Skip to main content

Basis of Tumor Imaging 2: Scintigraphic and Pathophysiologic Correlation

  • Chapter
The Pathophysiologic Basis of Nuclear Medicine

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 359.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liotta LA, Liu ET (2001) Essentials of molecular biology: basic principles. In: Deviate VT, Hellmann S, Rosenberg SA (eds) Cancer: principles and practice of oncology, 6th edn. Lippincott, Williams & Wilkins, Philadelphia, pp 3–16

    Google Scholar 

  2. Liotta LA, Liu ET (2001) Essentials of molecular biology: genomics and cancer. In: DeVita VT, Hellman S, Rosenberg SA (eds) Cancer: principles and practice of oncology, 6th edn. Lippincott, Williams & Wilkins, Philadelphia, pp 17–30

    Google Scholar 

  3. Husband J, Reznek R (1998) An overview of imaging in oncology. In: Husband JES, Reznek RH (eds) Imaging in oncology. Isis Medical Media, Oxford, pp 1–10

    Google Scholar 

  4. Coleman RE (1998) Clinical PET in oncology. Clin Pos Imaging 1:15–29

    Article  Google Scholar 

  5. Maisey MN, Dakin M (1998) The first 5 years of a dedicated clinical PET centre. Clin Pos Imaging 1:59–69

    Article  Google Scholar 

  6. Tesar R, Papatheofanis J, Valk P (1998) Reimbursement and technology assessment for positron imaging. Clin Pos Imaging 1:51–58

    Article  Google Scholar 

  7. Phelps M, Cherry S (1998) The changing design of positron emission tomography. Clin Pos Imaging 1:31–45

    Article  Google Scholar 

  8. Wagner H (1998) Multi-energy imaging in nuclear oncology. Clin PosImaging 1:47–50

    Google Scholar 

  9. Jana S, Abdel-Dayem HM (2004) Role of nuclear medicine in evaluating treatment response in oncology. Nuclear Medicine Annual 1–59

    Google Scholar 

  10. Abdel-Dayem H, Luo JQ, El-Zeftawy H, Sadek S (1999) Clinical experience with dual head gamma camera coincidence imaging. Clin Pos Imaging 2:31–38

    Article  Google Scholar 

  11. Israel O, Keidar Z, Iosilevsky G, Bettman L, Sachs J, Frenkel A (2001) The fusion of anatomic and physiologic imaging in the management of patients with cancer. Semin Nucl Med 31:191–205

    Article  PubMed  CAS  Google Scholar 

  12. Wahl RL (1999) Imaging cancer in the New Millennium: forms follows function. Radiology 213:25

    Google Scholar 

  13. Shreve PD (2000) Adding structure to function. J Nucl Med 41:1380–1382

    PubMed  CAS  Google Scholar 

  14. Schuetze SM, Rubin BP, Vernon C, Hawkins DS, Bruckner JD, Conrad EU 3rd, Eary JF (2005) Use of positron emission tomography in localized extremity soft tissue sarcoma treated with neoadjuvant chemotherapy. Cancer 103:339–348

    Article  PubMed  Google Scholar 

  15. Yeung H, Sanches A, Squire O, Macapinlac H, Larson S, Erdi Y (2002) Standardized uptake value in pediatric patients: an investigation to determine the optimum measurement parameter. J Nucl Med 43:61–66

    Article  CAS  Google Scholar 

  16. Hawkins DS, Rajendran JG, Conrad EU III, Bruckner JD, Eary JF (2002) Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-d-glucose positron emission tomography. Cancer 94:3277–3284

    Article  PubMed  CAS  Google Scholar 

  17. Gehring PJ, Hammond PB (1967) The interrelationship between thallium-201 chloride and potassium in animals. J Pharmacol Exp Ther 155:187–201

    PubMed  CAS  Google Scholar 

  18. Britten JS, Blank M (1968) Thallium-201 chloride-201 chloride activation of the (Na+ K+) activated ATPase of rabbit kidney. Biochim Biophys Acta 159:160–166

    PubMed  CAS  Google Scholar 

  19. Sessler MJ, Geck P, Maul FD, Hor G, Munz DL (1986) New aspects of cellular thallium-201 chloride-201 chloride uptake: Tl+-Na+-2Cl-cotransport is the central mechanism of ion uptake. Nucl Med 23:24–27

    Google Scholar 

  20. Piwnica-Worms D, Kronauge JF, Chiu ML (1991) Enhancement of tetraphenylborate of technetium-99m-MIBI uptake kinetics and accumulation in cultured chick myocardial cells. J Nucl Med 32:1992–1999

    PubMed  CAS  Google Scholar 

  21. Piwnica-Worms D, Holman BL (1990) Noncardiac applications of hexakis-(alkylisonitrile) technetium-99m complexes. J Nucl Med 31:1166–1167

    PubMed  CAS  Google Scholar 

  22. Chiu ML, Kronauge JF, Piwnica-Worms D (1990) Effects of mitochondrial and plasma membrane potentials on accumulation of jexalos (2-methoxyisobutyl isonitrile)technetium (I) in cultured mouse fibroblasts. J Nucl Med 31:1646–1653

    PubMed  CAS  Google Scholar 

  23. Chiu ML, Herman LW, Kronauge JF, Piwnica-Worms D (1992) Comparative effects of neutral dipolar compounds and lipophilic anions on technetium-99m-hexakis (2-methoxyisobutyl isonitrile) accumulation in cultured chick ventricular myocytes. Invest Radiol 27:1052–1058

    Article  PubMed  CAS  Google Scholar 

  24. Piwnica-Worms D, Chiu ML, Budding M, Kronauge JF, Kramer RA, Croop JM (1993) Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex. Cancer Res 53:977–984

