Skip to main content

Novel Concepts in Design and Fabrication of ‘Living’ Bioprosthetic Heart Valves: From Cell Mechanosensing to Advanced Tissue Engineering Applications

  • Chapter
  • First Online:
Regenerative Medicine - from Protocol to Patient

Abstract

Despite the use of bio-valve prostheses to replace diseased heart valves dates more than 50 years ago, and the large and increasing need of this type of implants for heart surgery worldwide, definitive solutions to manufacture ‘lifetime-long’ valve replacements are not yet available. In fact, although various problems in the manufacturing process of these implants have been circumvented compared with the beginnings, these solutions have not yet led to a full biological compatibility in the human system due to long term inflammation, calcification and ultimately structural valve deterioration. Importantly, the more limited duration of the valve bio-prostheses occur in pediatric patients and adults under the age of 65. These are the patients who more often need prosthesis replacement and therefore new invasive surgical interventions with a compromised quality of life.

The present contribution is centred onto the dissection of the valve cells response to mechanical stimuli regulated by the extracellular matrix, and new engineering systems that have been set up to mimic the tissue mechanics in the heart valve leaflets and manufacture the ‘living bioprosthetic’ valves. This latter goal is being pursued intensely worldwide by exploiting the most advanced technologies in material science and scaffolds design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balaoing LR, Post AD, Lin AY, Tseng H, Moake JL, Grande-Allen KJ (2015) Laminin peptide-immobilized hydrogels modulate valve endothelial cell hemostatic regulation. PLoS One 10(6):e0130749

    Article  PubMed  PubMed Central  Google Scholar 

  • Balguid A, Rubbens MP, Mol A, Bank RA, Bogers AJ, van Kats JP et al (2007) The role of collagen cross-links in biomechanical behavior of human aortic heart valve leaflets--relevance for tissue engineering. Tissue Eng 13(7):1501–1511. Epub 2007/05/24

    Article  CAS  PubMed  Google Scholar 

  • Balguid A, Driessen NJB, Mol A, Schmitz JPJ, Verheyen F, Bouten CVC et al (2008) Stress related collagen ultrastructure in human aortic valves—implications for tissue engineering. J Biomech 41(12):2612–2617

    Article  PubMed  Google Scholar 

  • Bertazzo S, Gentleman E, Cloyd KL, Chester AH, Yacoub MH, Stevens MM (2013) Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification. Nat Mater 12(6):576–583

    Article  CAS  PubMed  Google Scholar 

  • Biggins JS, Royer C, Watanabe T, Srinivas S (2015) Towards understanding the roles of position and geometry on cell fate decisions during preimplantation development. Semin Cell Dev Biol 47:74–79. doi: 10.1016/j.semcdb.2015.09.006. Epub 2015/09/5

    Google Scholar 

  • Blagoev KB (2011) Organ aging and susceptibility to cancer may be related to the geometry of the stem cell niche. Proc Natl Acad Sci 108(48):19216–19221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchareb R, Boulanger M-C, Fournier D, Pibarot P, Messaddeq Y, Mathieu P (2014) Mechanical strain induces the production of spheroid mineralized microparticles in the aortic valve through a RhoA/ROCK-dependent mechanism. J Mol Cell Cardiol 67:49–59

    Article  CAS  PubMed  Google Scholar 

  • Breuer CK, Mettler BA, Anthony T, Sales VL, Schoen FJ, Mayer JE (2004) Application of tissue-engineering principles toward the development of a semilunar heart valve substitute. Tissue Eng 10(11–12):1725–1736. Epub 2005/02/03

    Article  CAS  PubMed  Google Scholar 

  • CardioPulse Articles Biological heart valves The future of heart valve replacement Executive summary of the position paper of the German Cardiac Society on quality criteria for the implementation of transcatheter aortic valve implantation (TAVI) Computing in…. Eur Heart J 2015, 36(6):325–332

    Google Scholar 

  • Carpentier A, Lemaigre G, Robert L, Carpentier S, Dubost C (1969) Biological factors affecting long-term results of valvular heterografts. J Thorac Cardiovasc Surg 58(4):467–483. Epub 1969/10/01

    CAS  PubMed  Google Scholar 

  • Chen JH, Yip CY, Sone ED, Simmons CA (2009) Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential. Am J Pathol 174(3):1109–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dainese L, Guarino A, Burba I, Esposito G, Pompilio G, Polvani G et al (2012) Heart valve engineering: decellularized aortic homograft seeded with human cardiac stromal cells. J Heart Valve Dis 21(1):125–134. Epub 2012/04/06

    PubMed  Google Scholar 

  • David TE (2013) Surgical treatment of aortic valve disease. Nat Rev Cardiol 10(7):375–386. Epub 2013/05/15

