Skip to main content

Structural Organization and Transitions

  • Chapter
  • First Online:
Multiplex Networks

Part of the book series: SpringerBriefs in Complexity ((BRIEFSCOMPLEXITY))

  • 827 Accesses

Abstract

Complex networks show nontraditional critical properties due to their extreme compactness (small-world property) together with their complex organization [28].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The weight p may have a physical meaning, like the (inverse of) commuting time in a transportation multiplex network; however, it can be always intended as a tuning parameter.

References

  1. J.A. Almendral, A. Díaz-Guilera, Dynamical and spectral properties of complex networks. New J. Phys. 9(6), 187 (2007)

    Article  ADS  Google Scholar 

  2. A. Arenas, A. Díaz-Guilera, C.J. Pérez-Vicente, Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96(11), 114102 (2006)

    Google Scholar 

  3. M.T. Chu, Inverse eigenvalue problems. SIAM Rev. 40(1), 1–39 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  4. E. Cozzo, Y. Moreno, Characterization of multiple topological scales in multiplex networks through supra-Laplacian eigengaps. Phys. Rev. E 94, 052318 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  5. K.C. Das, R.B. Bapat, A sharp upper bound on the largest Laplacian eigenvalue of weighted graphs. Linear Algebra Appl. 409, 153–165 (2005)

    Article  MathSciNet  Google Scholar 

  6. S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Critical phenomena in complex networks. Rev. Mod. Phys. 80(4), 1275 (2008)

    Article  ADS  Google Scholar 

  7. S. Gomez, A. Diaz-Guilera, J. Gomez-Gardeñes, C.J. Perez-Vicente, Y. Moreno, A. Arenas, Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 110(2), 028701 (2013)

    Google Scholar 

  8. A. Jamakovic, P. Van Mieghem, On the robustness of complex networks by using the algebraic connectivity, in Networking. Lecture Notes in Computer Science, vol. 4982 (Springer, Berlin, 2008), pp. 183–194

    Chapter  Google Scholar 

  9. M. Kivela, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, Multilayer networks. J. Complex Networks 2(3), 203–271 (2014)

    Article  Google Scholar 

  10. J. Martín-Hernández, H. Wang, P. Van Mieghem, G. D’Agostino, Algebraic connectivity of interdependent networks. Phys. A: Stat. Mech. Appl. 404, 92–105 (2014)

    Article  MathSciNet  Google Scholar 

  11. A. Milanese, J. Sun, T. Nishikawa, Approximating spectral impact of structural perturbations in large networks. Phys. Rev. E 81, 046112 (2010)

    Article  ADS  Google Scholar 

  12. R. Parshani, S.V. Buldyrev, S. Havlin, Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition. Phys. Rev. Lett. 105(4), 048701 (2010)

    Google Scholar 

  13. F. Passerini, S. Severini, Quantifying complexity in networks: the von Neumann entropy. Int. J. Agent Technol. Syst. 1(4), 58–67 (2009)

    Article  Google Scholar 

  14. F. Radicchi, Driving interconnected networks to supercriticality. Phys. Rev. X 4(2), 021014 (2014)

    Google Scholar 

  15. F. Radicchi, A. Arenas, Abrupt transition in the structural formation of interconnected networks. Nat. Phys. 9, 717–720 (2013)

    Article  Google Scholar 

  16. M. Saerens, F. Fouss, L. Yen, P. Dupont, The principal components analysis of a graph, and its relationships to spectral clustering, in Machine Learning: ECML 2004 (2004), pp. 371–383

    Chapter  Google Scholar 

  17. F.D. Sahneh, C. Scoglio, P. Van Mieghem, Exact coupling threshold for structural transition reveals diversified behaviors in interconnected networks. Phys. Rev. E 92, 040801 (2015)

    Article  Google Scholar 

  18. R.J. Sánchez-García, E. Cozzo, Y. Moreno, Dimensionality reduction and spectral properties of multilayer networks. Phys. Rev. E 89, 052815 (2014)

    Article  ADS  Google Scholar 

  19. D.J. Selkoe, Alzheimer’s disease is a synaptic failure. Science 298(5594), 789–791 (2002)

    Article  ADS  Google Scholar 

  20. H.-W. Shen, X.-Q. Cheng, B.-X. Fang, Covariance, correlation matrix, and the multiscale community structure of networks. Phys. Rev. E 82(1), 016114 (2010)

    Google Scholar 

  21. A. Sole-Ribalta, M. De Domenico, N.E. Kouvaris, A. Diaz-Guilera, S. Gomez, A. Arenas, Spectral properties of the Laplacian of multiplex networks. Phys. Rev. E 88(3), 032807 (2013)

    Google Scholar 

  22. S.-W. Son, G. Bizhani, C. Christensen, P. Grassberger, M. Paczuski, Percolation theory on interdependent networks based on epidemic spreading. EPL (Europhys. Lett.) 97(1), 16006 (2012)

    Article  ADS  Google Scholar 

  23. A. Sydney, C. Scoglio, D. Gruenbacher, Optimizing algebraic connectivity by edge rewiring. Appl. Math. Comput. 219(10), 5465–5479 (2013)

    MathSciNet  MATH  Google Scholar 

  24. J.J. Wu, H.J. Sun, Z.Y. Gao, Cascading failures on weighted urban traffic equilibrium networks. Phys. A: Stat. Mech. Appl. 386(1), 407–413 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cozzo, E., de Arruda, G.F., Rodrigues, F.A., Moreno, Y. (2018). Structural Organization and Transitions. In: Multiplex Networks. SpringerBriefs in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-92255-3_5

Download citation

Publish with us

Policies and ethics