Skip to main content

Biomaterials-Enabled Regenerative Medicine in Corneal Applications

  • Chapter
  • First Online:
Regenerative Medicine - from Protocol to Patient

Abstract

The human cornea is the transparent surface of the eye, which serves as the main refractive element of the visual system. Its function depends upon its optical clarity so irreversible loss of transparency due to disease or damage results in permanent vision loss or blindness, necessitating corneal transplantation (keratoplasty) in entirety or in part. While keratoplasty is considered as one of the most successful forms of transplantation, lack of availability of donor tissues and rejection are major limiting factors. Advances in knowledge of biomaterials and stem cell biology have paved the way for tissue engineering of various organs including cornea. An ideal biomimetic for corneal tissue replacement would be the one which is transparent, provides mechanical support, promotes epithelial resurfacing, corneal innervation, and integrates into the surrounding corneo-scleral tissues and combats infection when challenged. This chapter reviews several of the advances made in development of biomaterials for promoting regeneration of the human cornea, with or without exogenous cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Regenerative Medicine in Corneal Applications.

References

  • Ahmed TA, Giulivi A, Griffith M et al (2011) Fibrin glues in combination with mesenchymal stem cells to develop a tissue-engineered cartilage substitute. Tissue Eng Part A 17(3–4):323–335

    Article  CAS  PubMed  Google Scholar 

  • Ahmed TA, Ringuette R, Wallace VA et al (2015) Autologous fibrin glue as an encapsulating scaffold for delivery of retinal progenitor cells. Front Bioeng Biotechnol 2:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Anseth A (1961) Studies on corneal polysaccharides. III. Topographic and comparative biochemistry. Exp Eye Res 1:106–115

    Article  CAS  PubMed  Google Scholar 

  • Aucoin L, Griffith CM, Pleizier G et al (2002) Interactions of corneal epithelial cells and surfaces modified with cell adhesion peptide combinations. J Biomater Sci Polym Ed 13:447–462

    Article  CAS  PubMed  Google Scholar 

  • Avadhanam VS, Liu CS (2015) A brief review of Boston type-1 and osteo-odonto keratoprostheses. Br J Ophthalmol 99(7):878–887

    Google Scholar 

  • Axelsson I, Heinegard D (1975) Fractionation of proteoglycans from bovine corneal stroma. Biochem J 145:491–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behlau I, Mukherjee K, Todani A et al (2011) Biocompatibility and biofilm inhibition of N, N-hexyl, methyl-polyethylenimine bonded to Boston Keratoprosthesis materials. Biomaterials 32(34):8783–8796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boucher C, Ruiz JC, Thibault M et al (2010) Human corneal epithelial cell response to epidermal growth factor tethered via coiled-coil interactions. Biomaterials 31(27):7021–7031

    Article  CAS  PubMed  Google Scholar 

  • Bray LJ, George KA, Ainscough SL et al (2011) Human corneal epithelial equivalents constructed on Bombyx mori silk fibroin membranes. Biomaterials 32(22):5086– 5091

    Article  CAS  PubMed  Google Scholar 

  • Bray LJ, George KA, Hutmacher DW et al (2012) A dual-layer silk fibroin scaffold for reconstructing the human corneal limbus. Biomaterials 33(13):3529–3538

    Article  CAS  PubMed  Google Scholar 

  • Brown RA, Mudera V (2012) Plastic compaction of a collagen gel. Patent WO2012004564, 12

    Google Scholar 

  • Brown RA, Wiseman M, Chuo C et al (2005) Ultrarapid engineering of biomimetic materials and tissues: fabrication of nano-and microstructures by plastic compression. Adv Funct Mater 15:1762–1770

    Article  CAS  Google Scholar 

  • Brown KD, Low S, Mariappan I et al (2014) Plasma polymer-coated contact lenses for the culture and transfer of corneal epithelial cells in the treatment of limbal stem cell deficiency. Tissue Eng Part A 20(3–4):646–655

    Google Scholar 

  • Burillon C, Huot L, Justin V et al (2011) Cultured Autologous Oral Mucosal Epithelial Cell-Sheet (CAOMECS) transplantation for the treatment of corneal limbal epithelial stem cell deficiency. Invest Ophthalmol Vis Sci 53(3):1325–1331

