    Article  CAS  Google Scholar 

  • Kashiwada S (2006) Distribution of nanoparticles in the see through medaka (Oryzias latipes). Environ Health Perspect 114:1697–1702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kashiwagi Y, Yamamoto M, Nakamoto M (2006) Facile size-regulated synthesis of silver nanoparticles by controlled thermolysis of silver alkylcarboxylates in the presence of alkylamines with different chain lengths. J Colloid Interface Sci 300:169–175

    Article  CAS  PubMed  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B 71:133–137

    Article  CAS  Google Scholar 

  • Kawata K, Osawa M, Okabe S (2009) In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43:6046–6051

    Article  CAS  PubMed  Google Scholar 

  • Keating CD, Kovaleski KK, Natan M (1998) Heightened electromagnetic fields between metal nanoparticles: surface enhanced Raman scattering from metal-Cytochrome c-metal sandwiches. J Phys Chem B 102:9414–9425

    Article  CAS  Google Scholar 

  • Kerry J, Lee, Prakash D, Nallathambi, Lauren M, Browning, Christober J Osgood, Xiao-Hong NX (2007) In Vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of Zebra fish embryos. ACS Nano 1:133–143

    Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, Ryu DY (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 23:1076–1084

    Article  CAS  PubMed  Google Scholar 

  • Kiruba Daniel SCG, Anitha Sironmani T, Tharmaraj T, Pitchumani K (2010) Toxicity and Immunological activity of silver nanoparticles. Appl Clay Sci 48:547–551

    Article  Google Scholar 

  • Kiruba Daniel S C G, Kumar R, Sathish V, Sivakumar M, Sunitha S, Anitha Sironmani T, (2011) Green synthesis (Ocimum tenuiflorum) of silver nanoparticles and oxicity studoies in Zebra fish (Danio rerio) Model. Int J Nano sci and Tech 2:103–117

    Google Scholar 

  • Korbekandi H, Iravani S, Abbasi S (2009) Production of nanoparticles using organisms. Crit Rev Biotechnol 29:279–306

    Article  CAS  PubMed  Google Scholar 

  • Kumar CV, Mc Lendon GL (1997) Nanoencapsulation of cytochrome c and horseradish peroxdase at the galleries of alpha-zirconium phosphate. Chem Mater 9:863–870

    Google Scholar 

  • Laban G, Nies LF, Turco RF, Bickham JW, Sepulveda MS (2009) The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology 19:185–195

    Article  Google Scholar 

  • Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395

    Article  CAS  Google Scholar 

  • Lengke FM, Fleet EM, Southam G (2007) Biosynthesis of silver nanoparticles by filamentous Cyanobacteria a from a silver (I) nitrate complex. Langmuir 23:2694–2699

    Article  CAS  PubMed  Google Scholar 

  • Li G, Chao K, Ye C, Peng H (2008) One-step synthesis of Ag nanoparticles supported on AgVO3 nanobelts. Mater Lett 62:735–738

    Article  CAS  Google Scholar 

  • Lindemann PA (1997) Colloidal silver: a closer look. http://www.free-energy.ws/pdf/cs_closer_look.pdf. Date accessed Feb 2010

  • Lubick N (2008) Nanosilver toxicity: ions, nanoparticles-or both? Environ Sci Technol 42:8617

    Article  CAS  PubMed  Google Scholar 

  • Macdonald IDG, Smith W (1996) Orientation of Cytochrome c adsorbed on a citrate- reduced silver colloid surface. Langmuir 12:706

    Article  CAS  Google Scholar 

  • Maliszewska I, Szewczyk K, Waszak K (2009) Biological synthesis of silver nanoparticles. J Phys Conf Ser 146:1–6

    Google Scholar 

  • Minaeian S, Shahvedrdi AR, Nohi AS, Shahverdi HR (2008) Extracellular biosynthesis of silver nanoparticles by some bacteria. J Sci Islam Azad Univ 17:1–4

    Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  PubMed  Google Scholar 

  • Najitha Banu A, Balasubramanian C (2014a) Myco-synthesis of silver nanoparticles using Beauveria bassiana against dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 113:2869–2877

    Article  PubMed  Google Scholar 

  • Najitha Banu A, Balasubramanian C (2014b) Optimization and synthesis of silver nanoparticles using Isaria fumosorosea against human vector mosquitoes. Parasitol Res 113:3843–3851

    Article  PubMed  Google Scholar 

  • Najitha Banu A, Balasubramanian C, Vinayaga Moorthi P (2014) Biosynthesis of silver nanoparticles using Bacillus thuringiensis against dengue vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 113:311–316

    Article  PubMed  Google Scholar 

  • Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 5:452–456

    Article  CAS  PubMed  Google Scholar 

  • Nano Health Solutions (2010) http://www.fulvic.org/html/nano_silver.html. Accessed May 2010. p 318

  • Nanotech Plc. (2010) http://www.jrnanotech.com/acatalog/More_Info.html

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Bhra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964

    Article  CAS  PubMed  Google Scholar 

  • Niemeyer CM (2001) Nanoparticles, proteins and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158

    Article  CAS  Google Scholar 

  • Rani PVA, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290

    Article  Google Scholar 

  • Rao CNR, Cheetham AK (2001) Science and technology of nanomaterials: current status and future prospects. J Mater Chem 11:2887–2894

    Article  CAS  Google Scholar 

  • Rao CRK, Trivedi DC (2006) Biphasic synthesis of fatty acids stabilized silver nanoparticles: role of experimental conditions on particle size. Mater Chem Phys 99:354–360

    Article  CAS  Google Scholar 

  • Roco MC (2003) Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14:337–346

    Article  CAS  PubMed  Google Scholar 

  • Russell AD, Russell NJ (1995) Biocides: activity, action and resistance. In: Hunter PA, Darby GK, Russell NJ (eds) Fifty years of antimicrobials: past perspectives and future trends. Cambridge University Press, Cambridge

    Google Scholar 

  • Sadowski Z, Maliszewska IH, Grochowalska B, Polowczyk I, Kozlecki T (2008) Synthesis of silver nanoparticles using microorganisms. Materi Sci Pol 26:419–424

    CAS  Google Scholar 

  • Saifuddin N, Wong CW, Nur Yasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-J Chem 6(1):61–70

    Article  CAS  Google Scholar 

  • Sanghi R, Verma P (2009) Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresour Technol 100:501–504

    Article  CAS  PubMed  Google Scholar 

  • Sangiliyandi G, Jae WH, Vasuki E, Muniyandi J, Jin-Hoi K (2013) Cytotoxicity of biologically synthesized silver nanoparticles in mda-mb-231 human breast cancer cells. Bio Med Research International (Hindwai publishing corporation) 2013:1–10

    Google Scholar 

  • Sanpui P, Chattopadhyay A, Ghosh SS (2011) Induction of apoptosis in cancer cells at low silver nanoparticle concentration using chitosan nanocarrier. Appl Mater Interfaces 3:218–228

    Article  CAS  Google Scholar 

  • Sap-Iam N, Hoomklinchan C, Larpudomlert R, Warisnoicharoen W, Sereemaspun A, Dubas T (2010) UV irradiation-induced silver nanoparticles as mosquito larvicides. J Appl Sci 10:3132–3136

    Article  CAS  Google Scholar 

  • Saravanan M, Vemu AK, Barik SK (2011) Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloids Surf B 88:325–331

    Article  CAS  Google Scholar 

  • Sareen Sarah J, Pillai Raji K, Chandramohanakumar N, Balagopalan M (2012) Larvicidal potential of biologically synthesized silver nanoparticles against Aedes albopictus. Res J Recent Sci 1:52–56

    Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nano particles using fungi and actinomycetes. Curr Sci 82:162–170

    Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry (2004) Rapid synthesis of Au, Ag and biometalic Au+core-Ag shell nanoparticles using neem (Azadirachta indica) leaf bits. J Colloids Interface Sci 275: 496–502

