Skip to main content

Viruses in Glacial Environments

  • Chapter
  • First Online:
Psychrophiles: From Biodiversity to Biotechnology

Abstract

Viruses play a central role in glacial microbial communities. Prokaryotes in glacial environments support surprisingly large viral communities, which, in turn, have a considerable impact on the prokaryotic communities. Through the lysis of host cells and by lowering the growth efficiency of prokaryotic communities, viruses substantially alter the carbon cycling in glacial environments. Despite many similarities with viruses in other habitats, the unique characteristics of glacial environments have accentuated certain features in glacial viruses and their interactions with their hosts, e.g. low viral decay rates in supraglacial viruses as a mechanism for overcoming low host contact rates in systems with low prokaryotic abundances, virus-specific temperature adaptation that differ from that of the host, and virus-mediated transfer of CRISPR arrays that confer immunity against superinfection. Current literature suggests that viral communities in glacial environments are as genetically diverse as those in other environments and, with recent technological advances in environmental genomics and bioinformatics, we are posed to tackle the next great challenge in viral ecology of identifying and quantifying the dynamics of individual virus–host pairs in environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ackermann H-W (2007) 5500 phages examined in the electron microscope. Arch Virol 152(2):227–243. doi:10.1007/s00705-006-0849-1

    Article  CAS  PubMed  Google Scholar 

  • Aguirre de Cárcer D, LĂłpez-Bueno A, Alonso-Lobo JM, Quesada A, Alcami A (2016) Metagenomic analysis of lacustrine viral diversity along a latitudinal transect of the Antarctic Peninsula. FEMS Microbiol Ecol 92(6). doi:10.1093/femsec/fiw074

  • Aguirre de Cárcer D, LĂłpez-Bueno A, Pearce DA, AlcamĂ­ A (2015) Biodiversity and distribution of polar freshwater DNA viruses. Sci Adv 1(5):e1400127. doi:10.1126/sciadv.1400127

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen B, Willner D, Oechel WC, Lipson D (2010) Top-down control of microbial activity and biomass in an Arctic soil ecosystem. Environ Microbiol 12(3):642–648. doi:10.1111/j.1462-2920.2009.02104.x

    Article  CAS  PubMed  Google Scholar 

  • Anesio AM, Bellas CM (2011) Are low temperature habitats hot spots of microbial evolution driven by viruses? Trends Microbiol 19(2):52–57. doi:10.1016/j.tim.2010.11.002

    Article  CAS  PubMed  Google Scholar 

  • Anesio AM, Hodson AJ, Fritz A, Psenner R, Sattler B (2009) High microbial activity on glaciers: importance to the global carbon cycle. Glob Chang Biol 15(4):955–960. doi:10.1111/j.1365-2486.2008.01758.x

    Article  Google Scholar 

  • Anesio AM, Mindl B, Laybourn-Parry J, Hodson AJ, Sattler B (2007) Viral dynamics in cryoconite holes on a high Arctic glacier (Svalbard). J Geophys Res Biogeosci 112(G4):10. doi:10.1029/2006jg000350

    Article  Google Scholar 

  • Anesio AM, Sattler B, Foreman C, Telling J, Hodson A, Tranter M, Psenner R (2010) Carbon fluxes through bacterial communities on glacier surfaces. Ann Glaciol 51(56):32–40

    Article  CAS  Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray J, Meyer-Reil L, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712. doi:10.1126/science.1138140

    Article  CAS  PubMed  Google Scholar 

  • Bellas CM, Anesio AM (2013) High diversity and potential origins of T4-type bacteriophages on the surface of Arctic glaciers. Extremophiles 17(5):861–870. doi:10.1007/s00792-013-0569-x

    Article  CAS  PubMed  Google Scholar 

  • Bellas CM, Anesio AM, Barker G (2015) Analysis of virus genomes from glacial environments reveals novel virus groups with unusual host interactions. Front Microbiol 6:14. doi:10.3389/fmicb.2015.00656

    Article  Google Scholar 

  • Bellas CM, Anesio AM, Telling J, Stibal M, Tranter M, Davis S (2013) Viral impacts on bacterial communities in Arctic cryoconite. Environ Res Lett 8(4):9. doi:10.1088/1748-9326/8/4/045021

    Article  Google Scholar 

  • Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW (2014) Bacterial vesicles in marine ecosystems. Science 343(6167):183–186. doi:10.1126/science.1243457