    Article  Google Scholar 

  • Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P et al (2006) Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials 27(5):724–734

    Article  CAS  PubMed  Google Scholar 

  • Buznyk O, Pasyechnikova N, Islam MM et al (2015) Bioengineered corneas grafted as alternatives to human donor corneas in three high risk patients. Clin Transl Sci. doi:10.1111/cts.12293

    PubMed  PubMed Central  Google Scholar 

  • Casper CL, Yang W, Farach-Carson MC et al (2007) Coating electrospun collagen and gelatin fibers with perlecan domain I for increased growth factor binding. Biomacromolecules 8(4):1116–1123

    Article  CAS  PubMed  Google Scholar 

  • Chae JJ, Ambrose WM, Espinoza FA et al (2015) Regeneration of corneal epithelium utilizing a collagen vitrigel membrane in rabbit models for corneal stromal wound and limbal stem cell deficiency. Acta Ophthalmol 93(1):e57–e66

    Article  CAS  PubMed  Google Scholar 

  • Chang HY, Luo ZK, Chodosh J et al (2015) Primary implantation of type I Boston keratoprosthesis in nonautoimmune corneal diseases. Cornea 34(3):264–270

    PubMed  Google Scholar 

  • Chirila T, Barnard Z, Zainuddin et al (2008) Bombyx mori silk fibroin membranes as potential substrata for epithelial constructs used in the management of ocular surface disorders. Tissue Eng A 14:1203–1211

    Article  CAS  Google Scholar 

  • Choi JS, Williams JK, Greven M et al (2010) Bioengineering endothelialized neo-corneas using donor-derived corneal endothelial cells and decellularized corneal stroma. Biomaterials 31:6738–6745

    Article  CAS  PubMed  Google Scholar 

  • Clinic trial successful for China’s artificial cornea. http://english.cri.cn/7146/2013/10/10/2702s791618.htm

  • ClinicalTrials.gov. Allogeneic Tissue Engineering (Nanostructured Artificial Human Cornea) in Patients With Corneal Trophic Ulcers in Advanced Stages, Refractory to Conventional Ophthalmic) Treatment. Available from: https://clinicaltrials.gov/ct2/show/NCT01765244

  • Cosar CB, Sridhar MS, Cohen EJ et al (2002) Indications for penetrating keratoplasty and associated procedures, 1996–2000. Cornea 21:148–151

    Article  PubMed  Google Scholar 

  • Coster DJ, Williams KA (2005) The impact of corneal allograft rejection on the long-term outcome of corneal transplantation. Am J Ophthalmol 140(6):1112–1122

    Article  PubMed  Google Scholar 

  • Dada T, Sharma N, Vajpayee RB (1999) Indications for pediatric keratoplasty in India. Cornea 18:296–298

    Article  CAS  PubMed  Google Scholar 

  • Daoud YJ, Smith R, Smith T et al (2011) The intraoperative impression and postoperative outcomes of gamma-irradiated corneas in corneal and glaucoma patch surgery. Cornea 30(12):1387–1391

    Article  PubMed  Google Scholar 

  • De Roth A (1940) Plastic repair of conjunctival defects with fetal membrane. Arch Ophthalmol 23:522–525

    Article  Google Scholar 

  • Deshpande P, Notara M, Bullett N et al (2009) Development of a surface-modified contact lens for the transfer of cultured limbal epithelial cells to the cornea for ocular surface diseases. Tissue Eng Part A 15(10):2889–2902

    Article  CAS  PubMed  Google Scholar 

  • Doillon CJ, Watsky MA, Hakim M et al (2003) A collagen-based scaffold for a tissue engineered human cornea: physical and physiological properties. Int J Artif Organs 26(8):764–773

    CAS  PubMed  Google Scholar 

  • Dravida S, Gaddipati S, Griffith M et al (2008) A biomimetic scaffold for culturing limbal stem cells: a promising alternative for clinical transplantation. J Tissue Eng Regen Med 2(5):263–271