    PubMed  CAS  Google Scholar 

  25. Bae KT, Piwnica-Worms D (1997) Pharmacokinetic modeling of multidrug resistance P-glycoprotein transport of gamma-emitting substrates. Q J Nucl Med 41:101–110

    PubMed  CAS  Google Scholar 

  26. Ballinger JR, Sheldon KM, Boxen I, Erlichman C, Ling V (1995) Differences between accumulation of 99mTc-MIBI and 201Tl-thallous chloride in tumour cells: role of P-glycoprotein. Q J Nucl Med 39:122–128

    PubMed  CAS  Google Scholar 

  27. Larson SM, Rasey JS, Allen DR, Nelson NJ (1979) A transferrin-mediated uptake of gallium-67 by EMT-6 sarcoma. I. Studies in tissue culture. J Nucl Med 20:837–842

    PubMed  CAS  Google Scholar 

  28. Larson SM, Rasey JS, Allen DR, Nelson NJ (1979) A transferrin-mediated uptake of gallium-67 by EMT-6 sarcoma. I. Studies in tissue culture. J Nucl Med 20:837–842

    PubMed  CAS  Google Scholar 

  29. Berry JP, Escaig F, Poupon MF, Galle P (1983) Localization of gallium in tumor cells. Electron microscopy, electron probe microanalysis and analytical ion microscopy. Int J Nucl Med Biol 10:199–204

    Article  PubMed  CAS  Google Scholar 

  30. Ak I, Stokkel MP, Pauwels EK (2000) Positron emission tomography with 2-[18F]fluoro-2-deoxy-d-glucose in oncology, part II. The clinical value in detecting and staging primary tumours. J Cancer Res Clin Oncol 126:560–574

    Article  PubMed  CAS  Google Scholar 

  31. Delbeke D (1999) Oncological applications of FDG PET imaging: brain tumors, colorectal cancer, lymphoma and melanoma. J Nucl Med 40:591–603

    PubMed  CAS  Google Scholar 

  32. Avril N, Menzel M, Dose J, Schelling M, Weber W, Janicke F, Nathrath W, Schwaiger M (2001) Glucose metabolism of breast cancer assessed by 18F-FDG PET: histologic and immunohistochemical tissue analysis. J Nucl Med 42:9–16

    PubMed  CAS  Google Scholar 

  33. Ak I, Stokkel MP, Pauwels EK (2000) Positron emission tomography with 2-[18F]fluoro-2-deoxy-d-glucose in oncology, part II. The clinical value in detecting and staging primary tumours. J Cancer Res Clin Oncol 126:560–574

    Article  PubMed  CAS  Google Scholar 

  34. Bos R, van Der Hoeven JJ, van Der Wall E, Van Der Groep, Van Diest PJ, Comans EF, Joshi U, Semenza GL, Hoekstra OS, Lammertsma AA, Molthoff CF (2002) Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 20:379–387

    Article  PubMed  CAS  Google Scholar 

  35. Jerusalem G, Beguin Y, Fassotte MF, Najjar F, Paulus P, Rigo P, Fillet G (1999) Whole-body positron emission tomography using 18-F-fluorodeoxyglucose for posttreatment evaluation in Hodgkin’s disease and non-Hodgkin’s lymphoma has higher diagnostic and prognostic value than classical conventional tomography scan imaging. Blood 94:429–433

    PubMed  CAS  Google Scholar 

  36. Higashi K, Ueda Y, Sakuma T, Seki H, Oguchi M, Taniguchi M, Taki S, et al. (2001) Comparison of [(18)F]FDG PET and (201)Tl SPECT in evaluation of pulmonary nodules. J Nucl Med 42:1489–1496

    PubMed  CAS  Google Scholar 

  37. Even-Sapir E, Metser U, Flusser G, Zuriel L, Kollender Y, Lerman H, Lievshitz G, et al. (2004) Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med 45:272–278

    PubMed  Google Scholar 

  38. Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL (2002) Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 43:1210–1217

    PubMed  CAS  Google Scholar 

  39. Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G, Mattfeldt T, et al. (2003) Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med 44:1426–1431

    PubMed  CAS  Google Scholar 

  40. van Waarde A, Cobben DC, Suurmeijer AJ, Maas B, Vaalburg W, de Vries EF, Jager PL, et al. (2004) Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med 45:695–700

    PubMed  Google Scholar 

  41. Cobben DC, Jager PL, Elsinga PH, Maas B, Suurmeijer AJ, Hoekstra HJ (2003) 3’-(18)F-Fluoro-3’-deoxy-l-thymidine: a new tracer for staging metastatic melanoma? J Nucl Med 44:1927–1932

    PubMed  CAS  Google Scholar 

  42. Pieterman RM, Que TH, Elsinga PH, Pruim J, van Putten JW, Willemsen AT, Vaalburg W, Groen HJ (2002) Comparison of (11)C-choline and (18)F-FDG PET in primary diagnosis and staging of patients with thoracic cancer. J Nucl Med 43:167–172

    PubMed  Google Scholar 

  43. Hara T, Inagaki K, Kosaka N, Morita T (2000) Sensitive detection of mediastinal lymph node metastasis of lung cancer with 11C-choline PET. J Nucl Med 41:1507–1513

    PubMed  CAS  Google Scholar 

  44. Torizuka T, Kanno T, Futatsubashi M, Okada H, Yoshikawa E, Nakamura F, Takekuma M, Maeda M, Ouchi Y (2003) Imaging gynecologic tumors: comparison of 11C-choline PET with 18F-FDG PET. J Nucl Med 44:1051–1056

    PubMed  CAS  Google Scholar 

  45. Kostakoglu L, Goldsmith SJ (2004) PET in the assessment of therapy response in patients with carcinoma of the head and neck and of the esophagus. J Nucl Med 45:56–68

