Skip to main content
  • 677 Accesses

Abstract

Regenerative medicine is a rapidly evolving area in the field of biomedical research. Thereby particularly cell-based advanced medicinal products raise new ethical questions concerning the development and testing of these products in humans. Moreover, on the level of non-clinical research new methods are necessary to study the specific properties of these advanced products.

Advanced medicinal products, such as stem cells based applications have the potential to survive in and interact long-term with the host organism. In contrast to postmortem tissue analyses, which are commonly used for conventional drug testing in animals, methods for serial and longitudinal monitoring of both the cells fate and the triggered biological mechanisms that leading to organ repair are needed for testing advanced cell-based products. Furthermore, the human origin of these products requires reliable testing of safety and mode of action in the clinical setting. Therefore new in vivo monitoring techniques with the potential for rapid clinical translation are urgently needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aicher A, Brenner W, Zuhayra M et al (2003) Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 107:2134–2139

    Article  PubMed  Google Scholar 

  • Baril P, Martin-Duque P, Vassaux G (2010) Visualization of gene expression in the live subject using the Na/I symporter as a reporter gene: applications in biotherapy. Br J Pharmacol 159:761–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu S, Zhuang H, Torigian DA, Rosenbaum J, Chen W, Alavi A (2009) Functional imaging of inflammatory diseases using nuclear medicine techniques. Semin Nucl Med 39:124–145

    Article  PubMed  Google Scholar 

  • Ben-Mordechai T, Holbova R, Landa-Rouben N et al (2013) Macrophage subpopulations are essential for infarct repair with and without stem cell therapy. J Am Coll Cardiol 62:1890–1901

    Article  PubMed  Google Scholar 

  • Blocklet D, Toungouz M, Berkenboom G et al (2006) Myocardial homing of nonmobilized peripheral-blood CD34+ cells after intracoronary injection. Stem Cells 24:333–336

    Article  PubMed  Google Scholar 

  • Bonios M, Terrovitis J, Chang CY et al (2011) Myocardial substrate and route of administration determine acute cardiac retention and lung bio-distribution of cardiosphere-derived cells. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol 18:443–450

    Article  Google Scholar 

  • Botti C, Negri DR, Seregni E et al (1997) Comparison of three different methods for radiolabelling human activated T lymphocytes. Eur J Nucl Med 24:497–504

    CAS  PubMed  Google Scholar 

  • Brenner W, Aicher A, Eckey T et al (2004) 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. J Nucl Med Off Publ Soc Nucl Med 45:512–518

    CAS  Google Scholar 

  • Brooks PC, Montgomery AM, Rosenfeld M et al (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Brunner S, Weinberger T, Huber BC et al (2012) The cardioprotective effects of parathyroid hormone are independent of endogenous granulocyte-colony stimulating factor release. Cardiovasc Res 93:330–339

    Article  CAS  PubMed  Google Scholar 

  • Burchfield JS, Iwasaki M, Koyanagi M et al (2008) Interleukin-10 from transplanted bone marrow mononuclear cells contributes to cardiac protection after myocardial infarction. Circ Res 103:203–211

    Article  CAS  PubMed  Google Scholar 

  • Callera F, de Melo CM (2007) Magnetic resonance tracking of magnetically labeled autologous bone marrow CD34+ cells transplanted into the spinal cord via lumbar puncture technique in patients with chronic spinal cord injury: CD34+ cells’ migration into the injured site. Stem Cells Dev 16:461–466

    Article  PubMed  Google Scholar 

  • Cao F, Lin S, Xie X et al (2006) In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113:1005–1014

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao F, Li Z, Lee A et al (2009) Noninvasive de novo imaging of human embryonic stem cell-derived teratoma formation. Cancer Res 69:2709–2713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caulfield JB, Leinbach R, Gold H (1976) The relationship of myocardial infarct size and prognosis. Circulation 53:I141–I144

    CAS  PubMed  Google Scholar 

  • Caveliers V, De Keulenaer G, Everaert H et al (2007) In vivo visualization of 111In labeled CD133+ peripheral blood stem cells after intracoronary administration in patients with chronic ischemic heart disease. Q J Nucl Med Mol Imaging 51:61–66