    Article  CAS  PubMed  Google Scholar 

  • Dua HS, Gomes JAP, King AJ (2004) The amniotic membrane in ophthalmology. Surv Ophthalmol 49:51–77

    Article  PubMed  Google Scholar 

  • Duffy P, Wolf J, Collins G et al (1974) Letter: possible person-to-person transmission of Creutzfeldt-Jakob disease. N Engl J Med 290:692–693

    CAS  PubMed  Google Scholar 

  • Edwards M, Clover GM, Brookes N et al (2002) Indications for corneal transplantation in New Zealand: 1991–1999. Cornea 21:152–155

    Article  PubMed  Google Scholar 

  • Evans MD, Xie RZ, Fabbri M et al (2000) Epithelialization of a synthetic polymer in the feline cornea: a preliminary study. Invest Ophthalmol Vis Sci 41(7):1674–1680

    CAS  PubMed  Google Scholar 

  • Fagerholm P, Lagali NS, Carlsson DJ et al (2009) Corneal regeneration following implantation of a biomimetic tissue-engineered substitute. Clin Transl Sci 2:162–164

    Article  CAS  PubMed  Google Scholar 

  • Fagerholm P, Lagali NS, Merrett K et al (2010) A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Science Translat Med 2:46ra61

    Google Scholar 

  • Fagerholm P, Lagali NS, Ong JA et al (2014) Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold. Biomaterials 35(8):2420–2427

    Article  CAS  PubMed  Google Scholar 

  • Gaum L, Reynolds I, Jones MN et al (2012) Tissue and corneal donation and transplantation in the UK. Br J Anaesth 108(Suppl 1):i43–i47

    Article  PubMed  Google Scholar 

  • Gil ES, Mandal BB, Park SH et al (2010) Helicoidal multi-lamellar features of RGD-functionalized silk biomaterials for cornealtissue engineering. Biomaterials 31(34):8953–8963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomaa A, Comyn O, Liu C (2010) Keratoprostheses in clinical practice – a review. Clin Exp Ophthalmol 38:211–224

    Article  Google Scholar 

  • Gomes JAP, Romano A, Santos MS et al (2005) Amniotic membrane use in ophthalmology. Curr Opin Ophthalmol 16:233–240

    Article  PubMed  Google Scholar 

  • Gonzalez-Andrades M, De La Cruz Cardona J, Ionescu AM et al (2011) Generation of bioengineered corneas with decellularized xenografts and human keratocytes. Invest Ophthalmol Vis Sci 52:215–222

    Article  CAS  PubMed  Google Scholar 

  • González-Andrades M, Carriel V, Rivera-Izquierdo M et al (2015) Effects of detergent-based protocols on decellularization of corneas with sclerocorneal limbus. Evaluation of regional differences. Transl Vis Sci Technol 4(2):13

    PubMed  PubMed Central  Google Scholar 

  • Gouveia RM, Castelletto V, Alcock SG et al (2013) Bioactive films produced from self-assembling peptide amphiphiles as versatile substrates for tuning cell adhesion and tissue architecture in serum-free conditions. J Mater Chem B 1:6157–6169

    Article  CAS  Google Scholar 

  • Griffith M, Hakim M, Shimmura S et al (2002) Artificial human corneas: scaffolds for transplantation and host regeneration. Cornea 21(Suppl 2):S1–S8

    Google Scholar 

  • Griffith M, Jackson WB, Lagali N et al (2009) Artificial corneas: a regenerative medicine approach. Eye (Lond) 23(10):1985–1989

    Article  CAS  Google Scholar 

  • Grolik M, Szczubiałka K, Wowra B et al (2012) Hydrogel membranes based on genipin-cross-linked chitosan blends for corneal epithelium tissue engineering. J Mater Sci Mater Med 23(8):1991–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta V, Bambery P, Radotra BD et al (2001) Vogt-Koyanagi-Harada syndrome following injury-induced progressive vitiligo. Indian J Ophthalmol 49:53–55

    CAS  PubMed  Google Scholar 

  • Hackett JM, Lagali N, Merrett K et al (2011) Biosynthetic corneal implants for replacement of pathologic corneal tissue: performance in a controlled rabbit alkali burn model. Invest Ophthalmol Vis Sci 52(2):651–657