    Google Scholar 

  • Shivaji S, Madhu S, Singh S (2011) Extracellular synthesise of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 49:830–837

    Google Scholar 

  • Siddhardha B, Ramakrishna V, Anil Kumar KK, Gupta RC (2012) Dubey and Basaveswara Rao MV2 In vitro antimicrobial and larvicidal spectrum of certain bioactive fungal extracts. Int J Res Pharm Biomedical Sci 3:115–155

    Google Scholar 

  • Sintubin L, De Windt W, Dick J, Mast J, Ha DV, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84(4):741–749

    Article  CAS  PubMed  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E.coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  PubMed  Google Scholar 

  • Soni N, Prakash S (2012) Synthesis of gold nanoparticles by the fungus Aspergillus niger and its efficacy against mosquito larvae. Rep Parasitol 2:1–7

    Google Scholar 

  • Soni N, Prakash S (2013) Possible mosquito control by silver nanoparticles synthesized by soil fungus (Aspergillus niger 2587). Adv Nanoparticles 2:125–132

    Article  Google Scholar 

  • Sriram MI, Kanth SB, Kalishwaralal K, Gurunathan S (2010) Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int J Nanomed 5:753–762

    CAS  Google Scholar 

  • Sun S, Murray CB, Weller D, Floks L, Moser A (2000) Characterization of silver nanoparticles using medicinal plants. J Nanomater 287:1989–1992

    CAS  Google Scholar 

  • USFDA (2010) US food and Drug Administration. http://www.fda.gov/ScienceResearch/SpecialTopics/Nanotechnology/ucm153723.htm. Date accessed Feb 2010

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B 53:55–59

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Ashtaputrea NM, Varadarajana PV, Nachanea RP, Paralikaraand KM, Balasubramanyaa RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus Flavus. Mater Lett 61:1413–1418

    Article  CAS  Google Scholar 

  • Vilchis-Nestor AR, Sánchez-Mendieta V, Camacho-López MA, Gómez-Espinosa RM, Camacho-López MA, Arenas-Alatorre JA (2008) Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Mat Lett 62:3103–3105

    Google Scholar 

  • Wei Bai, Zhiyong Zhang, Wenjing Tian, Xiao He, Yuhui Ma, Yuliang Zhao, Zhifang chai (2010) Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J Nanopart Res 12:1645–1654

    Google Scholar 

  • Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, van de Meent D, Dekkers S, de Jong WH, van Zijverden M, Sips AJAM, Geertsma RE (2009) Nanosilver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138

    Article  CAS  Google Scholar 

  • Wikipedia (2010) The free encyclopedia. http://en.wikipedia.org/wiki/Silver. Date accessed Feb 2010

  • Yeo SY, Lee HJ, Jeong SH (2003) Preparation of nanocomposite fibers for permanent antibacterial effect. J Mater Sci 38:2143–2147

    Article  CAS  Google Scholar 

  • Yoosaf KB, Ipe I, Suresh CH, Thomas KG (2007) In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. J Phys Chem C 111:12839–12847

    Article  CAS  Google Scholar 

  • Zhang J, Chen P, Sun C, Hu X (2004) Sonochemical synthesis of colloidal silver catalysts for reduction of complexing silver in DTR system. Appl Catal A 266:49–54

    Google Scholar 

  • Zhang W, Qiao X, Chen J, Wang J (2006) Preparation of silver nanoparticles in water-in-oil AOT reverse micelles. J Colloid Interface Sci 302:370–373

    Article  CAS  PubMed  Google Scholar 

  • Zhu TJ , Liu YQ, Zhao, Zhao XB (2008) Synthesis of PbTe thermoelectric matrials by alkaline reducing chemical routs. Mat Res Bull 43:2850–285

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Najitha Banu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Balasubramanian, C., Banu, A.N. (2016). Microbial Nanoparticles as Mosquito Control Agents. In: Mehlhorn, H. (eds) Nanoparticles in the Fight Against Parasites. Parasitology Research Monographs, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-25292-6_6

Download citation

Publish with us

Policies and ethics