Skip to main content

Properties of Micro- and Nano-Reinforced Biopolymers for Food Applications

  • Chapter
  • First Online:
Polymers for Food Applications

Abstract

Food packaging implies a significant consumption of different materials, of which plastics are the second most widely used. So, the development of biopolymers for food packaging applications is critically important. Although several biopolymers are available for different applications, they have some drawbacks and their functional properties need to be adapted for food packaging requirements. The incorporation of micro- and nano-fillers into the biopolymer matrix has proven to be an alternative means of improving their mechanical and barrier properties. In composites, the polymer forms the continuous matrix while the dispersed filler phase helps to positively modify the functional characteristics of the material. Different kinds of fillers have been used which modify the material characteristics as a function of their content and filler-matrix interactions. The particle size and shape, the amount and distribution and the chemical nature of the fillers are key factors in the final properties of the composite. In general, thermomechanical processes with high shearing forces and temperatures for the required time are needed to guarantee the convenient dispersion of the filler within the polymer matrix. In this chapter, the different kinds of fillers used in biopolymer composites have been summarized. The relevant surface properties and the changes induced by fillers on the mechanical, barrier and thermal properties of micro- and nano-composites have been discussed, with emphasis on food packaging applications. The processing techniques, formulation and final structure of materials have also been reviewed, as well as the influence of the fillers on the biodegradation behaviour of composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic Force Microscopy

Ag-NPs:

Ag nanoparticles

ATBC:

Acetyltributyl citrate

BCNW:

Bacterial cellulose nanowhiskers

ChNC:

Chitin nanocrystals

CMC:

Carboxymethyl cellulose

CNC:

Cellulose nanocrystals

CNF:

Cellulose nanofibrils

DSC:

Differential Scanning Calorimetry

FESEM:

Field emission scanning electron microscopy

FTIR:

Fourier-transform infrared spectroscopy

GTA:

Glycerol triacetate

HPMC:

(Hidroxypropil)metil cellulose

MC:

Methylcellulose

MCC:

Microcrystalline cellulose

Mnt:

Montmorillonite

NCC:

Nano-crystalline cellulose

PBS:

Poly(butylene succinate)

PBTA:

Poly(butylene adipate co-terephthalate)

PCL:

Polycaprolactone

PEG:

Polyethylen glycol

PHA:

Polyhydroxyalcanoates

PHB:

Polyhydroxybutyrate

PHBV:

Polyhydroxyl-3-butyrate-co23-valerate

PHBV12:

Polyhydroxybutyrate with 12 mol% of valerate and containing 10 wt% of the plasticizer citric ester

PLA:

Poly(lactic) acid

PLLA:

Poly(l-lactide)

PVA:

Poly(vinyl alcohol)

SEM:

Scanning Electron Microscopy

TPCS:

Thermoplastic corn starch

TPS:

Thermoplastic starch

WSNC:

Waxy starch nanocrystals

References

  • Abdollahi M, Alboofetileh M, Rezaei M et al (2013) Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. Food Hydrocoll 32:416–424

    Article  CAS  Google Scholar 

  • Abdul Khalil HP, Davoudpour Y, Saurabh C et al (2016) A review on nanocellulosic fibres as new material for sustainable packaging: process and applications. Renew Sust Energ Rev 64:823–836

    Article  CAS  Google Scholar 

  • Alves JS, dos Reis KC, Menezes EGT et al (2015) Effect of cellulose nanocrystals and gelatin in corn starch plasticized films. Carbohydr Polym 115:215–222

    Article  CAS  PubMed  Google Scholar 

  • Arrieta M, Peltzer M, López J et al (2014a) Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. J Food Eng 121:94–101

    Article  CAS  Google Scholar 

  • Arrieta MP, Fortunati E, Dominici F et al (2014b) Multifunctional PLA–PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohydr Polym 107:16–24

    Article  CAS  PubMed  Google Scholar 

  • Arrieta MP, López J, Kenny JM et al (2015) Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Ind Crop Prod 96:290–301

    Google Scholar 

  • ASTM (2003) Standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions, incorporating thermophilic temperatures. Standards designations: D5338. In: Annual book of ASTM standards. American Society for Testing and Materials, Philadelphia, PA

    Google Scholar 

  • Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253

    Article  CAS  Google Scholar 

  • Azeredo HMC, Rosa MF, Mattoso LHC (2017) Nanocellulose in bio-based food packaging applications. Ind Crop Prod 97:664–671