    PubMed  Google Scholar 

  46. Bradley JD, Perez CA, Dehdashti F, Siegel BA (2004) Implementing biologic target volumes in radiation treatment planning for non-small cell lung cancer. J Nucl Med 45 Suppl 1:96S–101S

    PubMed  Google Scholar 

  47. Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL, Senekowitsch-Schmidtke R, Kessler H, Schwaiger M (2001) Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 61:1781–1785

    PubMed  CAS  Google Scholar 

  48. Haubner R, Wester HJ, Burkhart F, Senekowitsch-Schmidtke R, Weber W, Goodman SL, Kessler H, Schwaiger M (2001) Glyosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 42:326–336

    PubMed  CAS  Google Scholar 

  49. Boersma HH, Tromp SC, Hofstra L, Narula J (2005) Stem cell tracking: reversing the silence of the lambs. J Nucl Med 46:200–203

    PubMed  Google Scholar 

  50. Rebulla P, Giordano R (2004) Cell therapy: an evolutionary development of transfusion medicine. Int J Cardiol 95 (Suppl 1):S38–S42

    Article  PubMed  Google Scholar 

  51. Takahashi M, Deb NJ, Kawashita Y, Lee SW, Furgueil J, Okuyama T, Roy-Chowdhury N, Vikram B, Roy-Chowdhury J, Guha C (2003) A novel strategy for in vivo expansion of transplanted hepatocytes using preparative hepatic irradiation and FasL-induced hepatocellular apoptosis. Gene Ther 10:304–313

    Article  PubMed  CAS  Google Scholar 

  52. Herschman HR (2004) PET reporter genes for noninvasive imaging of gene therapy, cell tracking and transgenic analysis. Crit Rev Oncol Hematol 51:191–204

    Article  PubMed  Google Scholar 

  53. Jendelova P, Herynek V, Urdzikova L, Glogarova K, Kroupova J, Andersson B, Bryja V, Burian M, Hajek M, Sykova E (2004) Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res 76:232–243

    Article  PubMed  CAS  Google Scholar 

  54. Modo M, Cash D, Mellodew K, Williams SC, Fraser SE, Meade TJ, Price J, Hodges H (2002) Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging. Neuroimage 17:803–811

    Article  PubMed  Google Scholar 

  55. Adonai N, Nguyen KN, Walsh J, Iyer M, Toyokuni T, Phelps ME, McCarthy T, McCarthy DW, Gambhir SS (2002) Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methyl-thiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci USA 99:3030–3035

    Article  PubMed  CAS  Google Scholar 

  56. Brenner W, Aicher A, Eckey T, Massoudi S, Zuhayra M, Koehl U, Heeschen C, Kampen WU, Zeiher AM, Dimmeler S, Henze E (2004) 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. J Nucl Med 45:512–518

    PubMed  CAS  Google Scholar 

  57. Chin BB, Nakamoto Y, Bulte JW, Pittenger MF, Wahl R, Kraitchman DL (2003) 111In oxine labelled mesenchymal stem cell SPECT after intravenous administration in myocardial infarction. Nucl Med Commun 24:1149–1154

    Article  PubMed  CAS  Google Scholar 

  58. Yau TM, Tomita S, Weisel RD, Jia ZQ, Tumiati LC, Mickle DA, Li RK (2003) Beneficial effect of autologous cell transplantation on infarcted heart function: comparison between bone marrow stromal cells and heart cells. Ann Thorac Surg 75:169–176

    Article  PubMed  Google Scholar 

  59. Kumar Rakesh, Jana Suman (2004) Positron emission tomography: an advanced nuclear medicine imaging technique from research to clinical practice. Methods Enzymol 385:3–19

    Article  Google Scholar 

  60. Blankenberg FG, Strauss HW (2001) Will imaging of apoptosis play a role in clinical care? A tale of mice and men. Apoptosis 6:117–123

    Article  PubMed  CAS  Google Scholar 

  61. Blankenberg FG, Katsikis PD, Tait JF, Davis RE, Naumovski L, Ohtsuki K, Kopiwoda S, et al. (1998) In vivo detection and imaging of phosphatidylserine expression during programmed cell death. Proc Natl Acad Sci USA 95:6349–6354

    Article  PubMed  CAS  Google Scholar 

  62. Toretsky J, Levenson A, Weinberg IN, Tait JF, Uren A, Mease RC (2004) Preparation of F-18 labeled annexin V: a potential PET radiopharmaceutical for imaging cell death. Nucl Med Biol 31:747–752

    Article  PubMed  CAS  Google Scholar 

  63. Grierson JR, Yagle KJ, Eary JF, Tait JF, Gibson DF, Lewellen B, Link JM, Krohn KA (2004) Production of [F-18]fluoroannexin for imaging apoptosis with PET. Bioconjug Chem 15:373–379

    Article  PubMed  CAS  Google Scholar 

  64. Blakey DC, Burke PJ, Davies DH (1995) Antibody-directed enzyme prodrug therapy (ADEPT) for treatment of major solid tumour disease. Biochem Soc Trans 23:1047–1050

    PubMed  CAS  Google Scholar 

  65. Weissleder R (1999) Molecular imaging: Exploring the next frontier. Radiology 212:609–614

    PubMed  CAS  Google Scholar 

  66. Wunderbaldinger P, Bogdanov A Jr, Weissleder R (2000) New approaches for imaging in gene therapy. Eur J Radiol 34:156–165

    Article  PubMed  CAS  Google Scholar 

  67. Tjuvajev JG, Avril N, Oku T, Sasajima T, Miyagawa T, Joshi R, Safer M, et al. (1998) Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res 58:4333–4341