    Article  CAS  PubMed  Google Scholar 

  • Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ (2015) Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 13(11):677–690. doi:10.1038/nrmicro3522

    Article  CAS  PubMed  Google Scholar 

  • Bonilla-Findji O, Malits A, Lefèvre D, Rochelle-Newall E, LemĂ©e R, Weinbauer MG, Gattuso J-P (2008) Viral effects on bacterial respiration, production and growth efficiency: consistent trends in the Southern Ocean and the Mediterranean Sea. Deep-Sea Res II Top Stud Oceanogr 55(5):790–800

    Article  Google Scholar 

  • Bruder K, Malki K, Cooper A, Sible E, Shapiro JW, Watkins SC, Putonti C (2016) Freshwater metaviromics and bacteriophages: a current assessment of the state of the art in relation to bioinformatic challenges. Evol Bioinforma 12:25–33. doi:10.4137/ebo.s38549

    Google Scholar 

  • Castello JD, Rogers SO, Starmer WT, Catranis CM, Ma LJ, Bachand GD, Zhao YH, Smith JE (1999) Detection of tomato mosaic tobamovirus RNA in ancient glacial ice. Polar Biol 22(3):207–212. doi:10.1007/s003000050411

    Article  Google Scholar 

  • Cattaneo R, Rouviere C, Rassoulzadegan F, Weinbauer MG (2010) Association of marine viral and bacterial communities with reference black carbon particles under experimental conditions: an analysis with scanning electron, epifluorescence and confocal laser scanning microscopy. FEMS Microbiol Ecol 74(2):382–396. doi:10.1111/j.1574-6941.2010.00953.x

    Article  CAS  PubMed  Google Scholar 

  • Cavicchioli R (2015) Microbial ecology of Antarctic aquatic systems. Nat Rev Microbiol 13(11):691–706. doi:10.1038/nrmicro3549

    Article  CAS  PubMed  Google Scholar 

  • Cavicchioli R, Erdmann S (2015) The discovery of Antarctic RNA viruses: a new game changer. Mol Ecol 24(19):4809–4811. doi:10.1111/mec.13387

    Article  PubMed  Google Scholar 

  • ChĂ©nard C, Wirth JF, Suttle CA (2016) Viruses infecting a freshwater filamentous cyanobacterium (Nostoc sp.) encode a functional CRISPR array and a proteobacterial DNA polymerase B. mBio 7(3):e00667-16. doi:10.1128/mBio.00667-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke DK, Duarte EA, Elena SF, Moya A, Domingo E, Holland J (1994) The red queen reigns in the kingdom of RNA viruses. Proc Natl Acad Sci 91(11):4821–4824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins RE, Deming JW (2011) Abundant dissolved genetic material in Arctic sea ice. Part II: Viral dynamics during autumn freeze-up. Polar Biol 34(12):1831–1841. doi:10.1007/s00300-011-1008-z

    Article  Google Scholar 

  • Cottrell MT, Kirchman DL (2012) Virus genes in Arctic marine bacteria identified by metagenomic analysis. Aquat Microb Ecol 66(2):107–116. doi:10.3354/ame01569

    Article  Google Scholar 

  • Drewes F, Peter H, Sommaruga R (2016) Are viruses important in the plankton of highly turbid glacier-fed lakes? Sci Report 6:24608. doi:10.1038/srep24608

    Article  CAS  Google Scholar 

  • Dudley JP, Hoberg EP, Jenkins EJ, Parkinson AJ (2015) Climate change in the North American Arctic: a one health perspective. EcoHealth 12(4):713–725. doi:10.1007/s10393-015-1036-1

    Article  PubMed  Google Scholar 

  • Edwards A (2015) Coming in from the cold: potential microbial threats from the terrestrial cryosphere. Front Earth Sci 3:12

    Article  Google Scholar 

  • Edwards A, Debbonaire AR, Sattler B, Mur LA, Hodson AJ (2016) Extreme metagenomics using nanopore DNA sequencing: a field report from Svalbard, 78 N. bioRxiv. doi:10.1101/073965

  • Evans C, Pearce I, Brussaard CPD (2009) Viral-mediated lysis of microbes and carbon release in the sub-Antarctic and polar frontal zones of the Australian Southern Ocean. Environ Microbiol 11(11):2924–2934. doi:10.1111/j.1462-2920.2009.02050.x