    CAS  PubMed  Google Scholar 

  • Chen EQ, MacIntyre WJ, Go RT et al (1997) Myocardial viability studies using fluorine-18-FDG SPECT: a comparison with fluorine-18-FDG PET. J Nucl Med Off Publ Soc Nucl Med 38:582–586

    CAS  Google Scholar 

  • Cheng VY, Slomka PJ, Ahlen M, Thomson LE, Waxman AD, Berman DS (2010) Impact of carbohydrate restriction with and without fatty acid loading on myocardial 18F-FDG uptake during PET: A randomized controlled trial. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol 17:286–291

    Article  Google Scholar 

  • Cohen A, Shirvan A, Levin G, Grimberg H, Reshef A, Ziv I (2009) From the Gla domain to a novel small-molecule detector of apoptosis. Cell Res 19:625–637

    Article  CAS  PubMed  Google Scholar 

  • Daar AS, Greenwood HL (2007) A proposed definition of regenerative medicine. J Tissue Eng Regen Med 1:179–184

    Article  CAS  PubMed  Google Scholar 

  • de Vries IJ, Lesterhuis WJ, Barentsz JO et al (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407–1413

    Article  PubMed  CAS  Google Scholar 

  • Dedobbeleer C, Blocklet D, Toungouz M et al (2009) Myocardial homing and coronary endothelial function after autologous blood CD34+ progenitor cells intracoronary injection in the chronic phase of myocardial infarction. J Cardiovasc Pharmacol 53:480–485

    Article  CAS  PubMed  Google Scholar 

  • Dohan O, De la Vieja A, Paroder V et al (2003) The sodium/iodide Symporter (NIS): characterization, regulation, and medical significance. Endocr Rev 24:48–77

    Article  CAS  PubMed  Google Scholar 

  • Dow J, Simkhovich BZ, Kedes L, Kloner RA (2005) Washout of transplanted cells from the heart: a potential new hurdle for cell transplantation therapy. Cardiovasc Res 67:301–307

    Article  CAS  PubMed  Google Scholar 

  • Eich T, Eriksson O, Lundgren T, Nordic Network for Clinical Islet Transplantation (2007) Visualization of early engraftment in clinical islet transplantation by positron-emission tomography. N Engl J Med 356:2754–2755

    Article  CAS  PubMed  Google Scholar 

  • Erben RG, Silva-Lima B, Reischl I et al (2014) White paper on how to go forward with cell-based advanced therapies in Europe. Tissue Eng Part A 20:2549–2554

    Article  PubMed  PubMed Central  Google Scholar 

  • Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207–2216

    CAS  PubMed  Google Scholar 

  • Fliss H, Gattinger D (1996) Apoptosis in ischemic and reperfused rat myocardium. Circ Res 79:949–956

    Article  CAS  PubMed  Google Scholar 

  • Freudenberg LS, Jentzen W, Stahl A, Bockisch A, Rosenbaum-Krumme SJ (2011) Clinical applications of 124I-PET/CT in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 38(Suppl 1):S48–S56

    Article  PubMed  Google Scholar 

  • Fu Y, Azene N, Xu Y, Kraitchman DL (2011) Tracking stem cells for cardiovascular applications in vivo: focus on imaging techniques. Imaging Med 3:473–486

    Article  PubMed  PubMed Central  Google Scholar 

  • Gyongyosi M, Blanco J, Marian T et al (2008) Serial noninvasive in vivo positron emission tomographic tracking of percutaneously intramyocardially injected autologous porcine mesenchymal stem cells modified for transgene reporter gene expression. Circ Cardiovasc Imaging 1:94–103

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansson EM, Lendahl U (2013) Regenerative medicine for the treatment of heart disease. J Intern Med 273:235–245

    Article  CAS  PubMed  Google Scholar 

  • Hofmann M, Wollert KC, Meyer GP et al (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111:2198–2202

    Article  PubMed  Google Scholar 

  • Hofstra L, Liem IH, Dumont EA et al (2000) Visualisation of cell death in vivo in patients with acute myocardial infarction. Lancet 356:209–212

    Article  CAS  PubMed  Google Scholar 

  • Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100

    Article  PubMed  Google Scholar 

  • Hynes RO, Bader BL, Hodivala-Dilke K et al (1999) Integrins in vascular development. Braz J Med Biol Res Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica 32:501–510