    Article  CAS  Google Scholar 

  • Bera A, Dubey S, Bhayani K et al (2015) Microbial synthesis of polyhydroxyalkanoate using seaweed-derived crude levulinic acid as co-nutrient. Int J Biol Macromol 72:487–494

    Article  CAS  PubMed  Google Scholar 

  • Berthet MA, Angellier-Coussy H, Chea V et al (2015) Sustainable food packaging: valorising wheat straw fibres for tuning PHBV-based composites properties. Compos Part A Appl Sci Manuf 72:139–147

    Article  CAS  Google Scholar 

  • Bonilla J, Fortunati E, Vargas M (2013) Effects of chitosan on the physicochemical and antimicrobial properties of PLA films. J Food Eng 119(2):236–243

    Article  CAS  Google Scholar 

  • Boonterm M, Sunyadeth S, Dedpakdee S et al (2015) Characterization and comparison of cellulose fiber extraction from rice straw by chemical treatment and thermal stem explosion. J Clean Prod 134:592–599

    Article  CAS  Google Scholar 

  • Boumail A, Salmieri S, Klimas E et al (2013) Characterization of trilayer antimicrobial diffusion films (ADFs) based on methylcellulose−polycaprolactone composites. J Agric Food Chem 61:811–821

    Article  CAS  PubMed  Google Scholar 

  • Brinchi L, Cotana F, Fortunati E et al (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169

    Article  CAS  PubMed  Google Scholar 

  • Cano A, Fortunati E, Cháfer M et al (2015) Effect of cellulose nanocrystals on the properties of pea starch–poly(vinyl alcohol) blend films. J Mater Sci 50:6979–6992

    Article  CAS  Google Scholar 

  • Cano A, Cháfer M, Chiralt A et al (2016) Biodegradation behaviour of starch-PVA films as affected by the incorporation of different antimicrobials. Polym Degrad Stab 132:11–20

    Article  CAS  Google Scholar 

  • Cao X, Chen Y, Chang PR et al (2008) Green composites reinforced with hemp nanocrystals in plasticized starch. J Appl Polym Sci 109(6):3804–3810

    Article  CAS  Google Scholar 

  • Carbone M, Donia DM, Sabbatella G et al (2016) Silver nanoparticles in polymeric matrices for fresh food packaging. J King Saud Univ Sci 28:273–279

    Article  Google Scholar 

  • Cavallaro G, Lazzara G, Milioto S (2013) Sustainable nanocomposites based on halloysite nanotubes and pectin/polyethylene glycol blend. Polym Degrad Stab 98:2529–2536

    Article  CAS  Google Scholar 

  • Chen D, Lawton D, Thompson MR et al (2012) Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste. Carbohydr Polym 90:709–716

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Deng S, Chen P et al (2009) Polylactic acid (PLA) synthesis and modifications: a review. Front Chem China 4(3):259–264

    Article  Google Scholar 

  • Cho J, Joshi MS, Sun CT (2006) Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles. Compos Sci Technol 66(13):1941–1952

    Article  CAS  Google Scholar 

  • Correa JP, Molina V, Sanchez M et al (2017) Improving ham shelf life with a polyhydroxybutyrate/polycaprolactone biodegradable film activated with nisin. Food Packaging Shelf Life 11:31–39

    Article  Google Scholar 

  • Corsello FA, Bolla PA, Anbinder PS et al (2017) Morphology and properties of neutralized chitosan-cellulose nanocrystals biocomposite films. Carbohydr Polym 156:452–459

    Article  CAS  PubMed  Google Scholar 

  • Dash S, Swain SK (2013) Synthesis of thermal and chemical resistant oxygen barrier starch with reinforcement of nano silicon carbide. Carbohydr Polym 97:758–763

    Article  CAS  PubMed  Google Scholar 

  • De Paula EL, Roig F, Mas A et al (2016) Effect of surface-grafted cellulose nanocrystals on the thermal and mechanical properties of PLLA based nanocomposites. Eur Polym J 84:173–187

    Article  CAS  Google Scholar 

  • Dominguez-Martinez B, Martínez-Flores H, Berrios J et al (2017) Physical characterization of biodegradable films based on chitosan, polyvinyl alcohol and opuntia mucilage. J Polym Environ 25(3):683–691

    Article  CAS  Google Scholar 

  • El Miri N, Abdelouahdi K, Barakar A et al (2015) Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym 129:156–167