    PubMed  CAS  Google Scholar 

  68. Gambhir SS, Barrio JR, Phelps ME, Iyer M, Namavari M, Satyamurthy N, Wu L, et al. (1999) Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci USA 96:2333–2338

    Article  PubMed  CAS  Google Scholar 

  69. Omar WS, Eissa S, Moustafa H, Farag H, Ezzat I, Abdel-Dayem HM (1997) Role of thallium-201 chloride and Tc-99m methoxy-isobutyl-isonitrite (sestaMIBI) in evaluation of breast masses: correlation with the immunohistochemical characteristic parameters (Ki-67, PCNA, Bcl, and angiogenesis) in malignant lesions. Anticancer Res 17:1639–1644

    PubMed  CAS  Google Scholar 

  70. Kubota K, Ishiwata K, Kubota R, Yamada S, Tada M, Sato T, Ido T (1991) Tracer feasibility for monitoring tumor radio-therapy: a quadruple tracer study with fluorine-18-fluor-odeoxyglucose or fluorine-18-fluorodeoxyuridine, l-[methyl-14C]methionine, [6-3H]thymidine, and gallium-67. J Nucl Med 32:2118–2123

    PubMed  CAS  Google Scholar 

  71. Willemsen A, Waarde A van, Paans A (1995) In vivo protein synthesis rate determination in primary or recurrent brain tumors using l-[1-C11]tyrosine and PET. J Nucl Med 36:411–419

    PubMed  CAS  Google Scholar 

  72. Minn H, Clavo AC, Grenman R, Wahl RL (1995) In vitro comparison of cell proliferation kinetics and uptake of tritriated fluorodeoxyglucose and L-methionine in squamous-cell carcinoma of the head and neck. J Nucl Med 36:252–258

    PubMed  CAS  Google Scholar 

  73. Warburg O (1931) The metabolism of tumors. Smith, New York, pp 254–270

    Google Scholar 

  74. Hiraki Y, Rosen O, Birnbaum M (1988) Growth factors rapidly induce expression of the glucose transporter gene. J Biol Chem 27:13655–13662

    Google Scholar 

  75. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H (1984) Cell cycle analysis of cell proliferation associated human nuclear antigen defined by mononuclear antibody Ki-67. J Immunol 133:1710–1715

    PubMed  CAS  Google Scholar 

  76. Bravo R (1986) Synthesis of the nuclear protein cyclin (PCNA) and its relationship with DNA replication. Exp Cell Res 163:287–293

    Article  PubMed  CAS  Google Scholar 

  77. Tahan SR, Neuberg DS, Dieffenbach A, Yacoub L (1993) Prediction of early relapse and shortened survival in patients with breast cancer by proliferating cell nuclear antigen score. Cancer 71:3552–3559

    Article  PubMed  CAS  Google Scholar 

  78. Ottman R, Pike MC, King MC, Henderson BE (1983) Practical guide for estimating risk for familial breast cancer. Lancet 2:556–558

    Article  PubMed  CAS  Google Scholar 

  79. Reed Jc, Stein C, Subasinghe C, et al (1992) Anti-sense mediated inhibition of Bcl-2 proto-oncogene expression and leukemia cell growth and survival: comparison of phosphodiester and phosphothiote digoneocleotides. Cancer Res 50:6565

    Google Scholar 

  80. Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med 324:1–8

    Article  PubMed  CAS  Google Scholar 

  81. Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316–333

    PubMed  CAS  Google Scholar 

  82. Shaffer K (1997) Radiologic evaluation in lung cancer: diagnosis and staging. Chest 112:235S–238S

    Article  PubMed  CAS  Google Scholar 

  83. Itouji E, Kono M, Adachi S, Kusumoto M, Mimura F, Zhang M (1997) The role of CT and MR imaging in the diagnosis of lung cancer. Gan To Kagaku Ryoho 24 [Suppl 3]:353–358

    PubMed  Google Scholar 

  84. Sandrasegaran K, Robinson PJ, Selby P (1994) Staging of lymphoma in adults. Clin Oncol 94:149–161

    Google Scholar 

  85. Marglin SI, Castellino RA (1985) Selection of imaging studies for the initial staging of patients with Hodgkin’s disease. Semin Ultrasound CT MR 6:380–393

    Google Scholar 

  86. DeVita VT, Hellman S, Jaffe ES (1993) Hodgkin’s disease. In: DeVita VT, Hellman S, Rosenberg S (eds) Cancer principles and practice of oncology. Lippincott, Philadelphia, pp 1819–1859

    Google Scholar 

  87. Rogers JV, Powell RW (1972) Mammographic indications for biopsy of clinically normal breasts: correlation with pathologic findings in 72 cases. AJR Am J Roentgenol 115:794–800

    Google Scholar 

  88. Homer MJ (1984) Non-palpable breast abnormalities: a realistic view of the accuracy of mammography in detecting malignancies. Radiology 153:831–832

    PubMed  CAS  Google Scholar 

  89. Bassett LW, Liu TH, Giuliano AE, Gold RH (1991) The prevalence of carcinoma in palpable vs impalpable, mammographically detected lesions. AJR Am J Roentgenol 157:21–24

    PubMed  CAS  Google Scholar 

  90. Kopans DB (1992) The positive predictive value of mammography. AJR Am J Roentgenol 158:521–526

    PubMed  CAS  Google Scholar 

  91. Mann BD, Giuliano AE, Bassett LW, Barber MS, Hallauer W, Morton DL (1983) Delayed diagnosis of breast cancer as a result of normal mammograms. Arch Surg 118:23–24

    PubMed  CAS  Google Scholar 

  92. Feig SA, Shaber GA, Patchefskly A (1977) Analysis of clinically occult and mammographically occult breast tumors. AJR Am J Roentgenol 128:403–408