    Article  PubMed  Google Scholar 

  • De Visscher G, Vranken I, Lebacq A, Van Kerrebroeck C, Ganame J, Verbeken E et al (2007) In vivo cellularization of a cross-linked matrix by intraperitoneal implantation: a new tool in heart valve tissue engineering. Eur Heart J 28(11):1389–1396. Epub 2007/01/25

    Article  PubMed  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  CAS  PubMed  Google Scholar 

  • Engler AJ, Rehfeldt F, Sen S, Discher DE (2007) Microtissue elasticity: measurements by atomic force microscopy and its influence on cell differentiation. Methods in cell biology 83:521–545

    Google Scholar 

  • Forcillo J, Pellerin M, Perrault LP, Cartier R, Bouchard D, Demers P et al (2013) Carpentier-Edwards pericardial valve in the aortic position: 25-years experience. Ann Thorac Surg 96(2):486–493

    Article  PubMed  Google Scholar 

  • Galili U (2005) The [alpha]-gal epitope and the anti-Gal antibody in xenotransplantation and in cancer immunotherapy. Immunol Cell Biol 83(6):674–686

    Article  CAS  PubMed  Google Scholar 

  • Gould RA, Chin K, Santisakultarm TP, Dropkin A, Richards JM, Schaffer CB et al (2012) Cyclic strain anisotropy regulates valvular interstitial cell phenotype and tissue remodeling in three-dimensional culture. Acta Biomater 8(5):1710–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabenwoger M, Sider J, Fitzal F, Zelenka C, Windberger U, Grimm M et al (1996) Impact of glutaraldehyde on calcification of pericardial bioprosthetic heart valve material. Ann Thorac Surg 62(3):772–777

    CAS  PubMed  Google Scholar 

  • Gray DS, Tien J, Chen CS (2003) Repositioning of cells by mechanotaxis on surfaces with micropatterned Young’s modulus. J Biomed Mater Res Part A 66A(3):605–614

    Article  CAS  Google Scholar 

  • Hammer PE, Pacak CA, Howe RD, del Nido PJ (2014) Straightening of curved pattern of collagen fibers under load controls aortic valve shape. J Biomech 47(2):341–346

    Article  PubMed  PubMed Central  Google Scholar 

  • Hinton RB, Yutzey KE (2011) Heart valve structure and function in development and disease. Annu Rev Physiol 73(1):29–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hjortnaes J, Camci-Unal G, Hutcheson JD, Jung SM, Schoen FJ, Kluin J et al (2015) Directing valvular interstitial cell myofibroblast-like differentiation in a hybrid hydrogel platform. Adv Healthc Mater 4(1):121–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoerstrup SP, Kadner A, Melnitchouk S, Trojan A, Eid K, Tracy J et al (2002) Tissue engineering of functional trileaflet heart valves from human marrow stromal cells. Circulation 106(12 suppl 1):I-143-I-50

    Google Scholar 

  • Hülsmann J, Grün K, El Amouri S, Barth M, Hornung K, Holzfuß C et al (2012) Transplantation material bovine pericardium: biomechanical and immunogenic characteristics after decellularization vs. glutaraldehyde-fixing. Xenotransplantation 19(5):286–297

    Article  PubMed  Google Scholar 

  • Iop L, Bonetti A, Naso F, Rizzo S, Cagnin S, Bianco R et al (2014) Decellularized allogeneic heart valves demonstrate self-regeneration potential after a long-term preclinical evaluation. PLoS One 9(6):e99593

    Article  PubMed  PubMed Central  Google Scholar 

  • Jana S, Tefft BJ, Spoon DB, Simari RD (2014) Scaffolds for tissue engineering of cardiac valves. Acta Biomater 10(7):2877–2893

    Article  CAS  PubMed  Google Scholar 

  • Johnson MH, Ziomek CA (1981) Induction of polarity in mouse 8-cell blastomeres: specificity, geometry, and stability. J Cell Biol 91(1):303–308

    Article  CAS  PubMed  Google Scholar 

  • Khatiwala CB, Kim PD, Peyton SR, Putnam AJ (2009) ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK. J Bone Miner Res 24(5):886–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kheradvar A, Groves E, Goergen C, Alavi SH, Tranquillo R, Simmons C, et al (2015) Emerging trends in heart valve engineering: part II. Novel and standard technologies for aortic valve replacement. Ann Biomed Eng 43(4):844–857

    Google Scholar 

  • Kheradvar A, Groves E, Dasi L, Alavi SH, Tranquillo R, Grande-Allen KJ et al (2015) Emerging trends in heart valve engineering: part I. Solutions for future. Ann Biomed Eng 43(4):833–843