    Article  CAS  PubMed  Google Scholar 

  • El-Hadi A (2017) Increase the elongation at break of poly (lactic acid) composites for use in food packaging films. Sci Rep 7:46767. https://doi.org/10.1038/srep46767

    Article  PubMed  PubMed Central  Google Scholar 

  • Emadian SM, Onay TT, Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Manag 59:526–536

    Article  CAS  PubMed  Google Scholar 

  • Fabra MJ, Talens P, Gavara R et al (2012) Barrier properties of sodium caseinate films as affected by lipid composition and moisture content. J Food Eng 109(3):372–379

    Article  CAS  Google Scholar 

  • Fabra MJ, López-Rubio A, Lagaron JM (2014) Biopolymers for food packaging applications. In: Aguilar de Armas MR, Román JS (eds) Smart polymers and their applications. Elsevier, Amsterdam, pp 476–509

    Chapter  Google Scholar 

  • Fabra MJ, López-Rubio A, Ambrosio-Martín J et al (2016) Improving the barrier properties of thermoplastic corn starch-based films containing bacterial cellulose nanowhiskers by means of PHA electrospun coatings of interest in food packaging. Food Hydrocoll 621:261–268

    Article  CAS  Google Scholar 

  • Flauzino Neto WP, Silvério HA, Dantas NO et al (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue soy hulls. Ind Crop Prod 42:480–488

    Article  CAS  Google Scholar 

  • Follain NG, Belbekhouche S, Bras J et al (2013) Water transport properties of bionanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. J Membr Sci 427:218–229

    Article  CAS  Google Scholar 

  • Fortunati E, Puglia D, Luzi F et al (2013a) Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: part I. Carbohydr Polym 97:825–836

    Article  CAS  PubMed  Google Scholar 

  • Fortunati E, Pelltzer M, Armentano I et al (2013b) Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nano-biocomposites. J Food Eng 118:117–124

    Article  CAS  Google Scholar 

  • Fortunati E, Luzi F, Puglia D et al (2014) Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. Eur Polym J 56:77–91

    Article  CAS  Google Scholar 

  • Fortunati E, Luzi F, Puglia D et al (2015) Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: innovative reuse of coastal plant. Ind Crop Prod 67:439–447

    Article  CAS  Google Scholar 

  • Fortunati E, Luzi F, Jiménez A et al (2016) Revalorization of sunflower stalks as novel sources of cellulose nanofibrils and nanocrystals and their effect on wheat gluten bionanocomposite properties. Carbohydr Polym 149:357–368

    Article  CAS  PubMed  Google Scholar 

  • Fortunati E, Gigli M, Luzi F et al (2017) Processing and characterization of nanocomposite based on poly(butylene/triethylene succinate) copolymers and cellulose nanocrystals. Carbohydr Polym 165:51–60

    Article  CAS  PubMed  Google Scholar 

  • Fukushima K, Tabuani D, Arena M et al (2013) Effect of clay type and loading on thermal, mechanical properties and biodegradation of poly(lactic acid) nanocomposites. React Funct Polym 73:540–549

    Article  CAS  Google Scholar 

  • Giménez B, López de Lacey A, Pérez-Santín E et al (2013) Release of active compounds from agar and agar–gelatin films with green tea extract. Food Hydrocoll 30:264–271

    Article  CAS  Google Scholar 

  • González K, Retegi A, González A et al (2015) Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites. Carbohydr Polym 117:83–90

    Article  CAS  PubMed  Google Scholar 

  • Graupner N, Ziegmann G, Wilde F et al (2016) Procedural influences on compression and injection moulded cellulose fibre-reinforced polylactide (PLA) composites: influence of fibre loading, fibre length, fibre orientation and voids. Compos Part A Appl Sci Manuf 81:158–171

    Article  CAS  Google Scholar 

  • Gutiérrez TJ (2017) Chitosan applications for the food industry. In: Ahmed S, Ikram S (eds) Chitosan: derivatives, composites and applications. Wiley-Scrivener, Beverly, MA, pp 183–232. EE.UU. ISBN: 978-1-119-36350-7. https://doi.org/10.1002/9781119364849.ch8