    CAS  Google Scholar 

  • Ishimaru S, Tsujino I, Takei T et al (2005) Focal uptake on 18F-fluoro-2-deoxyglucose positron emission tomography images indicates cardiac involvement of sarcoidosis. Eur Heart J 26:1538–1543

    Article  PubMed  Google Scholar 

  • Kang WJ, Kang HJ, Kim HS, Chung JK, Lee MC, Lee DS (2006) Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. J Nucl Med Off Publ Soc Nucl Med 47:1295–1301

    Google Scholar 

  • Knesaurek K, Machac J (2006) Comparison of 18F SPECT with PET in myocardial imaging: a realistic thorax-cardiac phantom study. BMC Nucl Med 6:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kocher AA, Schuster MD, Szabolcs MJ et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7:430–436

    Article  CAS  PubMed  Google Scholar 

  • Kolossov E, Bostani T, Roell W et al (2006) Engraftment of engineered ES cell-derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium. J Exp Med 203:2315–2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laitinen I, Notni J, Pohle K et al (2013) Comparison of cyclic RGD peptides for alphavbeta3 integrin detection in a rat model of myocardial infarction. EJNMMI Res 3:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lang C, Lehner S, Todica A et al (2013) Positron emission tomography based in-vivo imaging of early phase stem cell retention after intramyocardial delivery in the mouse model. Eur J Nucl Med Mol Imaging 40:1730–1738

    Article  PubMed  Google Scholar 

  • Lang C, Lehner S, Todica A et al (2014) In-vivo comparison of the acute retention of stem cell derivatives and fibroblasts after intramyocardial transplantation in the mouse model. Eur J Nucl Med Mol Imaging 13:1535–3508

    Google Scholar 

  • Lee WW, Marinelli B, van der Laan AM et al (2012) PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol 59:153–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee AS, Tang C, Rao MS, Weissman IL, Wu JC (2013) Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 19:998–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee AR, Woo SK, Kang SK et al (2015) Adenovirus-mediated expression of human sodium-iodide symporter gene permits in vivo tracking of adipose tissue-derived stem cells in a canine myocardial infarction model. Nucl Med Biol 42:621–629

    Article  CAS  PubMed  Google Scholar 

  • Lehner S, Todica A, Brunner S et al (2012) Temporal changes in phosphatidylserine expression and glucose metabolism after myocardial infarction: an in vivo imaging study in mice. Mol Imaging 11:461–470

    CAS  PubMed  Google Scholar 

  • Lehner S, Todica A, Vanchev Y et al. (2014) In vivo monitoring of parathyroid hormone treatment after myocardial infarction in mice with [68Ga]annexin A5 and [18F]fluorodeoxyglucose positron emission tomography. Mol Imaging 13:1535-3508

    Google Scholar 

  • Lepperhof V, Polchynski O, Kruttwig K et al (2014) Bioluminescent imaging of genetically selected induced pluripotent stem cell-derived cardiomyocytes after transplantation into infarcted heart of syngeneic recipients. PLoS One 9:e107363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Z, Lee A, Huang M et al (2009) Imaging survival and function of transplanted cardiac resident stem cells. J Am Coll Cardiol 53:1229–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindvall O, Brundin P, Widner H et al (1990) Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 247:574–577

    Article  CAS  PubMed  Google Scholar 

  • Lukovic D, Stojkovic M, Moreno-Manzano V, Bhattacharya SS, Erceg S (2014) Perspectives and future directions of human pluripotent stem cell-based therapies: lessons from Geron’s clinical trial for spinal cord injury. Stem Cells Dev 23:1–4

    Article  PubMed  Google Scholar 

  • Martin SJ, Reutelingsperger CP, McGahon AJ et al (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182:1545–1556

    Article  CAS  PubMed  Google Scholar 

  • Meoli DF, Sadeghi MM, Krassilnikova S et al (2004) Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. J Clin Invest 113:1684–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minamimoto R, Morooka M, Kubota K et al (2011) Value of FDG-PET/CT using unfractionated heparin for managing primary cardiac lymphoma and several key findings. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol 18:516–520