    Google Scholar 

  • Haldar J, An D, Alvarez de Cienfuegos L et al (2006) Polymeric coatings that inactivate both influenza virus and pathogenic bacteria. Proc Natl Acad Sci U S A 103(47):17667–17671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamada R, Giraud JP, Graf B et al (1972) Analytical and statistical study of the lamellae, keratocytes and collagen fibrils of the central region of the normal human cornea. (Light and electron microscopy). Archives D’ophtalmologie Et Revue Générale D’ophtalmologie 32:563–570

    CAS  PubMed  Google Scholar 

  • Han B, Schwab IR, Madsen TK et al (2002) A fibrin-based bioengineered ocular surface with human corneal epithelial stem cells. Cornea 21:505–510

    Article  PubMed  Google Scholar 

  • Hao Y, Ma DH, Hwang DG et al (2000) Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea 19:348–352

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto Y, Funamoto S, Sasaki S et al (2010) Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials 31:3941–3948

    Article  CAS  PubMed  Google Scholar 

  • Hedblom EE (1961) The role of polysaccharides in corneal swelling. Exp Eye Res 1:81–91

    Article  CAS  PubMed  Google Scholar 

  • Higa K, Shimmura S, Kato N et al (2007) Proliferation and differentiation of transplantable rabbit epithelial sheets engineered with or without an amniotic membrane carrier. Invest Ophthalmol Vis Sci 48:597–604

    Article  PubMed  Google Scholar 

  • Hogan MJ, Alvarado JA, Weddell JE (1971) Histology of the human eye. An atlas and textbook. Saunders Company, Philadelphia/London/Toronto

    Google Scholar 

  • Houff SA, Burton RC, Wilson RW et al (1979) Human-to-human transmission of rabies virus by corneal transplant. N Engl J Med 300:603–604

    Article  CAS  PubMed  Google Scholar 

  • Jacob JT, Rochefort JR, Bi J et al (2005) Corneal epithelial cell growth over tethered-protein/peptide surface-modified hydrogels. J Biomed Mater Res Part B Appl Biomater 72:198–205

    Article  PubMed  CAS  Google Scholar 

  • Karamichos D, Rich CB, Hutcheon AE et al (2011) Self-assembled matrix by umbilical cord stem cells. J Funct Biomater 2(3):213–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karkhaneh A, Mirzadeh H, Ghaffariyeh A et al (2011) Novel materials to enhance corneal epithelial cell migration on keratoprosthesis. Br J Ophthalmol 95(3):405–409

    Article  PubMed  Google Scholar 

  • Kenyon KR (1983) Morphology and pathologic responses of the cornea to disease. Smolin and Thoft’s the cornea: scientific foundations and clinical practice. Little, Brown & Co, Boston

    Google Scholar 

  • Khan B, Dudenhoefer EJ, Dohlman CH (2001) Keratoprosthesis: an update. Curr Opin Ophthalmol 12:282–287

    Article  CAS  PubMed  Google Scholar 

  • Kim EY, Tripathy N, Park JY et al (2015) Silk fibroin film as an efficient carrier for corneal endothelial cells regeneration. Macromol Res 23(2):189–195

    Article  CAS  Google Scholar 

  • Kinoshita JH, Kador P, Catiles M (1981) Aldose reductase in diabetic cataracts. JAMA: J Am Med Assoc 246:257–261

    Article  CAS  Google Scholar 

  • Klenkler BJ, Griffith M, Becerril C et al (2005) EGF-grafted PDMS surfaces in artificial cornea applications. Biomaterials 26:7286–7296

    Article  CAS  PubMed  Google Scholar 

  • Klibanov AM (2007) Permanently microbicidal materials coatings. J Mater Chem 17:2479–2482

    Article  CAS  Google Scholar 

  • Klyce SD, Beuerman RW (1988) Structure and function of the cornea. In: Kaufman HE, Barron BA, McDonald MB, Waltman SR (eds) The cornea. Churchill Livingstone, New York