    Article  CAS  PubMed  Google Scholar 

  • Filippova SN, Surgucheva NA, Sorokin VV, Akimov VN, Karnysheva EA, Brushkov AV, Andersen D, Gal'chenko VF (2016) Bacteriophages in Arctic and Antarctic low-temperature systems. Microbiology 85(3):359–366. doi:10.1134/s0026261716030048

    Article  CAS  Google Scholar 

  • Frada M, Probert I, Allen MJ, Wilson WH, de Vargas C (2008) The “Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection. Proc Natl Acad Sci 105(41):15944–15949. doi:10.1073/pnas.0807707105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannoni S, Temperton B, Zhao Y (2013) Giovannoni et al. reply. Nature 499(7459):E4–E5. doi:10.1038/nature12388

    Article  CAS  PubMed  Google Scholar 

  • Gokul JK, Hodson AJ, Saetnan ER, Irvine-Fynn TDL, Westall PJ, Detheridge AP, Takeuchi N, Bussell J, Mur LAJ, Edwards A (2016) Taxon interactions control the distributions of cryoconite bacteria colonizing a High Arctic ice cap. Mol Ecol 25(15):3752–3767. doi:10.1111/mec.13715

    Article  PubMed  Google Scholar 

  • Goldfarb T, Sberro H, Weinstock E, Cohen O, Doron S, Charpak-Amikam Y, Afik S, Ofir G, Sorek R (2015) BREX is a novel phage resistance system widespread in microbial genomes. EMBO J 34(2):169–183. doi:10.15252/embj.201489455

    Article  CAS  PubMed  Google Scholar 

  • Gorniak D, Marszalek H, Jankowska K, Dunalska J (2016) Bacterial community succession in an Arctic lake-stream system (Brattegg Valley, SW Spitsbergen). Boreal Environ Res 21(1-2):115–133

    Google Scholar 

  • Guixa-Boixereu N, VaquĂ© D, Gasol JM, Sánchez-Cámara J, PedrĂłs-AliĂł C (2002) Viral distribution and activity in Antarctic waters. Deep Sea Res II Top Stud Oceanogr 49(4–5):827–845. doi:10.1016/S0967-0645(01)00126-6

    Article  Google Scholar 

  • Hanks MC, Newman B, Oliver IR, Masters M (1988) Packaging of transducing DNA by bacteriophage P1. Mol Gen Genet MGG 214(3):523–532. doi:10.1007/bf00330490

    Article  CAS  PubMed  Google Scholar 

  • Heldal M, Bratbak G (1991) Production and decay of viruses in aquatic environments. Mar Ecol Prog Ser 72(3):205–212

    Article  Google Scholar 

  • Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B (2008) Glacial ecosystems. Ecol Monogr 78(1):41–67. doi:10.1890/07-0187.1

    Article  Google Scholar 

  • Hornung C, Poehlein A, Haack FS, Schmidt M, Dierking K, Pohlen A, Schulenburg H, Blokesch M, Plener L, Jung K, Bonge A, Krohn-Molt I, Utpatel C, Timmermann G, Spieck E, Pommerening-Röser A, Bode E, Bode HB, Daniel R, Schmeisser C, Streit WR (2013) The Janthinobacterium sp. HH01 genome encodes a homologue of the V. cholerae CqsA and L. pneumophila LqsA autoinducer synthases. PLoS One 8(2):e55045. doi:10.1371/journal.pone.0055045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji XL, Zhang CJ, Fang Y, Zhang Q, Lin LB, Tang B, Wei YL (2015) Isolation and characterization of glacier VMY22, a novel lytic cold-active bacteriophage of Bacillus cereus. Virol Sin 30(1):52–58. doi:10.1007/s12250-014-3529-4

    Article  CAS  PubMed  Google Scholar 

  • Jiang SC, Paul JH (1998) Gene transfer by transduction in the marine environment. Appl Environ Microbiol 64(8):2780–2787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jungblut AD, Lovejoy C, Vincent WF (2009) Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J 4(2):191–202. http://www.nature.com/ismej/journal/v4/n2/suppinfo/ismej2009113s1.html

    Article  PubMed  Google Scholar 

  • Kay A, Zoulim F (2007) Hepatitis B virus genetic variability and evolution. Virus Res 127(2):164–176. doi:10.1016/j.virusres.2007.02.021