    Chapter  Google Scholar 

  • Gutiérrez TJ (2018) Biodegradability and compostability of food nanopackaging materials. In: Cirillo G, Kozlowski MA, Spizzirri UG (eds) Composite materials for food packaging. Wiley-Scrivener, Beverly, MA, pp 263–289 EE.UU. ISBN: 978-1-119-16020-5. https://doi.org/10.1002/9781119160243.ch9

  • Gutiérrez TJ, Alvarez VA (2017) Cellulosic materials as natural fillers in starch-containing matrix-based films: a review. Polym Bull 74(6):2401–2430. https://doi.org/10.1007/s00289-016-1814-0

    Article  CAS  Google Scholar 

  • Gutiérrez TJ, Alvarez VA (2018) Bionanocomposite films developed from corn starch and natural and modified nano-clays with or without added blueberry extract. Food Hydrocoll 77:407–420. https://doi.org/10.1016/j.foodhyd.2017.10.017

    Article  CAS  Google Scholar 

  • Gutiérrez T, González P, Medina C et al (2017) Effect of filler properties on the antioxidant response of thermoplastic starch composites. In: Thakur V, Thakur M, Kessler M (eds) Handbook of composites from renewable materials. Wiley, New York, pp 337–369. https://doi.org/10.1002/9781119441632.ch14

  • Gutiérrez TJ, Ollier R, Alvarez VA (2018) Surface properties of thermoplastic starch materials reinforced with natural fillers. In: Thakur V, Thakur M (eds) Functional biopolymers. Springer series on polymer and composite materials. Springer, Cham, pp 131–158. https://doi.org/10.1007/978-3-319-66417-0_5

  • Haque MM, Puglia D, Fortunati E et al (2017) Effect of reactive functionalization on properties and degradability of poly(lactic acid)/poly(vinyl acetate) nanocomposites with cellulose nanocrystals. React Funct Polym 110:1–9

    Article  CAS  Google Scholar 

  • He J, Chong Yap R, Wong S et al (2015) Polymer composites for intelligent food packaging. J Mol Eng Mater 3(1):1–12

    CAS  Google Scholar 

  • Heitmann A, Patrício P, Coura I et al (2016) Nanostructured niobium oxyhydroxide dispersed poly (3-hydroxybutyrate) (PHB) films: highly efficient photocatalysts for degradation methylene blue dye. Appl Catal B Environ 189:141–150

    Article  CAS  Google Scholar 

  • Herrera N, Salaberria AM, Mathe A et al (2016) Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: effects on mechanical, thermal and optical properties. Compos Part A 83:89–97

    Article  CAS  Google Scholar 

  • Hossain ABMS, Ibrahim N, AlEissa MS (2016) Nano-cellulose derived bioplastic biomaterial data for vehicle bio-bumper from banana peel waste biomass. Data Brief 8:286–294

    Article  Google Scholar 

  • Hu Z, Ballinger S, Pelton R et al (2015) Surfactant-enhanced cellulose nanocrystal pickering emulsions. J Coll Interface Sci 439:139–138

    Article  CAS  Google Scholar 

  • Jiménez A, Fabra MJ, Talens P et al (2013) Physical properties and antioxidant capacity of starch–sodium caseinate films containing lipids. J Food Eng 116(3):695–702

    Article  CAS  Google Scholar 

  • Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crop Prod 37:93–99

    Article  CAS  Google Scholar 

  • Jonoobi M, Oladi R, Davaoudpour Y et al (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969

    Article  CAS  Google Scholar 

  • Kaboorani A, Riedl B (2015) Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant. Ind Crop Prod 65:45–55

    Article  CAS  Google Scholar 

  • Kallel F, Bettaieb F, Khiari R et al (2016) Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw. Ind Crop Prod 87:287–296

    Article  CAS  Google Scholar 

  • Kanmani P, Rhim JW (2014) Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chem 148:162–169

    Article  CAS  PubMed  Google Scholar 

  • Le Corre D, Angellier-Coussy H (2014) Preparation and application of starch nanoparticles for nanocomposites: a review. React Funct Polym 85:97–120

    Article  CAS  Google Scholar 

  • Leceta I, Guerrero P, de la Caba K (2013) Functional properties of chitosan-based films. Carbohydr Polym 93(1):339–346

    Article  CAS  PubMed  Google Scholar 

  • Lizundia E, Fortunati E, Dominici F et al (2016) PLLA-grafted cellulose nanocrystals: role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohydr Polym 142:105–113