    Google Scholar 

  • Kobayashi H, Ikada Y (1991) Corneal cell adhesion and proliferation on hydrogel sheets bound with cell-adhesive proteins. Curr Eye Res 10:899–908

    Article  CAS  PubMed  Google Scholar 

  • Koizumi NJ, Inatomi TJ, Sotozono CJ et al (2000) Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res 20:173–177

    Article  CAS  PubMed  Google Scholar 

  • Kuhl PR, Griffith-Cima LG (1996) Tethered epidermal growth factor as a paradigm for growth factor-induced stimulation from the solid phase. Nat Med 2:1022–1027

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Satyam A, Fan X et al (2015) Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies. Sci Rep 5:8729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kureshi AK, Drake RA, Daniels JT (2014) Challenges in the development of a reference standard and potency assay for the clinical production of RAFT tissue equivalents for the cornea. Regen Med 9(2):167–177

    Article  CAS  PubMed  Google Scholar 

  • Lawrence BD, Marchant JK, Pindrus MA et al (2009) Silk film biomaterials for cornea tissue engineering. Biomaterials 30(7):1299–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Chun YS, Kim JC (2011) The study of characteristics of acellular porcine cornea using freezing-thawing-centrifugation. J Korean Ophthalmol Soc 52:86

    Article  Google Scholar 

  • Levis HJ, Brown RA, Daniels JT (2010) Plastic compressed collagen as a biomimetic substrate for human limbal epithelial cell culture. Biomaterials 31(30):7726–7737

    Article  CAS  PubMed  Google Scholar 

  • Levis HJ, Kureshi AK, Massie I et al (2015) Tissue engineering the cornea: the evolution of RAFT. J Funct Biomater 6(1):50–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis K, Klibanov AM (2005) Surpassing nature: rational design of sterile-surface materials. Trends Biotechnol 23(7):343–348

    Article  CAS  PubMed  Google Scholar 

  • Li F, Carlsson D, Lohmann C et al (2003) Cellular and nerve regeneration within a biosynthetic extracellular matrix for corneal transplantation. Proc Natl Acad Sci U S A 100:15346–15351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin J, Tiller JC, Lee SB et al (2002) Insights into bactericidal action of surface-attached poly(vinyl-N-hexypyridinium) chains. Biotechnol Lett 24:801–805

    Google Scholar 

  • Liu W, Deng C, Mclaughlin CR et al (2009) Collagen-phosphorylcholine interpenetrating network hydrogels as corneal substitutes. Biomaterials 30:1551–1559

    Article  CAS  PubMed  Google Scholar 

  • Madden PW, Lai JN, George KA et al (2011) Human corneal endothelial cell growth on a silk fibroin membrane. Biomaterials 32(17):4076–4084

    Article  CAS  PubMed  Google Scholar 

  • Madhavan HN, Malathi J, Joseph RP et al (2004) A study on the growth of continuous culture cell lines embedded in Mebiol Gel. Curr Sci 87:1275–1277

    Google Scholar 

  • Massie I, Dale SB, Daniels JT (2014) Limbal fibroblasts maintain normal phenotype in 3D RAFT tissue equivalents suggesting potential for safe clinical use in treatment of ocular surface failure. Tissue Eng Part C Methods [Epub ahead of print]

    Google Scholar 

  • Matthews JA, Wnek GE, Simpson DG et al (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3(2):232–238

    Article  CAS  PubMed  Google Scholar 

  • McIntosh Ambrose W, Salahuddin A, So S et al (2009) Collagen Vitrigel membranes for the in vitro reconstruction of separate corneal epithelial, stromal, and endothelial cell layers. J Biomed Mater Res Part B Appl Biomater 90:818–831

    Article  PubMed  CAS  Google Scholar 

  • Meek KM, Leonard DW (1993) Ultrastructure of the corneal stroma: a comparative study. Biophys J 64:273–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrett K, Griffith CM, Deslandes Y et al (2001) Adhesion of corneal epithelial cells to cell adhesion peptide modified pHEMA surfaces. J Biomater Sci Polym Ed 12:647–671

    Article  CAS  PubMed  Google Scholar 

  • Milovic NM, Wang J, Lewis K (2005) Immobilized N-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed. Biotechnol Bioeng 90:715–722

