Skip to main content

Calcium Application Enhances Plant Salt Tolerance: A Review

  • Chapter
  • First Online:
Essential Plant Nutrients

Abstract

Environmental stressors such as drought and soil salinity limit crop production especially in arid and semiarid areas. Improvement of crop production with chemical applications was largely used to enhance salt tolerance of plant species. Calcium (Ca) is an essential element for plant nutrition, and it’s indispensable to regulating many biochemical functions in plants subjected to salt stress. Exogenous application of this element can play an important role in enhancing plant stress tolerance. In spite of its acclaimed protective role, unfortunately, limited research has been focused to review the effectiveness of Ca to improve plant salt tolerance. In this review chapter, some knowledge of successful application of Ca to improve plant stress tolerance was presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

DHAR:

Dehydroascorbate reductase

EL:

Electrolyte leakage

GA:

Gibberellic acid

GB:

Glycine betaine

GR:

Glutathione reductase

L o :

Root hydraulic conductivity

POX:

Peroxidase

P5CS:

Pyrroline-5-carboxylate synthetase

SOD:

Superoxide dismutase

RWC:

Relative water content

Ψπ:

Osmotic potential

Ψω:

Water potential

References

  • Al-Whaibi, M. H., Siddiqui, M. H., & Basalah, M. O. (2012). Salicylic acid and calcium-induced protection of wheat against salinity. Protoplasma, 249, 769–778.

    Article  CAS  PubMed  Google Scholar 

  • Arshi, A., Abdin, M. Z., & Iqbal, M. (2006a). Sennoside content and yield attributes of Cassia angustifolia Vahl. as affected by NaCl and CaCl2. Scientia Horticulturae, 111, 84–90.

    Article  CAS  Google Scholar 

  • Arshi, A., Abdin, M. Z., & Iqbal, M. (2006b). Effect of CaCl2 on growth performance, photosynthetic efficiency and nitrogen assimilation of Cichorium intybus L. grown under NaCl stress. Acta Physiolia Plantarum, 28, 137–147.

    Article  CAS  Google Scholar 

  • Ben Amor, N., Megdiche, W., JimĂ©nez, A., Sevilla, F., & Abdelly, C. (2010). The effect of calcium on the antioxidant systems in the halophyte Cakile maritima under salt stress. Acta Physiolia Plantarum, 32(3), 453–461.

    Article  CAS  Google Scholar 

  • Bonilla, I., El-Hamdaoui, A., & Bolaños, L. (2004). Boron and calcium increase Pisum sativum seed germination and seedling development under salt stress. Plant and Soil, 267, 97–107.

    Article  CAS  Google Scholar 

  • Cabañero, F. J., MartĂ­nez, V., & Carvajal, M. (2004). Does calcium determine water uptake under saline conditions in pepper plants, or is it water flux which determines calcium uptake?. Plant Science, 166, 443–450.

    Article  Google Scholar 

  • Carvajal, M., Cerda, A., & MartĂ­nez, V. (2000). Does calcium ameliorate the negative effect of NaCl on melon root water transport by regulating aquaporin activity?. New Phytologist, 145, 439–447.

    Article  CAS  Google Scholar 

  • Cha-um, S., Singh, H. P., Samphumphuang, T., & Kirdmanee, C. (2012). Calcium-alleviated salt tolerance in indica rice (Oryza sativa L. spp. indica): Physiological and morphological changes. Australian Journal of Crop Science, 6(1), 176–182.

    CAS  Google Scholar 

  • Colmer, T. D., Fan, T. W. M., Higashi, R. M., & Läuchli, A. (1996). Interactive effects of Ca2+ and NaCl salinity on the ionic relations and proline accumulation in the primary root tip of Sorghum bicolor. Physiologia Plantarum, 97, 421–424.

    Article  CAS  Google Scholar 

  • Ebert, G., Eberle, J., Ali-Dinar, H., & Ludders, P. (2002). Ameliorating effects of Ca(NO3)2 on growth, mineral uptake and photosynthesis of NaCl-stressed guava seedlings (Psidium guajava L.). Scientia Horticulturea, 93, 125–135.

    Article  CAS  Google Scholar 

  • Epstein, E. (1998). How calcium enhances plant salt tolerance. Science, 40, 1906–1907.

    Article  Google Scholar 

  • Girija, C., Smith, B. N., & Swamy, P. M. (2002). Interactive effects of sodium chloride and calcium chloride on the accumulation of proline and glycinebetaine in peanut (Arachis hypogaea L.). Environmental and Experimental Botany, 47, 1–10.