    Article  PubMed  Google Scholar 

  • Kilian KA, Bugarija B, Lahn BT, Mrksich M (2010) Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A 107(11):4872–4877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D-H, Khatau SB, Feng Y, Walcott S, Sun SX, Longmore GD et al (2012) Actin cap associated focal adhesions and their distinct role in cellular mechanosensing. Sci Rep 2:555

    PubMed  PubMed Central  Google Scholar 

  • Konakci KZ, Bohle B, Blumer R, Hoetzenecker W, Roth G, Moser B et al (2005) Alpha-Gal on bioprostheses: xenograft immune response in cardiac surgery. Eur J Clin Investig 35(1):17–23

    Article  CAS  Google Scholar 

  • Kural MH, Billiar KL (2014) Mechanoregulation of valvular interstitial cell phenotype in the third dimension. Biomaterials 35(4):1128–1137

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Sun Y, Simmons CA (2013) Determination of local and global elastic moduli of valve interstitial cells cultured on soft substrates. J Biomech 46(11):1967–1971

    Article  PubMed  Google Scholar 

  • Loerakker S, Argento G, Oomens CWJ, Baaijens FPT (2013) Effects of valve geometry and tissue anisotropy on the radial stretch and coaptation area of tissue-engineered heart valves. J Biomech 46(11):1792–1800

    Article  CAS  PubMed  Google Scholar 

  • Lueders C, Jastram B, Hetzer R, Schwandt H (2014) Rapid manufacturing techniques for the tissue engineering of human heart valves. Eur J Cardiothorac Surg 46(4):593–601

    Article  PubMed  Google Scholar 

  • MacGrogan D, Luxán G, Driessen-Mol A, Bouten C, Baaijens F, de la Pompa JL (2014) How to make a heart valve: from embryonic development to bioengineering of living valve substitutes. Cold Spring Harb Perspect Med:4(11):a013912

    Google Scholar 

  • Masoumi N, Larson BL, Annabi N, Kharaziha M, Zamanian B, Shapero KS et al (2014a) Electrospun PGS:PCL microfibers align human valvular interstitial cells and provide tunable scaffold anisotropy. Adv Healthc Mater 3(6):929–939. Epub 2014/01/24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masoumi N, Annabi N, Assmann A, Larson BL, Hjortnaes J, Alemdar N et al (2014b) Tri-layered elastomeric scaffolds for engineering heart valve leaflets. Biomaterials 35(27):7774–7785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirsadraee S, Wilcox HE, Korossis SA, Kearney JN, Watterson KG, Fisher J et al (2006) Development and characterization of an acellular human pericardial matrix for tissue engineering. Tissue Eng 12(4):763–773

    Article  CAS  PubMed  Google Scholar 

  • Mirsadraee S, Wilcox HE, Watterson KG, Kearney JN, Hunt J, Fisher J et al (2007) Biocompatibility of acellular human pericardium. J Surg Res 143(2):407–414

    Article  CAS  PubMed  Google Scholar 

  • Morsi YS (2014) Bioengineering strategies for polymeric scaffold for tissue engineering an aortic heart valve: an update. Int J Artif Organs 37(9):651–667. Epub 2014/09/30

    Article  CAS  PubMed  Google Scholar 

  • Mosadegh B, Xiong G, Dunham S, Min JK (2015) Current progress in 3D printing for cardiovascular tissue engineering. Biomed Mater (Bristol, England) 10(3):034002. Epub 2015/03/17

    Google Scholar 

  • Naso F, Gandaglia A, Iop L, Spina M, Gerosa G (2012) Alpha-Gal detectors in xenotransplantation research: a word of caution. Xenotransplantation 19(4):215–220

    Article  PubMed  Google Scholar 

  • Naso F, Gandaglia A, Bottio T, Tarzia V, Nottle MB, d’Apice AJF et al (2013) First quantification of alpha-Gal epitope in current glutaraldehyde-fixed heart valve bioprostheses. Xenotransplantation 20(4):252–261

    Article  PubMed  Google Scholar 

  • Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA et al (2005) Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci U S A 102(33):11594–11599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishioka N, Inoue K-i, Adachi K, Kiyonari H, Ota M, Ralston A et al (2009) The hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16(3):398–410

    Article  CAS  PubMed  Google Scholar 

  • Pelham RJ, Wang Y-l (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci 94(25):13661–13665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peyton SR, Putnam AJ (2005) Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J Cell Physiol 204(1):198–209

    Article  CAS  PubMed  Google Scholar 

  • Quinlan AM, Billiar KL (2012) Investigating the role of substrate stiffness in the persistence of valvular interstitial cell activation. J Biomed Mater Res A 100(9):2474–2482. Epub 2012/05/15