    Article  CAS  PubMed  Google Scholar 

  • Minami Y, Sugihara H, Oono S (1993) Reconstruction of cornea in three-dimensional collagen gel matrix culture. Invest Ophthalmol Vis Sci 34(7):2316–2324

    CAS  PubMed  Google Scholar 

  • Miyashita H, Shimmura S, Kobayashi H et al (2006) Collagen-immobilized poly(vinyl alcohol) as an artificial cornea scaffold that supports a stratified corneal epithelium. J Biomed Mater Res Part B Appl Biomater 76:56–63

    Article  PubMed  CAS  Google Scholar 

  • Muraine MC, Collet A, Brasseur G (2002) Deep lamellar keratoplasty combined with cataract surgery. Arch Ophthalmol 120:812–815

    Article  PubMed  Google Scholar 

  • Myung D, Koh W, Bakri A et al (2007) Design and fabrication of an artificial cornea based on a photolithographically patterned hydrogel construct. Biomed Microdevices 9:911–922

    Article  CAS  PubMed  Google Scholar 

  • Myung D, Duhamel P-E, Cochran JR, Noolandi J et al (2008) Development of hydrogel-based keratoprostheses: a materials perspective. Biotechnol Prog 24:735–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myung D, Farooqui N, Zheng LL et al (2009) Bioactive interpenetrating polymer network hydrogels that support corneal epithelial wound healing. J Biomed Mater Res Part A 90:70–81

    Article  CAS  Google Scholar 

  • Nakamura T, Takeda K, Inatomi T et al (2011) Long-term results of autologous cultivated oral mucosal epithelial transplantation in the scar phase of severe ocular surface disorders. Br J Ophthalmol 95:942–946

    Article  PubMed  Google Scholar 

  • Neel EAA, Cheema U, Knowles JC et al (2006) Use of multiple unconfined compression for control of collagen gel scaffold density and mechanical properties. Soft Matter 2:986–992

    Article  CAS  Google Scholar 

  • Nishida K, Yamato M, Hayashida Y et al (2004a) Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation 77:379–385

    Article  PubMed  Google Scholar 

  • Nishida K, Yamato M, Hayashida Y et al (2004b) Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 351:1187–1196

    Article  CAS  PubMed  Google Scholar 

  • Ponce Marquez S, Martinez VS, McInthosh Ambrose W et al (2009) Decellularization of bovine corneas for tissue engineering applications. Acta Biomater 5:1839–1847

    Article  PubMed  CAS  Google Scholar 

  • Poole CA, Brookes NH, Clover (1996) Confocal imaging of the keratocyte network in porcine cornea using the fixable vital dye 5-chloromethylfluorescein diacetate. Curr Eye Res 15:165–174

    Article  CAS  PubMed  Google Scholar 

  • Proulx S, d’Arc Uwamaliya J, Carrier P et al (2010) Reconstruction of a human cornea by the self-assembly approach of tissue engineering using the three native cell types. Mol Vis 16:2192–2201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rafat M, Li F, Fagerholm P et al (2008) Peg-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering. Biomaterials 29:3960–3972

    Article  CAS  PubMed  Google Scholar 

  • Rafat MA, Hackett JM, Fagerholm P et al (2010) Artificial cornea. In: Dartt DA, Besharse J, Dana R (eds) Encyclopedia of the eye. Academic, Boston

    Google Scholar 

  • Rama P, Bonni S, Lambiase et al (2001) Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation 72:1478–1485

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran C, Basu S, Sangwan VS et al (2014) Concise review: the coming of age of stem cell treatment for corneal surface damage. Stem Cells Transl Med 3(10):1160–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichl S, Müller-Goymann CC (2003) The use of a porcine organotypic cornea construct for permeation studies from formulations containing befunolol hydrochloride. Int J Pharm 250(1):191–201

    Article  CAS  PubMed  Google Scholar 

  • Sangwan VS, Gopinathan U, Garg P et al (2010) Eye banking in India: a road ahead. JIMSA 23:197–200