    Article  Google Scholar 

  • Miyagawa M, Anton M, Wagner B et al (2005) Non-invasive imaging of cardiac transgene expression with PET: comparison of the human sodium/iodide symporter gene and HSV1-tk as the reporter gene. Eur J Nucl Med Mol Imaging 32:1108–1114

    Article  PubMed  Google Scholar 

  • Mozid AM, Holstensson M, Choudhury T et al (2014) Clinical feasibility study to detect angiogenesis following bone marrow stem cell transplantation in chronic ischaemic heart failure. Nucl Med Commun 35:839–848

    PubMed  Google Scholar 

  • Musialek P, Tekieli L, Kostkiewicz M et al (2011) Randomized transcoronary delivery of CD34(+) cells with perfusion versus stop-flow method in patients with recent myocardial infarction: early cardiac retention of (9)(9)(m)Tc-labeled cells activity. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol 18:104–116

    Article  Google Scholar 

  • Nahrendorf M, Swirski FK, Aikawa E et al (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahrendorf M, Pittet MJ, Swirski FK (2010) Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121:2437–2445

    Article  PubMed  PubMed Central  Google Scholar 

  • Naumova AV, Modo M, Moore A, Murry CE, Frank JA (2014) Clinical imaging in regenerative medicine. Nat Biotechnol 32:804–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivetti G, Capasso JM, Sonnenblick EH, Anversa P (1990) Side-to-side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Circ Res 67:23–34

    Article  CAS  PubMed  Google Scholar 

  • Penicka M, Lang O, Widimsky P et al (2007) One-day kinetics of myocardial engraftment after intracoronary injection of bone marrow mononuclear cells in patients with acute and chronic myocardial infarction. Heart 93:837–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pomper MG, Hammond H, Yu XB et al (2009) Serial imaging of human embryonic stem-cell engraftment and teratoma formation in live mouse models. Cell Res 19:370–379

    Article  CAS  PubMed  Google Scholar 

  • Psaltis PJ, Simari RD, Rodriguez-Porcel M (2012) Emerging roles for integrated imaging modalities in cardiovascular cell-based therapeutics: a clinical perspective. Eur J Nucl Med Mol Imaging 39:165–181

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddig PJ, Juliano RL (2005) Clinging to life: cell to matrix adhesion and cell survival. Cancer Metastasis Rev 24:425–439

    Article  PubMed  Google Scholar 

  • Reshef A, Shirvan A, Akselrod-Ballin A, Wall A, Ziv I (2010) Small-molecule biomarkers for clinical PET imaging of apoptosis. J Nucl Medi Off Publ Soc Nucl Med 51:837–840

    CAS  Google Scholar 

  • Richards JM, Shaw CA, Lang NN et al (2012) In vivo mononuclear cell tracking using superparamagnetic particles of iron oxide: feasibility and safety in humans. Circ Cardiovasc Imaging 5:509–517

    Article  PubMed  Google Scholar 

  • Rischpler C, Nekolla S, Schwaiger M (2013) PET and SPECT in heart failure. Curr Cardiol Rep 15:337

    Article  PubMed  Google Scholar 

  • Robey TE, Saiget MK, Reinecke H, Murry CE (2008) Systems approaches to preventing transplanted cell death in cardiac repair. J Mol Cell Cardiol 45:567–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roca M, de Vries EF, Jamar F, Israel O, Signore A (2010) Guidelines for the labelling of leucocytes with (111)In-oxine. Inflammation/Infection Taskgroup of the European Association of Nuclear Medicine. Eur J Nucl Med Mol Imaging 37:835–841

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Porcel M (2010) In vivo imaging and monitoring of transplanted stem cells: clinical applications. Curr Cardiol Rep 12:51–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Roed L, Oulie I, McParland BJ, Skotland T (2009) Human urinary excretion of NC100692, an RGD-peptide for imaging angiogenesis. Eur J Pharm Sci Off J Eur Fed Pharm Sci 37:279–283

    CAS  Google Scholar 

  • Rosado-de-Castro PH, Schmidt Fda R, Battistella V et al (2013) Biodistribution of bone marrow mononuclear cells after intra-arterial or intravenous transplantation in subacute stroke patients. Regen Med 8:145–155

    Article  CAS  PubMed  Google Scholar 

  • Rundhaug JE (2005) Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9:267–285