    PubMed  CAS  Google Scholar 

  93. Kalisher L (1979) Factors influencing false negative rates in xeromammography. Radiology 133:297–301

    PubMed  CAS  Google Scholar 

  94. Conti P, Lilien D, Hawley K, et al (1996) PET and 18F in oncology: a clinical update. Nucl Med Biol 23:717–735

    Article  PubMed  CAS  Google Scholar 

  95. McCain TW, Dunagan DP, Chin R Jr, Oaks T, Harkness BA, Haponik EF (2000) The usefulness of positron emission tomography in evaluating patients for pulmonary malignancies. Chest 118:1610–1615

    Article  PubMed  CAS  Google Scholar 

  96. Lowe VJ, Naunheim KS (1998) Current role of positron emission tomography in thoracic oncology. Thorax 53:703–712

    Article  PubMed  CAS  Google Scholar 

  97. Erasmus JJ, McAdams HP, Patz EF Jr, Goodman PC, Coleman RE (1998) Thoracic FDG PET: state of the art. Radiographics 18:5–20

    PubMed  CAS  Google Scholar 

  98. Lowe VJ, Fletcher JW, Gobar L, Lawson M, Kirchner P, Valk P, Karis J, et al. (1998) Prospective investigation of positron emission tomography in lung nodules. J Clin Oncol 16:1075–1084

    PubMed  CAS  Google Scholar 

  99. Patz EF (2000) Evaluation of focal pulmonary abnormalities with FDG PET. Radiographics 20:1182–1185

    PubMed  Google Scholar 

  100. Marom EM, Sarvis S, Herndon JE 2nd, Patz EF Jr, et al. (2002) T1 lung cancers: sensitivity of diagnosis with fluorodeoxyglucose PET. Radiology 223:453–459

    Article  PubMed  Google Scholar 

  101. Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, Pruim J, et al (1999) Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer 35:1773–1782

    Article  PubMed  CAS  Google Scholar 

  102. Waxman AD, Aktolun C (1999) Breast cancer. Nuclear oncology. Springer, Berlin Heidelberg New York, pp 143–162

    Google Scholar 

  103. Waxman A, Nagaraj N, Ashok G, Khan S, Yadegar J, Memsic L, Silberman A, et al (1994) Sensitivity and specificity of Tc-99m methoxy isobutyl isonitrile (MIBI) in the evaluation of primary carcinoma of the breast: comparison of palpable and nonpalpable lesions with mammography (abstract). J Nucl Med 35:22P

    Google Scholar 

  104. Burak Z, Argon M, Memis A, Erdem S, Balkan Z, Duman Y, Ustun EE, et al. (1994) Evaluation of palpable breast masses with 99Tcm-MIBI: a comparative study with mammography and ultrasonography. Nucl Med Commun 15:604–612

    PubMed  CAS  Google Scholar 

  105. Waxman AD, Ashok G, Kooba A (1993) The use of Tc-99m methoxyisobutyl isonitrile (MIBI) in evaluation of patients with primary carcinoma of the breast: comparison with T1-201 (abstract). J Nucl Med 34 [Suppl]:139

    Google Scholar 

  106. Khalkhali I, Mena I, Jouanne E (1993) Technetium-99m sestamibi MIBI prone breast imaging in patients with suspicion of breast cancer (abstract). J Nucl Med 34 [Suppl]:140

    Google Scholar 

  107. Khalkhali I, Mena I, Jouanne E, Diggles L, Venegas R, Block J, Alle K, Klein S (1994) Prone scintimammography in patients with suspicion of carcinoma of the breast. J Am Coll Surg 178:491–497

    PubMed  CAS  Google Scholar 

  108. Taillefer R, Robidoux A, Lambert R, Turpin S, Laperriere J (1995) Technetium-99m-sestamibi prone scintimammography to detect primary breast cancer and axillary lymph node involvement. J Nucl Med 36:1758–1765

    PubMed  CAS  Google Scholar 

  109. Khalkhali I, Cutrone J, Mena I, Diggles L, Venegas R, Vargas H, Jackson B, et al. (1995) Technetium-99m sestamibi scintimammography of breast lesions, clinical and pathological follow-up. J Nucl Med 36:1784–1789

    PubMed  CAS  Google Scholar 

  110. Palmedo H, Biersack HJ, Lastoria S, Maublant J, Prats E, Stegner HE, Bourgeois P, et al. (1998) Scintimammography with technetium-99m methoxyisobutyl isonitrile results of a prospective European multicentre trial. Eur J Nucl Med 25:375–385

    Article  PubMed  CAS  Google Scholar 

  111. Rosen EL, Turkington TG, Soo MS, Baker JA, Coleman RE (2005) Detection of primary breast carcinoma with a dedicated, large field of view FDG PET mammography device: initial experience. Radiology 234:527–534

    Article  PubMed  Google Scholar 

  112. Mentzer SJ, Swanson SJ, DeCamp MM, Bueno R, Sugarbaker DJ (1977) Mediastinoscopy, thoracoscopy, and video-assisted thoracic surgery in the diagnosis and staging of lung cancer. Chest 112:239S–241S

    Article  Google Scholar 

  113. Edell ES (1997) Diagnostic tests for lung cancer. Curr Opin Pulm Med 3:247–251

    Article  PubMed  CAS  Google Scholar 

  114. White PG, Adams H, Crane MD, Butchart EG (1994) Preoperative staging of carcinoma of the bronchus: can computed tomographic scanning reliably identify stage III tumors? Thorax 49:951–957

    Article  PubMed  CAS  Google Scholar 

  115. Webb WR, Gatsonis C, Zerhouni EA, Heelan RT, Glazer GM, Francis IR, et al. (1991) CT and MR imaging in staging non-small cell bronchogenic carcinoma: report of the Radiologic Diagnostic Oncology Group. Radiology 178:705–713