    Google Scholar 

  • Sangwan VS, Jain R, Basu S et al (2014) Transforming ocular surface stem cell research into successful clinical practice. Indian J Ophthalmol 62:29–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Satake Y, Higa K, Tsubota K et al (2011) Long-term outcome of cultivated oral mucosal epithelial sheet transplantation in treatment of total limbal stem cell deficiency. Ophthalmology 118:1524–1530

    Article  PubMed  Google Scholar 

  • Secker GA, Daniels JT (2009) Limbal epithelial stem cells of the cornea. In: StemBook (ed) The stem cell research community, StemBook, Harvard Stem Cell Institute, Cambridge, MA

    Google Scholar 

  • Sheth R, Neale MH, Shortt AJ et al (2014) Culture and characterization of oral mucosal epithelial cells on a fibrin gel for ocular surface reconstruction. Curr Eye Res 7:1–11

    Google Scholar 

  • Shibasaki Y, Hirohara S, Terada K et al (2011) Collagen-like polypeptide poly(Pro-Hyp-Gly) conjugated with Gly-Arg-Gly-Asp-Ser and Pro-His-Ser-Arg-Asn peptides enhances cell adhesion, migration, and stratification. Biopolymers 96(3):302–315

    Article  CAS  PubMed  Google Scholar 

  • Shimmura S, Doillon CJ, Griffith M et al (2003) Collagen-poly(N-isopropylacrylamide)-based membranes for corneal stroma scaffolds. Cornea 22:S81–S88

    Article  PubMed  Google Scholar 

  • Shortt AJ, Secker GA, Lomas RJ et al (2009) The effect of amniotic membrane preparation method on its ability to serve as a substrate for the ex-vivo expansion of limbal epithelial cells. Biomaterials 30:1056–1065

    Article  CAS  PubMed  Google Scholar 

  • Sitalakshmi G, Sudha B, Madhavan HN et al (2009) Ex vivo cultivation of corneal limbal epithelial cells in a thermoreversible polymer (Mebiol Gel) and their transplantation in rabbits: an animal model. Tissue Eng Part A 15(2):407–415

    Article  CAS  PubMed  Google Scholar 

  • Sudha B, Madhavan HN, Sitalakshmi G et al (2006) Cultivation of human corneal limbal stem cells in Mebiol gel-A thermo-reversible gelation polymer. Indian J Med Res 124:655–664

    CAS  PubMed  Google Scholar 

  • Sweeney DF, Xie RZ, Evans MDM et al (2003) A comparison of biological coatings for the promotion of corneal epithelialization of synthetic surface in vivo. Invest Ophthalmol Vis Sci 44:3301–3309

    Article  PubMed  Google Scholar 

  • Takezawa T, Ozaki K, Nitani A et al (2004) Collagen vitrigel: a novel scaffold that can facilitate a three-dimensional culture for reconstructing organoids. Cell Transplant 13:463

    Article  PubMed  Google Scholar 

  • Takezawa T, McIntosh-Ambrose W, Elisseeff JH (2008) A novel culture model of rabbit corneal epithelium utilizing a handy scaffold of collagen vitrigel membrane and its cryopreservation. Altern Anim Test Exp 13(Suppl):176

    Google Scholar 

  • Takezawa T, Nishikawa K, Wang PC (2011) Development of a human corneal epithelium model utilizing a collagen vitrigel membrane and the changes of its barrier function induced by exposing eye irritant chemicals. Toxicol In Vitro 25:1237–1241

    Article  CAS  PubMed  Google Scholar 

  • Tan XW, Goh TW, Saraswathi P et al (2014) Effectiveness of antimicrobial peptide immobilization for preventing perioperative cornea implant-associated bacterial infection. Antimicrob Agents Chemother 58:5229–5238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tidu A, Ghoubay-Benallaoua D, Lynch B et al (2015) Development of human corneal epithelium on organized fibrillated transparent collagen matrices synthesized at high concentration. Acta Biomater 22:50–58

    Google Scholar 

  • Tosi GM, Massaro-Giordano M, Caporossi A et al (2005) Amniotic membrane transplantation in ocular surface disorders. J Cell Physiol 202:849–851