    Article  CAS  PubMed  Google Scholar 

  • Ruoslahti E (2002) Specialization of tumour vasculature. Nat Rev Cancer 2:83–90

    Article  PubMed  Google Scholar 

  • Schachinger V, Aicher A, Dobert N et al (2008) Pilot trial on determinants of progenitor cell recruitment to the infarcted human myocardium. Circulation 118:1425–1432

    Article  PubMed  Google Scholar 

  • Schots R, De Keulenaer G, Schoors D et al (2007) Evidence that intracoronary-injected CD133+ peripheral blood progenitor cells home to the myocardium in chronic postinfarction heart failure. Exp Hematol 35:1884–1890

    Article  CAS  PubMed  Google Scholar 

  • Shapiro AM, Lakey JR, Ryan EA et al (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343:230–238

    Article  CAS  PubMed  Google Scholar 

  • Sherif HM, Saraste A, Nekolla SG et al (2012) Molecular imaging of early alphavbeta3 integrin expression predicts long-term left-ventricle remodeling after myocardial infarction in rats. J Nucl Med Off Publ Soc Nucl Med 53:318–323

    CAS  Google Scholar 

  • Sogbein OO, Pelletier-Galarneau M, Schindler TH, Wei L, Wells RG, Ruddy TD (2014) New SPECT and PET radiopharmaceuticals for imaging cardiovascular disease. BioMed Res Int 2014:942960

    Article  PubMed  PubMed Central  Google Scholar 

  • Stamm C, Westphal B, Kleine HD et al (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361:45–46

    Article  PubMed  Google Scholar 

  • Su W, Zhou M, Zheng Y et al (2011) Bioluminescence reporter gene imaging characterize human embryonic stem cell-derived teratoma formation. J Cell Biochem 112:840–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taki J, Higuchi T, Kawashima A et al (2004) Detection of cardiomyocyte death in a rat model of ischemia and reperfusion using 99mTc-labeled annexin V. J Nucl Medi Off Publ Soc Nucl Med 45:1536–1541

    CAS  Google Scholar 

  • Templin C, Zweigerdt R, Schwanke K et al (2012) Transplantation and tracking of human-induced pluripotent stem cells in a pig model of myocardial infarction: assessment of cell survival, engraftment, and distribution by hybrid single photon emission computed tomography/computed tomography of sodium iodide symporter transgene expression. Circulation 126:430–439

    Article  CAS  PubMed  Google Scholar 

  • Teng CJ, Luo J, Chiu RC, Shum-Tim D (2006) Massive mechanical loss of microspheres with direct intramyocardial injection in the beating heart: implications for cellular cardiomyoplasty. J Thorac Cardiovasc Surg 132:628–632

    Article  PubMed  Google Scholar 

  • Terrovitis J, Stuber M, Youssef A et al (2008a) Magnetic resonance imaging overestimates ferumoxide-labeled stem cell survival after transplantation in the heart. Circulation 117:1555–1562

    Article  PubMed  Google Scholar 

  • Terrovitis J, Kwok KF, Lautamaki R et al (2008b) Ectopic expression of the sodium-iodide symporter enables imaging of transplanted cardiac stem cells in vivo by single-photon emission computed tomography or positron emission tomography. J Am Coll Cardiol 52:1652–1660

    Article  PubMed  Google Scholar 

  • Terrovitis J, Lautamaki R, Bonios M et al (2009) Noninvasive quantification and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac-derived stem cell delivery. J Am Coll Cardiol 54:1619–1626

    Article  PubMed  PubMed Central  Google Scholar 

  • Terrovitis JV, Smith RR, Marban E (2010) Assessment and optimization of cell engraftment after transplantation into the heart. Circ Res 106:479–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thackeray JT, Bankstahl JP, Wang Y et al (2015) Targeting post-infarct inflammation by PET imaging: comparison of (68)Ga-citrate and (68)Ga-DOTATATE with (18)F-FDG in a mouse model. Eur J Nucl Med Mol Imaging 42:317–327

    Article  CAS  PubMed  Google Scholar 

  • Todica A, Zacherl MJ, Wang H et al (2014) In-vivo monitoring of erythropoietin treatment after myocardial infarction in mice with [(6)(8)Ga]Annexin A5 and [(1)(8)F]FDG PET. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol 21:1191–1199