    PubMed  CAS  Google Scholar 

  116. Bonomo L, Ciccotosto C, Guidotti A, Storto ML (1996) Lung cancer staging: the role of computed tomography and magnetic resonance imaging. Eur J Radiol 23:35–45

    Article  PubMed  CAS  Google Scholar 

  117. Hanson JA, Armstrong P (1997) Staging intrathoracic non-small-cell lung cancer. Eur Radiol 7:161–172

    Article  PubMed  CAS  Google Scholar 

  118. Moog F, Bangerter M, Diederichs CG, Guhlmann A, Merkle E, Frickhofen N, Reske SN (1998) Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology 206:475–481

    PubMed  CAS  Google Scholar 

  119. Steinert HC, Hauser M, Allemann F, Engel H, Berthold T, von Schulthess GK, Weder W (1997) Non-small cell lung cancer: nodal staging with FDGPET versus CT with correlative lymph node mapping and sampling. Radiology 202:441–446

    PubMed  CAS  Google Scholar 

  120. Bury T, Dowlati A, Paulus P, Corhay JL, Hustinx R, Ghaye B, Radermecker M, et al. (1997) Whole-body 18 FDG positron emission tomography in the staging of non-small lung cancer. Eur Respir J 10:2529–2534

    Article  PubMed  CAS  Google Scholar 

  121. Valk PE, Pounds TR, Hopkins DM, Haseman MK, Hofer GA, Greiss HB, Myers RW, et al. (1995) Staging non-small cell lung cancer by whole-body positron emission tomographic imaging. Ann Thorac Surg 60:1573–1582

    Article  PubMed  CAS  Google Scholar 

  122. Waxman AD (1997) The role of Tc-99m methoxyisobutyl isonitrile in imaging breast cancer. Semin Nucl Med 27:40–54

    Article  PubMed  CAS  Google Scholar 

  123. Kao CH, Wang SJ, Yeh SH (1994) Technetium-99m MIBI uptake in breast carcinoma and axillary lymph node metastases. Clin Nucl Med 19:898–900

    Article  PubMed  CAS  Google Scholar 

  124. Kubota K, Matsuzawa T, Amemiya A, Kondo M, Fujiwara T, Watanuki S, Ito M, et al. (1989) Imaging of breast cancer with (18F) fluorodeoxyglucose and positron emission tomography. JCAT 13:1097–1098

    CAS  Google Scholar 

  125. Tse NY, Hoh CK, Hawkins RA, Zinner MJ, Dahlbom M, Choi Y, Maddahi J (1992) The application of positron emission tomographic imaging with fluorodeoxyglucose for the evaluation of breast disease. Ann Surg 216:27–34

    Article  PubMed  CAS  Google Scholar 

  126. Adler LP, Crowe JP, al-Kaisi NK, Sunshine JL (1993) Evaluation of breast masses and axillary lymph nodes with (F-18)-2-deoxy-D-glucose PET. Radiology 181:743–750

    Google Scholar 

  127. Giuliano AE, Kirgan DM, Guenther JM, Morton DL (1994) Lymphatic mapping and sentinel lymphadenectomy for breast cancer. Ann Surg 220:391–398

    Article  PubMed  CAS  Google Scholar 

  128. Gunther JM, Krishnamoorthy M, Tan LR (1997) Sentinel lymphadenectomy for breast cancer in a community managed care setting. Cancer J Sci Am 3:336–340

    Google Scholar 

  129. Koller M, Barsuk D, Zippel D, Engelberg S, Ben-Ari G, Papa MZ (1998) Sentinel lymph node involvement—a predictor for axillary node status with breast cancer. Has the time come? Eur J Surg Oncol 24:166–168

    Article  PubMed  CAS  Google Scholar 

  130. Barnwell JM, Arredondo MA, Kollmorgen D, Gibbs JF, Lamonica D, Carson W, Zhang P, et al. (1998) Sentinel node biopsy in breast cancer. Ann Surg Oncol 5:126–130

    Article  PubMed  CAS  Google Scholar 

  131. Kogel KE, Sweetenham JW (2003) Current therapies in Hodgkin’s disease. Eur J Nucl Med Mol Imaging 30 Suppl 1:S19–27

    Article  Google Scholar 

  132. Okada J, Oonishi H, Yoshikawa K, Itami J, Uno K, Imaseki K, Arimizu N (1994) FDG-PET for predicting the prognosis of malignant lymphoma. Ann Nucl Med 8:187–191

    Article  PubMed  CAS  Google Scholar 

  133. Kunkel M, Forster GJ, Reichert TE, Jeong JH, Benz P, Bartenstein P, Wagner W, et al. (2003) Detection of recurrent oral squamous cell carcinoma by [18F]-2-fluorodeoxyglucose-positron emission tomography: implications for prognosis and patient management. Cancer 98:2257–2265

    Article  PubMed  Google Scholar 

  134. Halfpenny W, Hain SF, Biassoni L, Maisey MN, Sherman JA, McGurk M (2002) FDG-PET. A possible prognostic factor in head and neck cancer. Br J Cancer 86:512–516

    Article  PubMed  CAS  Google Scholar 

  135. Brun E, Ohlsson T, Erlandsson K, Kjellen E, Sandell A, Tennvall J, Wennerberg J, et al (1997) Early prediction of treatment outcome in head and neck cancer with 2–18 FDG PET. Acta Oncol 36:741–747

    Article  PubMed  CAS  Google Scholar 

  136. Kitagawa Y, Sano K, Nishizawa S, Nakamura M, Ogasawara T, Sadato N, Yonekura Y (2003) FDG-PET for prediction of tumour aggressiveness and response to intra-arterial chemotherapy and radiotherapy in head and neck cancer. Eur J Nucl Med Mol Imaging 30:63–71