    Article  CAS  PubMed  Google Scholar 

  • Knowles B, Silveira CB, Bailey BA, Barott K, Cantu VA, Cobián-GĂĽemes AG, Coutinho FH, Dinsdale EA, Felts B, Furby KA, George EE, Green KT, Gregoracci GB, Haas AF, Haggerty JM, Hester ER, Hisakawa N, Kelly LW, Lim YW, Little M, Luque A, McDole-Somera T, McNair K, de Oliveira LS, Quistad SD, Robinett NL, Sala E, Salamon P, Sanchez SE, Sandin S, Silva GGZ, Smith J, Sullivan C, Thompson C, Vermeij MJA, Youle M, Young C, Zgliczynski B, Brainard R, Edwards RA, Nulton J, Thompson F, Rohwer F (2016) Lytic to temperate switching of viral communities. Nature 531(7595):466–470. doi:10.1038/nature17193

    Article  CAS  PubMed  Google Scholar 

  • Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8(5):317–327

    Article  CAS  PubMed  Google Scholar 

  • Legendre M, Bartoli J, Shmakova L, Jeudy S, Labadie K, Adrait A, Lescot M, Poirot O, Bertaux L, Bruley C, CoutĂ© Y, Rivkina E, Abergel C, Claverie J-M (2014) Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc Natl Acad Sci 111(11):4274–4279. doi:10.1073/pnas.1320670111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li MY, Wang JL, Zhang Q, Lin LB, Kuang AX, Materon L, Ji XL, Wei Y (2016) Isolation and characterization of the lytic cold-active bacteriophage MYSP06 from the Mingyong Glacier in China. Curr Microbiol 72(2):120–127. doi:10.1007/s00284-015-0926-3

    Article  CAS  PubMed  Google Scholar 

  • LĂłpez-Bueno A, Rastrojo A, Peiro R, Arenas M, Alcami A (2015) Ecological connectivity shapes quasispecies structure of RNA viruses in an Antarctic lake. Mol Ecol 24(19):4812–4825. doi:10.1111/mec.13321

    Article  PubMed  Google Scholar 

  • LĂłpez-Bueno A, Tamames J, Velázquez D, Moya A, Quesada A, AlcamĂ­ A (2009) High diversity of the viral community from an Antarctic lake. Science 326(5954):858–861. doi:10.1126/science.1179287

    Article  PubMed  Google Scholar 

  • Madan NJ, Marshall WA, Laybourn-Parry J (2005) Virus and microbial loop dynamics over an annual cycle in three contrasting Antarctic lakes. Freshw Biol 50(8):1291–1300. doi:10.1111/j.1365-2427.2005.01399.x

    Article  Google Scholar 

  • Middelboe M, Glud RN, Sejr MK (2012) Bacterial carbon cycling in a subarctic fjord: a seasonal study on microbial activity, growth efficiency, and virus-induced mortality in Kobbefjord, Greenland. Limnol Oceanogr 57(6):1732–1742

    Article  CAS  Google Scholar 

  • Middelboe M, Jorgensen N, Kroer N (1996) Effects of viruses on nutrient turnover and growth efficiency of noninfected marine bacterioplankton. Appl Environ Microbiol 62(6):1991–1997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mojica KDA, Brussaard CPD (2014) Factors affecting virus dynamics and microbial host–virus interactions in marine environments. FEMS Microbiol Ecol 89(3):495–515. doi:10.1111/1574-6941.12343

    Article  CAS  PubMed  Google Scholar 

  • Motegi C, Nagata T, Miki T, Weinbauer MG, Legendre L, Rassoulzadegan F (2009) Viral control of bacterial growth efficiency in marine pelagic environments. Limnol Oceanogr 54(6):1901–1910

    Article  CAS  Google Scholar 

  • Noble RT, Fuhrman JA (1997) Virus decay and its causes in coastal waters. Appl Environ Microbiol 63(1):77–83

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noble RT, Fuhrman JA (1998) Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 14(2):113–118

    Article  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784):299–304

    Article  CAS  PubMed  Google Scholar 

  • Patel A, Noble RT, Steele JA, Schwalbach MS, Hewson I, Fuhrman JA (2007) Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I. Nat Protoc 2(2):269–276

    Article  CAS  PubMed  Google Scholar 

  • Pearce DA, Wilson WH (2003) Viruses in Antarctic ecosystems. Antarct Sci 15(3):319–331. doi:10.1017/s0954102003001330