    Article  CAS  PubMed  Google Scholar 

  • Trinkaus-Randall V (2000) Cornea: biological responses. In: Lanza R, Langer R, Chick E (eds) Principles of tissue engineering, 2nd edn. Academic, London, pp 471–491

    Chapter  Google Scholar 

  • Tseng SC, Li DQ, MA X (1999) Suppression of transforming growth factor-beta isoforms, TGF-beta receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J Cell Physiol 179:325–335

    Article  CAS  PubMed  Google Scholar 

  • Uchino Y, Shimmura S, Miyashita H et al (2007) Amniotic membrane immobilized poly(vinyl alcohol) hybrid polymer as an artificial cornea scaffold that supports a stratified and differentiated corneal epithelium. J Biomed Mater Res Part B Appl Biomater 81:201–206

    Article  PubMed  CAS  Google Scholar 

  • Uzunalli G, Soran Z, Erkal TS et al (2014) Bioactive self-assembled peptide nanofibers for corneal stroma regeneration. Acta Biomater 10:1156–1166

    Article  CAS  PubMed  Google Scholar 

  • Vemuganti GK, Fatima A, Madhira SL (2009) Limbal stem cells: application in ocular biomedicine. Int Rev Cell Mol Biol 275:133–181

    Article  PubMed  Google Scholar 

  • Vrana NE, Builles N, Justin V et al (2008) Development of a reconstructed cornea from collagen-chondroitin sulfate foams and human cell cultures. Invest Ophthalmol Vis Sci 49:5325

    Article  PubMed  Google Scholar 

  • Wallace C, Jacob JT, Stoltz A et al (2005) Corneal epithelial adhesion strength to tethered-protein/peptide modified hydrogel surfaces. J Biomed Mater Res Part A 72:19–24

    Article  CAS  Google Scholar 

  • Wang L, Jeong KJ, Chiang HH et al (2011) Hydroxyapatite for keratoprosthesis biointegration. Invest Ophthalmol Vis Sci 52:7392–7399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HY, Wei RH, Zhao SZ (2013) Evaluation of corneal cell growth on tissue engineering materials as artificial cornea scaffolds. Int J Ophthalmol 6:873–878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Werner A, Braun M, Reichl S et al (2008) Establishing and functional testing of a canine corneal construct. Vet Ophthalmol 11:280–289

    Article  PubMed  Google Scholar 

  • Whitcher JP, Srinivasan M, Upadhyay MP (2001) Corneal blindness: a global perspective. Bull World Health Organ 79:214–221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson SE, Hong JW (2000) Bowman’s layer structure and function: critical or dispensable to corneal function? A hypothesis. Cornea 19:417–420

    Article  CAS  PubMed  Google Scholar 

  • Wilson SL, Sidney LE, Dunphy SE et al (2013) Keeping an eye on decellularized corneas: a review of methods, characterization and applications. J Funct Biomater 4:114–161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wray LS, Orwin EJ (2009) Recreating the microenvironment of the native cornea for tissue engineering applications. Tissue Eng Part A 15(7):1463–1472

    Article  CAS  PubMed  Google Scholar 

  • Yamato M, Utsumi M, Kushida A et al (2001) Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature. Tissue Eng 7:473–480

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Holmes T, Lockshin C et al (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A 90:3334–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M-C, Liu X, Jin Y et al (2015) Lamellar keratoplasty treatment of fungal corneal ulcers with acellular porcine corneal stroma. Am J Transplant 15:1068–1075

    Article  PubMed  Google Scholar 

  • Zhong S, Teo WE, Zhu X et al (2006) An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. J Biomed Mater Res A 79(3):456–463

    Article  PubMed  CAS  Google Scholar 

  • Zieske JD, Mason VS, Wasson ME et al (1994) Basement membrane assembly and differentiation of cultured corneal cells: importance of culture environment and endothelial cell interaction. ExpCell Res 214(2):621–633

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to May Griffith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Polisetti, N., Vemuganti, G.K., Griffith, M. (2016). Biomaterials-Enabled Regenerative Medicine in Corneal Applications. In: Steinhoff, G. (eds) Regenerative Medicine - from Protocol to Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-28274-9_5

Download citation

Publish with us

Policies and ethics