    Article  PubMed  CAS  Google Scholar 

  137. Minn H, Lapela M, Klemi PJ, Grenman R, Leskinen S, Lindholm P, Bergman J, et al (1997) Prediction of survival with fluorine-18-fluoro-deoxyglucose and PET in head and neck cancerz. J Nucl Med 38:1907–1911

    PubMed  CAS  Google Scholar 

  138. Kunkel M, Forster GJ, Reichert TE, Kutzner J, Benz P, Bartenstein P, Wagner W (2003) Radiation response non-invasively imaged by [18F]FDG-PET predicts local tumor control and survival in advanced oral squamous cell carcinoma. Oral Oncol 39:170–177

    Article  PubMed  Google Scholar 

  139. Luker GD, Luker KE, Sharma V, et al (1999) Assessment of multidrug resistance. Nuclear oncology. Springer, Berlin Heidelberg New York, pp 371–382

    Google Scholar 

  140. Sciuto R, Pasqualoni R, Bergomi S, Petrilli G, Vici P, Belli F, Botti C, Mottolese M, Maini CL (2002) Prognostic value of 99mTc Sestamibi washout in predicting response to locally advanced breast cancer to neoadjuvant chemotherapy. J Nucl Med 43:745–751

    PubMed  Google Scholar 

  141. Britz-Cunnignham SH, Adelstein SA (2003) Molecular targeting with radionuclides: state of the science. J Nucl Med 44:1945–1961

    Google Scholar 

  142. Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62:385–427

    Article  PubMed  CAS  Google Scholar 

  143. Kao CH, Hsieh JF, Tsai SC, Ho YJ, Changlai SP, Lee JK (2001) Paclitaxel-based chemotherapy for non-small cell lung cancer: Predicting the response with 99mTc-tetro-fosmin chest imaging. J Nucl Med 42:17–20

    PubMed  CAS  Google Scholar 

  144. Elsinga PH, Franssen EJ, Hendrikse NH, Fluks L, Weemaes AM, van der Graaf WT, de Vries EG, Visser GM, Vaalburg W (1996) Carbon-11-labeled daunorubicin and verapamil for probing P-glycoprotein in tumors with PET. J Nucl Med 37:1571–1575

    PubMed  CAS  Google Scholar 

  145. Hendrikse NH, Franssen EJ, van der Graaf WT, Vaalburg W, de Vries EG (1999) Visualization of multidrug resistance in vivo. Eur J Nucl Med 26:283–293. Review

    Article  PubMed  CAS  Google Scholar 

  146. Levchenko A, Mehta BM, Lee JB, Humm JL, Augensen F, Squire O, Kothari PJ, et al (2000) Evaluation of 11C-colchicine for PET imaging of multiple drug resistance. J Nucl Med 41:493–501

    PubMed  CAS  Google Scholar 

  147. Kurdziel KA, Kiesewetter DO, Carson RE, Eckelman WC, Herscovitch P (2003) Biodistribution, radiation dose estimates, and in vivo Pgp modulation studies of 18F-paclitaxel in nonhuman primates. J Nucl Med 44:1330–1339

    PubMed  CAS  Google Scholar 

  148. Pamper GM (2001) Functional and metabolic imaging. In: DeVita VT, Hellman S, Rosenberg SA (eds) Cancer: Principles and practice of oncology, 6th edn. Lippincott-Williams & Wilkins, Philadelphia, pp 679–689

    Google Scholar 

  149. Matthews PM, Wylezinska M, Cadoux-Hudson T (2001) Novel approaches to imaging brain tumors. Hematol Oncol Clin North Am 15:609–630

    Article  PubMed  CAS  Google Scholar 

  150. Coleman RE, Hoffman JM, Hanson MW, Sostman HD, Schold SC (1991) Clinical application of PET for evaluation of brain tumors. J Nucl Med 32:616–622

    PubMed  CAS  Google Scholar 

  151. Wallner KE, Galieich JH, Malkin MG, Arbit E, Krol G, Rosenblum MK (1989) Inability of computed tomography appearance of recurrent malignant astrocytoma to predict survival following reoperation. J Clin Oncol 7:1492–1496

    PubMed  CAS  Google Scholar 

  152. Cook GJ, Fogelman I, Collier BD, Krasnow AZ, Tauxe WN (1999) Bone tumors. In: Aktolun C, Tauxe WN (eds) Nuclear oncology. Springer, Berlin Heidelberg New York, pp 227–244

    Google Scholar 

  153. Abdel-Dayem HM, Scott AM, Macapinlac HA, El-Gazzar AH, Larson SM (1994) Role of thallim-201 chloride in tumor imaging. In: Freeman LM (ed) Nuclear medicine annual. Raven, New York, pp 181–234

    Google Scholar 

  154. Ganz WI, Nguyen TW, Benedetto MP, Friden A, Topchik S, Serafini A, Sfakianakis G (1993) Use of early, late and SPECT thallium-201 chloride imaging in evaluating activity of soft tissue and bone tumors (abstract). J Nucl Med 34:32P

    Google Scholar 

  155. Chen DCP, Ma GQ, Anasari A (1993) Optimum imaging time for thallium-201 chloride as a tumor agent in patients with lymphoma (abstract). J Nucl Med 33:A44

    Google Scholar 

  156. Avril NE, Weber WA (2005) Monitoring response to treatment in patients utilizing PET. Radiol Clin North Am 43:189–204