    Article  CAS  PubMed  Google Scholar 

  • López OV, Ninago MD, Soledad Lencina MM et al (2015) Thermoplastic starch plasticized with alginate–glycerol mixtures: melt-processing evaluation and film properties. Carbohydr Polym 126:83–90

    Article  CAS  PubMed  Google Scholar 

  • Ludueña L, Vázquez A, Alvarez V (2012) Effect of lignocellulosic filler type and content on the behavior of polycaprolactone based eco-composites for packaging applications. Carbohydr Polym 87:411–421

    Article  CAS  Google Scholar 

  • Luzi F, Fortunati E, Jiménez A (2016) Production and characterization of PLA PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Ind Crop Prod 93:276–289

    Article  CAS  Google Scholar 

  • Majeed K, Jawaid M, Hassan A et al (2013) Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater Des 46:391–410

    Article  CAS  Google Scholar 

  • Maqsood HS, Baheti V, Wiener J et al (2016) Reinforcement of enzyme hydrolyzed longer jute micro crystals in polylactic acid. Polym Compos 39:1089–1097. https://doi.org/10.1002/pc.24036

    Article  CAS  Google Scholar 

  • Martino L, Berthet MA, Angellier-Coussy H et al (2015) Understanding external plasticization of melt extruded PHBV–wheat straw fibers biodegradable composites for food packaging. J Appl Polym Sci 41611:2–11

    Google Scholar 

  • Miranda CS, Ferreira MS, Magalhães MT, Santos WJ et al (2015) Mechanical, thermal and barrier properties of starch-based films plasticized with glycerol and lignin and reinforced with cellulose nanocrystals. Mater Today Proc 2:63–69

    Article  Google Scholar 

  • Mizuno S, Maeda T, Kanemura C et al (2015) Biodegradability, reprocessability, and mechanical properties of polybutylene succinate (PBS) photografted by hydrophilic or hydrophobic membranes. Polym Degrad Stab 117:58–65

    Article  CAS  Google Scholar 

  • Moreno O, Gil A, Atarés L et al (2017) Active starch-gelatin films for shelf-life extension of marinated salmon. LWT Food Sci Technol 84:189–195

    Article  CAS  Google Scholar 

  • Moriana R, Vilaplana F, Karlsson S et al (2011) Improved thermo-mechanical properties by the addition of natural fibres in starch-based sustainable biocomposites. Compos Part A 42:30–40

    Article  CAS  Google Scholar 

  • Moustafa H, Guizani C, Dupont C et al (2016) Utilization of Torrefied coffee grounds as reinforcing agent to produce high-quality biodegradable PBAT composites for food packaging applications. ACS Sustain Chem Eng 5(2):1906–1916

    Article  CAS  Google Scholar 

  • Mukurubira AR, Mellem JM, Amonsou EO (2017) Effects of amadumbe starch nanocrystals on the physicochemical properties of starch biocomposite films. Carbohydr Polym 165:142–148

    Article  CAS  Google Scholar 

  • Muller J, González-Martínez C, Chiralt A (2017a) Combination of poly(lactic) acid and starch for biodegradable food packaging. Materials 10. https://doi.org/10.3390/ma10080952

  • Muller J, González-Martínez C, Chiralt A (2017b) Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. Eur Polym J 95:56–70

    Article  CAS  Google Scholar 

  • Nair NR, Sekhar VC, Nampoothir KM et al (2017) Biodegradation of biopolymers. In: Pandey A, Negi S, Soccol CR (eds) Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 739–755

    Chapter  Google Scholar 

  • Ng HM, Sin LT, Tee TT et al (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos Part B 75:176–200

    Article  CAS  Google Scholar 

  • Ortega-Toro R, Bonilla J, Talens P et al (2017) Future of starch-based materials in food packaging. In: Vilar M (ed) Starch-based materials in food packaging: processing, characterization and application. Academic Press, London, pp 257–312

    Chapter  Google Scholar 

  • Pardo-Ibáñez P, López-Rubio A, Martínez-Sanz M et al (2014) Keratin–polyhydroxyalkanoate melt-compounded composites with improved barrier properties of interest in food packaging applications. J Appl Polym Sci 39947:1–10

    Google Scholar 

  • Peelman N, Ragaert P, Meulenaer B et al (2013) Application of bioplastics for food packaging. Trends Food Sci Technol 32(2):128–141

    Article  CAS  Google Scholar 

  • Ramos M, Fortunati E, Peltzer M et al (2014) Influence of thymol and silver nanoparticles on the degradation of poly(lactic acid) based nanocomposites: thermal and morphological properties. Polym Degrad Stab 108:158–165