    Article  Google Scholar 

  • Toso C, Vallee JP, Morel P et al (2008) Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. Am J Transplant Off J Am Soc Transplant Am Socf Transplant Surg 8:701–706

    Article  CAS  Google Scholar 

  • van den Eijnde SM, Lips J, Boshart L et al (1999) Spatiotemporal distribution of dying neurons during early mouse development. Eur J Neurosci 11:712–724

    Article  PubMed  Google Scholar 

  • Verjans J, Wolters S, Laufer W et al (2010) Early molecular imaging of interstitial changes in patients after myocardial infarction: comparison with delayed contrast-enhanced magnetic resonance imaging. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol 17:1065–1072

    Article  Google Scholar 

  • Visser EP, Disselhorst JA, Brom M et al (2009) Spatial resolution and sensitivity of the Inveon small-animal PET scanner. J Nucl Med Off Publ Soc Nucl Med 50:139–147

    Google Scholar 

  • Welling MM, Duijvestein M, Signore A, van der Weerd L (2011) In vivo biodistribution of stem cells using molecular nuclear medicine imaging. J Cell Physiol 226:1444–1452

    Article  CAS  PubMed  Google Scholar 

  • Wolfs E, Struys T, Notelaers T et al (2013) 18F-FDG labeling of mesenchymal stem cells and multipotent adult progenitor cells for PET imaging: effects on ultrastructure and differentiation capacity. J Nucl Med Off Publ Soc Nucl Med 54:447–454

    CAS  Google Scholar 

  • Wu JC, Abraham MR, Kraitchman DL (2010) Current perspectives on imaging cardiac stem cell therapy. J Nucl Medi Off Publ Soc Nucl Med 51(Suppl 1):128S–136S

    Google Scholar 

  • Wykrzykowska J, Lehman S, Williams G et al (2009) Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med Off Publ Soc Nucl Med 50:563–568

    Google Scholar 

  • Xu M, Uemura R, Dai Y, Wang Y, Pasha Z, Ashraf M (2007) In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function. J Mol Cell Cardiol 42:441–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaghoubi SS, Jensen MC, Satyamurthy N et al (2009) Noninvasive detection of therapeutic cytolytic T cells with 18F-FHBG PET in a patient with glioma. Nat Clin Pract Oncol 6:53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaghoubi SS, Campbell DO, Radu CG, Czernin J (2012) Positron emission tomography reporter genes and reporter probes: gene and cell therapy applications. Theranostics 2:374–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaruba MM, Huber BC, Brunner S et al (2008) Parathyroid hormone treatment after myocardial infarction promotes cardiac repair by enhanced neovascularization and cell survival. Cardiovasc Res 77:722–731

    Article  CAS  PubMed  Google Scholar 

  • Zhang SJ, Wu JC (2007) Comparison of imaging techniques for tracking cardiac stem cell therapy. J Nucl Medi Off Publ Soc Nucl Med 48:1916–1919

    CAS  Google Scholar 

  • Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE (2001) Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 33:907–921

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Zhou L, XingWu F (2006) Tracking neural stem cells in patients with brain trauma. N Engl J Med 355:2376–2378

    Article  CAS  PubMed  Google Scholar 

  • Zimmet H, Porapakkham P, Porapakkham P et al (2012) Short- and long-term outcomes of intracoronary and endogenously mobilized bone marrow stem cells in the treatment of ST-segment elevation myocardial infarction: a meta-analysis of randomized control trials. Eur J Heart Fail 14:91–105

    Article  PubMed  Google Scholar 

  • Zscharnack M, Krause C, Aust G et al (2015) Preclinical good laboratory practice-compliant safety study to evaluate biodistribution and tumorigenicity of a cartilage advanced therapy medicinal product (ATMP). J Transl Med 13:160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zvibel I, Smets F, Soriano H (2002) Anoikis: roadblock to cell transplantation? Cell Transplant 11:621–630

    PubMed  Google Scholar 

  • Lee WW, Marinelli B, van der Laan AM et al (2012) PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol 59:153–163

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cajetan Lang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lang, C., Lehner, S. (2016). Imaging Technology. In: Steinhoff, G. (eds) Regenerative Medicine - from Protocol to Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-28274-9_9

Download citation

Publish with us

Policies and ethics