    Article  CAS  Google Scholar 

  • Gobinathan, P., Murali, P. V., & Panneerselvam, R. (2009). Interactive effects of calcium chloride on salinity-induced proline metabolism in Pennisetum typoidies. Advance Biological Research, 3, 168–173.

    CAS  Google Scholar 

  • GuimarĂ£es, F. V. A., de Lacerda, C. F., Marques, E. C., de Miranda, M. R. A., de Abreu, C. E. B., Prisco, J. T., & Gomes-Filho, E. (2011). Calcium can moderate changes on membrane structure and lipid composition in cowpea plants under salt stress. Plant Growth Regulation, 65, 55–63.

    Article  Google Scholar 

  • Gul, B., & Khan, M. A. (2006). Role of calcium in alleviating salinity effects in coastal halophytes. In M. A. Khan & D. J. Weber (Eds.), Ecophysiology of high salinity tolerant plants (pp. 107–114). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Hepler, P. K. (2005). Calcium: A central regulator of plant growth and development. Plant Cell, 17(8), 2142–2155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hojjatnooghi, F., Mozafari, V., Tajabadipour, A., & Hokmabadi, H. (2014). Effects of salinity and calcium on the growth and chemical composition of pistachio seedlings. Journal of Plant Nutrition, 37, 928–941.

    Article  CAS  Google Scholar 

  • Kaddour, R., Mahmoudi, M., BaĂ¢tour, O., Tarchoun, I., Nasri, N., Ben, S. I., Berthomieu, P., Gruber, M., & LachaĂ¢l, M. (2012). Physiological and molecular responses of two Arabidopsis accessions to calcium amendment and salt constraint. Acta Physiologiae Plantarum, 34, 439–450.

    Article  CAS  Google Scholar 

  • Kaya, C., Kirnak, H., Higgs, D., & Saltali, K. (2002). Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Scientia Horticulturae, 93, 65–74.

    Article  CAS  Google Scholar 

  • Khan, M. N., Siddiqui, M. H., Mohammad, F., Naeem, M., Masroor, M., & Khan, A. (2010). Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defense system and osmoprotectant accumulation. Acta Physiolia Plantarum, 32, 121–132.

    Article  Google Scholar 

  • Lei, B., Huang, Y., Xie, J. J., Liu, Z. X., Zhen, A., Fan, M. L., & Bie, Z. L. (2014). Increased cucumber salt tolerance by grafting on pumpkin rootstock and after application of calcium. Biologia Plantarum, 58(1), 179–184.

    Article  CAS  Google Scholar 

  • MartĂ­nez-Ballesta, C. M., Cabañero, F., Olmos, E., Periago, P. M., Maurel, C., & Carvajal, M. (2008). Two different effects of calcium on aquaporins in salinity-stressed pepper plants. Planta, 228, 15–25.

    Article  PubMed  Google Scholar 

  • Murillo-Amador, B., Jones, H. G., Kaya, C., Aguilar, R. L., Garcia-Hernandez, J. L., Troyo-Dieguez, E., Avila-Serrano, N. Y., & Rueda-Puente, E. (2006). Effects of foliar application of calcium nitrate on growth and physiological attributes of cowpea (Vigna unguiculata L. Walp.) grown under salt stress. Environmental and Experimental Botany, 58, 188–196.

    Article  CAS  Google Scholar 

  • Murugan, K., & Sathish, D. K. (2005). Ameliorative effect by calcium on NaCl salinity stress related to proline metabolism in the callus of Centella asiatica L. Journal of Plant Biochemistry and Biotechnology, 14, 205–207.

    Article  CAS  Google Scholar 

  • Nedjimi, B., & Daoud, Y. (2009a). Effects of calcium chloride on growth, membrane permeability and root hydraulic conductivity in two Atriplex species grown at high (sodium chloride) salinity. Journal of Plant Nutrition, 32, 1818–1830.

    Article  CAS  Google Scholar 

  • Nedjimi, B., & Daoud, Y. (2009b). Ameliorative effect of CaCl2 on growth, membrane permeability and nutrient uptake in Atriplex halimus subsp. schweinfurthii grown at high (NaCl) salinity. Desalination, 249, 163–166.

    Article  CAS  Google Scholar 

  • Nedjimi, B., Daoud, Y., Carvajal, M., & MartĂ­nez-Ballesta, M. C. (2010). Improvement of the adaptation of Lygeum spartum L. to salinity under the presence of calcium. Communications in Soil Science and Plant Analysis, 41(19), 2301–2317.

    Article  CAS  Google Scholar 

  • Qadir, M., Schubert, S., Ghafoor, A., & Murtaza, G. (2001). Amelioration strategies for sodic soil: A review. Land Degradation & Development, 12, 357–386.