    Article  Google Scholar 

  • Philippe N, Legendre M, Doutre G, CoutĂ© Y, Poirot O, Lescot M, Arslan D, Seltzer V, Bertaux L, Bruley C, Garin J, Claverie J-M, Abergel C (2013) Pandoraviruses: Amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science 341(6143):281–286. doi:10.1126/science.1239181

    Article  CAS  PubMed  Google Scholar 

  • Pomeroy LR (1974) The Ocean's food web, a changing paradigm. Bioscience 24(9):499–504. doi:10.2307/1296885

    Article  Google Scholar 

  • Qin KH, Cheng BX, Zhang ST, Wang N, Fang Y, Zhang Q, Kuang AX, Lin LB, Ji XL, Wei YL (2016) Complete genome sequence of the cold-active bacteriophage VMY22 from Bacillus cereus. Virus Genes 52(3):432–435. doi:10.1007/s11262-016-1300-7

    Article  CAS  PubMed  Google Scholar 

  • Rassner SME, Anesio AM, Girdwood SE, Hell K, Gokul JK, Whitworth DE, Edwards A (2016) Can the bacterial community of a high Arctic glacier surface escape viral control? Front Microbiol 7:956. doi:10.3389/fmicb.2016.00956

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers SO, Starmer WT, Castello JD (2004) Recycling of pathogenic microbes through survival in ice. Med Hypotheses 63(5):773–777. doi:10.1016/j.mehy.2004.04.004

    Article  PubMed  Google Scholar 

  • Rohwer F, Thurber RV (2009) Viruses manipulate the marine environment. Nature 459(7244):207–212

    Article  CAS  PubMed  Google Scholar 

  • Rose R, Constantinides B, Tapinos A, Robertson DL, Prosperi M (2016) Challenges in the analysis of viral metagenomes. Virus Evol 2(2):vew022. doi:10.1093/ve/vew022

    Article  Google Scholar 

  • Sanguino L, Franqueville L, Vogel TM, Larose C (2015) Linking environmental prokaryotic viruses and their host through CRISPRs. FEMS Microbiol Ecol 91(5). doi:10.1093/femsec/fiv046

  • Sano E, Carlson S, Wegley L, Rohwer F (2004) Movement of viruses between biomes. Appl Environ Microbiol 70(10):5842–5846. doi:10.1128/AEM.70.10.5842-5846.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Säwström C, Anesio MA, Graneli W, Laybourn-Parry J (2007a) Seasonal viral loop dynamics in two large ultraoligotrophic Antarctic freshwater lakes. Microb Ecol 53(1):1–11. doi:10.1007/s00248-006-9146-5

    Article  PubMed  Google Scholar 

  • Säwström C, Laybourn-Parry J, Graneli W, Anesio AM (2007b) Heterotrophic bacterial and viral dynamics in Arctic freshwaters: results from a field study and nutrient-temperature manipulation experiments. Polar Biol 30(11):1407–1415. doi:10.1007/s00300-007-0301-3

    Article  Google Scholar 

  • Säwström C, Lisle J, Anesio AM, Priscu JC, Laybourn-Parry J (2008) Bacteriophage in polar inland waters. Extremophiles 12(2):167–175. doi:10.1007/s00792-007-0134-6

    Article  PubMed  Google Scholar 

  • Sengupta M, Nielsen HJ, Youngren B, Austin S (2010) P1 plasmid segregation: accurate redistribution by dynamic plasmid pairing and separation. J Bacteriol 192(5):1175–1183. doi:10.1128/JB.01245-09

    Article  CAS  PubMed  Google Scholar 

  • Sillankorva S, Oliveira R, Vieira MJ, Sutherland I, Azeredo J (2004) Pseudomonas fluorescens infection by bacteriophage ΦS1: the influence of temperature, host growth phase and media. FEMS Microbiol Lett 241(1):13–20. doi:10.1016/j.femsle.2004.06.058

    Article  CAS  PubMed  Google Scholar 

  • Skidmore M, Anderson SP, Sharp M, Foght J, Lanoil BD (2005) Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl Environ Microbiol 71(11):6986–6997. doi:10.1128/AEM.71.11.6986-6997.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AW, Skilling DE, Castello JD, Rogers SO (2004) Ice as a reservoir for pathogenic human viruses: specifically, caliciviruses, influenza viruses, and enteroviruses. Med Hypotheses 63(4):560–566. doi:10.1016/j.mehy.2004.05.011