    PubMed  Google Scholar 

  • Ramos AL, Darabi R, Akbarloo N, Borges L, Catanese J, Dineen SP et al (2010) Clonal analysis reveals a common progenitor for endothelial, myeloid, and lymphoid precursors in umbilical cord blood. Circ Res 107(12):1460–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieder E, Seebacher G, Kasimir M-T, Eichmair E, Winter B, Dekan B et al (2005) Tissue engineering of heart valves: decellularized porcine and human valve scaffolds differ importantly in residual potential to attract monocytic cells. Circulation 111(21):2792–2797

    Article  PubMed  Google Scholar 

  • Sacks MS, Schoen FJ, Mayer JE (2009) Bioengineering challenges for heart valve tissue engineering. Annu Rev Biomed Eng 11(1):289–313

    Article  CAS  PubMed  Google Scholar 

  • Schmidt D, Dijkman PE, Driessen-Mol A, Stenger R, Mariani C, Puolakka A et al (2010) Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. J Am Coll Cardiol 56(6):510–520

    Article  PubMed  Google Scholar 

  • Schoen FJ (2008) Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation 118(18):1864–1880

    Article  PubMed  Google Scholar 

  • Siddiqui RF, Abraham JR, Butany J (2009) Bioprosthetic heart valves: modes of failure. Histopathology 55(2):135–144

    Article  PubMed  Google Scholar 

  • van Loosdregt IAEW, Argento G, Driessen-Mol A, Oomens CWJ, Baaijens FPT (2014) Cell-mediated retraction versus hemodynamic loading – a delicate balance in tissue-engineered heart valves. J Biomech 47(9):2064–2069

    Article  PubMed  Google Scholar 

  • van Vlimmeren MA, Driessen-Mol A, Oomens CW, Baaijens FP (2011) An in vitro model system to quantify stress generation, compaction, and retraction in engineered heart valve tissue. Tissue Eng Part C Methods 17(10):983–991. Epub 2011/05/26

    Article  PubMed  Google Scholar 

  • van Vlimmeren MA, Driessen-Mol A, Oomens CJ, Baaijens FT (2012) Passive and active contributions to generated force and retraction in heart valve tissue engineering. Biomech Model Mechanobiol 11(7):1015–1027

    Article  PubMed  Google Scholar 

  • Vinci MC, Tessitore G, Castiglioni L, Prandi F, Soncini M, Santoro R et al (2013) Mechanical compliance and immunological compatibility of fixative-free decellularized/cryopreserved human pericardium. PLoS One 8(5):e64769

    Article  PubMed  PubMed Central  Google Scholar 

  • Vunjak-Novakovic G (2008) Patterning stem cell differentiation. Cell Stem Cell 3(4):362–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P-Y, Tsai W-B, Voelcker NH, 2012. Screening of rat mesenchymal stem cell behaviour on polydimethylsiloxane stiffness gradients. Acta Biomater 8(2), 519–530, DOI:10.1016/j.actbio.2011.09.030, Epub 2011 Sep 28

    Google Scholar 

  • Weber B, Emmert MY, Hoerstrup SP (2012) Stem cells for heart valve regeneration. Swiss Med Wkly 142:w13622. Epub 2012/07/18

    PubMed  Google Scholar 

  • Wyss K, Yip CYY, Mirzaei Z, Jin X, Chen J-H, Simmons CA (2012) The elastic properties of valve interstitial cells undergoing pathological differentiation. J Biomech 45(5):882–887

    Article  PubMed  Google Scholar 

  • Xie J, Zhang Q, Zhu T, Zhang Y, Liu B, Xu J et al (2014) Substrate stiffness-regulated matrix metalloproteinase output in myocardial cells and cardiac fibroblasts: Implications for myocardial fibrosis. Acta Biomater 10(6):2463–2472

    Article  CAS  PubMed  Google Scholar 

  • Yip CY, Chen JH, Zhao R, Simmons CA (2009) Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. Arterioscler Thromb Vasc Biol 29(6):936–942

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Gensch C, Liao JK (2011) Rho-associated coiled-coil-forming kinases (ROCKs): potential targets for the treatment of atherosclerosis and vascular disease. Trends Pharmacol Sci 32(3):167–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Pesce M.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pesce, M., Santoro, R. (2016). Novel Concepts in Design and Fabrication of ‘Living’ Bioprosthetic Heart Valves: From Cell Mechanosensing to Advanced Tissue Engineering Applications. In: Steinhoff, G. (eds) Regenerative Medicine - from Protocol to Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-28274-9_1

Download citation

Publish with us

Policies and ethics