    Article  Google Scholar 

  • Renault, S. (2005). Response of red-osier dogwood (Cornus stolonifera) seedlings to sodium sulphate salinity: Effects of supplemental calcium. Physiologia Plantarum, 123, 75–81.

    Article  CAS  Google Scholar 

  • Rengasamy, P. (2006). World salinization with emphasis on Australia. Journal of Experimental Botany, 57, 1017–1023.

    Article  CAS  PubMed  Google Scholar 

  • Rengel, Z. (1992). The role of calcium in salt toxicity. Plant, Cell & Environment, 15, 625–632.

    Article  CAS  Google Scholar 

  • Shabala, S., Shabala, L., & van Volkenburgh, E. (2003). Effect of calcium on root development and root ion fluxes in salinised barley seedlings. Functional Plant Biology, 30, 507–514.

    Article  CAS  Google Scholar 

  • Shaikh, F., Gul, B., Li, W., Liu, X., & Khan, M. A. (2007). Effect of calcium and light on the germination of Urochondra setulosa under different salts. Journal of Zhejiang University Science. B, 8(1), 20–26.

    Article  CAS  PubMed  Google Scholar 

  • Sunukumar, S. S., Harish, S. R., Manoj, G. S., Sreelekshmi, S. G., Krishnan, R., Lubaina, A. S., & Murugan, K. (2011). Ameliorative effect by calcium on NaCl salinity stress related to reactive oxygen species metabolism in Amaranthus tricolor L. Journal of Research in Biology, 6, 411–418.

    Google Scholar 

  • Szabolcs, I. (1989). Amelioration of soils in salt affected areas. Soil Technology, 2, 331–344.

    Article  Google Scholar 

  • Tobe, K., Li, X., & Omasa, K. (2002). Effect of sodium magnesium and calcium salts on seed germination and radicle survival of a halophyte, Kalidium caspicum (Chenopodiaceae). Australian Journal of Botany, 50, 163–169.

    Article  CAS  Google Scholar 

  • Tobe, K., Li, X., & Omasa, K. (2004). Effects of five different salts on seed germination and seedling growth of Haloxylon ammodendron (Chenopodiaceae). Seed Science Research, 14, 345–353.

    Article  CAS  Google Scholar 

  • Tuna, A. L., Kaya, C., Ashraf, M., Altunlu, H., Yokas, I., & Yagmur, B. (2007). The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environmental and Experimental Botany, 59, 173–178.

    Article  CAS  Google Scholar 

  • White, P. J. (1998). Calcium channels in the plasma membrane of root cells. Annals of Botany, 81, 173–183.

    Article  CAS  Google Scholar 

  • Xiong, T. C., Bourque, S., Lecourieux, D., Amelot, N., Grat, S., Brière, C., Mazars, C., Pugin, A., & Ranjeva, R. (2006). Calcium signaling in plant cell organelles delimited by a double membrane. Biochimica et Biophysica Acta, 1763, 1209–1215.

    Article  CAS  PubMed  Google Scholar 

  • Xue, Y. F., Liu, L., Liu, Z. P., Mehta, S. K., & Zhao, G. M. (2008). Protective role of Ca against NaCl toxicity in Jerusalem artichoke by up-regulation of antioxidant enzymes. Pedosphere, 18, 766–774.

    Article  Google Scholar 

  • Yao, S., Chen, S., Zhao, J., Xu, D., Lan, H., & Zhang, F. (2010). Effect of three salts on germination and seedling survival of dimorphic seeds of Chenopodium album. Botany, 88, 821–828.

    Article  CAS  Google Scholar 

  • Zehra, A., Gul, B., Ansari, R., & Khan, M. A. (2012). Role of calcium in alleviating effect of salinity on germination of Phragmites karka seeds. South African Journal of Botany, 78, 122–128.

    Article  CAS  Google Scholar 

  • Zrig, A., Tounekti, T., Ben Mohamed, H., Abdelgawad, H., Vadel, A. M., Valero, D., & Khemira, H. (2016). Differential response of two almond rootstocks to chloride salt mixtures in the growing medium. Russian Journal of Plant Physiology, 63, 143–151.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by internal funds of the Algerian Ministry of Higher Education and Scientific Research (CNEPRU Project no. D04N01UN170120140017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bouzid Nedjimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nedjimi, B. (2017). Calcium Application Enhances Plant Salt Tolerance: A Review. In: Naeem, M., Ansari, A., Gill, S. (eds) Essential Plant Nutrients. Springer, Cham. https://doi.org/10.1007/978-3-319-58841-4_15

Download citation

Publish with us

Policies and ethics