    Article  PubMed  Google Scholar 

  • Stibal M, Schostag M, Cameron KA, Hansen LH, Chandler DM, Wadham JL, Jacobsen CS (2015) Different bulk and active bacterial communities in cryoconite from the margin and interior of the Greenland ice sheet. Environ Microbiol Rep 7(2):293–300. doi:10.1111/1758-2229.12246

    Article  CAS  PubMed  Google Scholar 

  • Suttle CA, Chen F (1992) Mechanisms and rates of decay of marine viruses in seawater. Appl Environ Microbiol 58(11):3721–3729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thingstad TF (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr 45(6):1320–1328. doi:10.4319/lo.2000.45.6.1320

    Article  Google Scholar 

  • Thingstad TF, Lignell R (1997) Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat Microb Ecol 13(1):19–27

    Article  Google Scholar 

  • Tschitschko B, Williams TJ, Allen MA, Paez-Espino D, Kyrpides N, Zhong L, Raftery MJ, Cavicchioli R (2015) Antarctic archaea-virus interactions: metaproteome-led analysis of invasion, evasion and adaptation. ISME J 9(9):2094–2107. doi:10.1038/ismej.2015.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu M, Liu F, Chen S, Wang M, Cheng A (2015) Role of capsid proteins in parvoviruses infection. Virol J 12:114. doi:10.1186/s12985-015-0344-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28(2):127–181. doi:10.1016/j.femsre.2003.08.001

    Article  CAS  PubMed  Google Scholar 

  • Weinbauer MG, Rassoulzadegan F (2004) Are viruses driving microbial diversification and diversity? Environ Microbiol 6(1):1–11. doi:10.1046/j.1462-2920.2003.00539.x

    Article  PubMed  Google Scholar 

  • Wells LE, Deming JW (2006a) Characterization of a cold-active bacteriophage on two psychrophilic marine hosts. Aquat Microb Ecol 45(1):15–29

    Article  Google Scholar 

  • Wells LE, Deming JW (2006b) Effects of temperature, salinity and clay particles on inactivation and decay of cold-active marine bacteriophage 9A. Aquat Microb Ecol 45(1):31–39. doi:10.3354/ame045031

    Article  Google Scholar 

  • Wilhelm SW, Matteson AR (2008) Freshwater and marine virioplankton: a brief overview of commonalities and differences. Freshw Biol 53(6):1076–1089. doi:10.1111/j.1365-2427.2008.01980.x

    Article  Google Scholar 

  • Wilhelm SW, Suttle CA (1999) Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. Bioscience 49(10):781–788. doi:10.2307/1313569

    Article  Google Scholar 

  • Wilkins D, Yau S, Williams TJ, Allen MA, Brown MV, DeMaere MZ, Lauro FM, Cavicchioli R (2013) Key microbial drivers in Antarctic aquatic environments. FEMS Microbiol Rev 37(3):303–335. doi:10.1111/1574-6976.12007

    Article  CAS  PubMed  Google Scholar 

  • Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64(1):69–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yau S, Lauro FM, DeMaere MZ, Brown MV, Thomas T, Raftery MJ, Andrews-Pfannkoch C, Lewis M, Hoffman JM, Gibson JA, Cavicchioli R (2011) Virophage control of antarctic algal host–virus dynamics. Proc Natl Acad Sci 108(15):6163–6168. doi:10.1073/pnas.1018221108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Shoham D, Gilichinsky D, Davydov S, Castello JD, Rogers SO (2006) Evidence of influenza A virus RNA in Siberian lake ice. J Virol 80(24):12229–12235. doi:10.1128/jvi.00986-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Temperton B, Thrash JC, Schwalbach MS, Vergin KL, Landry ZC, Ellisman M, Deerinck T, Sullivan MB, Giovannoni SJ (2013) Abundant SAR11 viruses in the ocean. Nature 494(7437):357–360. http://www.nature.com/nature/journal/v494/n7437/abs/nature11921.html#supplementary-information

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Freshwater Biological Association through the Hugh Cary Gilson Award 2013 and by the Welsh Government and HEFCW through the SĂŞr Cymru National Research Network for Low Carbon, Energy and the Environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara M. E. Rassner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rassner, S.M.E. (2017). Viruses in Glacial Environments. In: Margesin, R. (eds) Psychrophiles: From Biodiversity to Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-57057-0_6

Download citation

Publish with us

Policies and ethics