    Article  CAS  Google Scholar 

  • Requena R, Vargas M, Chiralt A (2017) Release kinetics of carvacrol and eugenol from poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) films for food packaging applications. Eur Polym J 92:185–193

    Article  CAS  Google Scholar 

  • Rhim JW, Wang LF, Lee Y et al (2014) Preparation and characterization of bio-nanocomposite films of agar and silver nanoparticles: laser ablation method. Carbohydr Polym 103:456–465

    Article  CAS  PubMed  Google Scholar 

  • Rimdusit S, Jingjid S, Damrongsakkul S et al (2008) Biodegradability and property characterizations of methyl cellulose: effect of nanocompositing and chemical crosslinking. Carbohydr Polym 72:444–455

    Article  CAS  Google Scholar 

  • Rivero CP, Hu Y, Kwan TH et al (2017) Bioplastics from solid waste. In: Wong JWC, Tyagi RD, Pandey AR (eds) Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 1–26

    Google Scholar 

  • Rocca-Smith J, Marcuzzo E, Karbowiak T et al (2016) Effect of lipid incorporation on functional properties of wheat gluten based edible films. J Cereal Sci 69:275–282

    Article  CAS  Google Scholar 

  • Rombouts I, Lagrain B, Delcour J et al (2013) Crosslinks in wheat gluten films with hexagonal close-packed protein structures. Ind Crop Prod 51:229–235

    Article  CAS  Google Scholar 

  • Rosa MF, Medeiros ES, Malmonge JA et al (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92

    Article  CAS  Google Scholar 

  • Santos RPO, Rodrigues BVM, Ramires EC et al (2015) Bio-based materials from the electrospinning of lignocellulosic sisal fibers and recycled PET. Ind Crop Prod 72:69–76

    Article  CAS  Google Scholar 

  • Sanuja S, Agalya A, Umapathy MJ (2014) Studies on magnesium oxide reinforced chitosan bionanocomposite incorporated with clove oil for active food packaging application. Int J Polym Mater Polym Biomater 63:733–740

    Article  CAS  Google Scholar 

  • Shankar S, Rhim JW (2016) Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohydr Polym 135:18–26

    Article  CAS  PubMed  Google Scholar 

  • Shih YF, Chang WC, Liu WC et al (2014) Pineapple leaf/recycled disposable chopstick hybrid fiber-reinforced biodegradable composites. J Taiwan Inst Chem Eng 45(4):2039–2046

    Article  CAS  Google Scholar 

  • Slavutsky AM, Bertuzzi MA (2014) Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydr Polym 110:53–61

    Article  CAS  PubMed  Google Scholar 

  • Sung SH, Chang Y, Han J (2017) Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin. Carbohydr Polym 169:495–503

    Article  CAS  PubMed  Google Scholar 

  • Van den Broek L, Knoop R, Kappen F et al (2015) Chitosan films and blends for packaging material. Carbohydr Polym 116:237–242

    Article  CAS  PubMed  Google Scholar 

  • Watthanaphanit A, Supaphol P, Tamura H et al (2008) Fabrication, structure, and properties of chitin whisker-reinforced alginate nanocomposite fibers. J Appl Polym Sci 110:890–899

    Article  CAS  Google Scholar 

  • Xiao S, Liu B, Wang Y et al (2014) Efficient conversion of cellulose into biofuel precursor 5-hydroxymethylfurfural in dimethyl sulfoxide–ionic liquid mixtures. Bioresour Technol 151:361–366

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Fan M, Chen L (2016) Interface and bonding mechanisms of plant fibre composites: an overview. Compos Part B 101:41–45

    Article  CAS  Google Scholar 

  • Zubeldía F, Ansorena M, Marcovich N (2015) Wheat gluten films obtained by compression molding. Polym Test 43:68–77

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministerio de Economía y Competitividad (Spain) for the financial support provided through Project AGL2016-76699-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Ortega-Toro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Collazo-Bigliardi, S., Ortega-Toro, R., Chiralt, A. (2018). Properties of Micro- and Nano-Reinforced Biopolymers for Food Applications. In: Gutiérrez, T. (eds) Polymers for Food Applications . Springer, Cham. https://doi.org/10.1007/978-3-319-94625-2_4

Download citation

Publish with us

Policies and ethics