    Article  PubMed  Google Scholar 

  157. Coleman RE (1999) PET in lung cancer. J Nucl Med 40:814–820

    PubMed  CAS  Google Scholar 

  158. Zasadny KR, Wahl RL (1993) Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology 189:847–850

    PubMed  CAS  Google Scholar 

  159. Jana S, Mahadeo S, Heller S, Isasi CR, Blaufox MD (2005) Influence of PET scanners, lesion size, and attenuation correction methods on SUV in FDG-PET imaging. (Abstract) J Nucl Med 46:328

    Google Scholar 

  160. Schoder H, Erdi YE, Chao K, Gonen M, Larson SM, Yeung HW (2004) Clinical implications of different image reconstruction parameters for interpretation of whole-body PET studies in cancer patients. J Nucl Med 45:559–566

    PubMed  Google Scholar 

  161. Kinahan PE, Hasegawa BH, Beyer T (2003) X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 33:166–179

    Article  PubMed  Google Scholar 

  162. Wu TH, Huang YH, Lee JJ, Wang SY, Wang SC, Su CT, Chen LK, Chu TC (2004) Radiation exposure during transmission measurements: comparison between CT-and germanium-based techniques with a current PET scanner. Eur J Nucl Med Mol Imaging 31:38–43

    Article  PubMed  Google Scholar 

  163. Kostakoglu L, Goldsmith SJ (2003) 18F-FDG PET evaluation of the response to therapy for lymphoma and for breast, lung, and colorectal carcinoma. J Nucl Med 44:224–239

    PubMed  Google Scholar 

  164. Minn H, Zasadny KR, Quint LE (1995) Lung cancer: reproducibility of quantitative measurements for evaluating 2-[F-18]-fluoro-2-deoxy-D-glucose uptake at PET. Radiology 196:167–173

    PubMed  CAS  Google Scholar 

  165. Weber WA, Ziegler SI, Thodtmann R (1999) Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med 40:1771–1777

    PubMed  CAS  Google Scholar 

  166. Torizuka T, Clavo AC, Wahl RL (1997) Effect of hyperglycemia on in vitro tumor uptake of tritiated FDG, thymidine, l-methionine and l-leucine. J Nucl Med 38:382–386

    PubMed  CAS  Google Scholar 

  167. Weber WA, Petersen V, Schmidt B (2003) Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol 21:2651–2657

    Article  PubMed  CAS  Google Scholar 

  168. Wahl RL, Zasadny K, Helvie M (1993) Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol 11:2101–2111

    PubMed  CAS  Google Scholar 

  169. Jansson T, Westlin JE, Ahlstrom H (1995) Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer: a method for early therapy evaluation? J Clin Oncol 13:1470–1477

    PubMed  CAS  Google Scholar 

  170. Romer W, Hanauske AR, Ziegler S (1998) Positron emission tomography in non-Hodgkin’s lymphoma: assessment of chemotherapy with fluorodeoxyglucose. Blood 91:4464–4471

    PubMed  CAS  Google Scholar 

  171. Higashi K, Clavo AC, Wahl RL (1993) In vitro assessment of 2-fluoro-2-deoxy-D-glucose, l-methionine and thymidine as agents to monitor the early response of a human adenocarcinoma cell line to radiotherapy. J Nucl Med 34:773–779

    PubMed  CAS  Google Scholar 

  172. Haberkorn U, Morr I, Oberdorfer F (1994) Fluorodeoxy-glucose uptake in vitro: aspects of method and effects of treatment with gemcitabine. J Nucl Med 35:1842–1850

    PubMed  CAS  Google Scholar 

  173. Dehdashti F, Flanagan FL, Mortimer JE (1999) Positron emission tomographic assessment of “metabolic flare” to predict response of metastatic breast cancer to antiestrogen therapy. Eur J Nucl Med 26:51–56

    Article  PubMed  CAS  Google Scholar 

  174. Mortimer JE, Dehdashti F, Siegel BA (2001) Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol 19:2797–2803

    PubMed  CAS  Google Scholar 

  175. Wieder H, Brucher BL, Zimmerman F (2004) Time course of tumor metabolic activity during chemoradiotherapy of esophageal squamous cell carcinoma and response to treatment. J Clin Oncol 22:900–909

    Article  PubMed  CAS  Google Scholar 

  176. Greven KM, Williams DW III, McGuirt WF Sr (2001) Serial positron emission tomography scans following radiation therapy of patients with head and neck cancer. Head Neck 23:942–946

    Article  PubMed  CAS  Google Scholar 

  177. MacManus MP, Hicks RJ, Matthews JP (2003) Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer. J Clin Oncol 21:1285–1292

    Article  Google Scholar 

  178. Brucher B, Weber W, Bauer M (2001) Neoadjuvant therapy of esophageal squamous cell carcinoma: response evaluation by positron emission tomography. Ann Surg 233:300–309

    Article  PubMed  CAS  Google Scholar 

  179. Flamen P, Van Cutsem E, Lerut A (2002) Positron emission tomography for assessment of the response to induction chemotherapy in locally advanced esophageal cancer. Ann Oncol 13:361–368

    Article  PubMed  CAS  Google Scholar 

  180. Downey RJ, Akhurst T, Ilson D (2003) Whole body 18FDG-PET and the response of esophageal cancer to induction therapy: results of a prospective trial. J Clin Oncol 21:428–432

    Article  PubMed  Google Scholar 

  181. Arslan N, Miller TR, Dehdashti F (2002) Evaluation of response to neoadjuvant therapy by quantitative 2-deoxy-2-[18F]fluoro-D-glucose with positron emission tomography in patients with esophageal cancer. Mol Imaging Biol 4:301–310

    Article  PubMed  Google Scholar 

  182. Charron M, Beyer T, Bohnen NN, Kinahan PE, Dachille M, Jerin J, Nutt R, et al (2000) Image analysis in patients with cancer studied with a combined PET and CT scanner. Clin Nucl Med 25:905–910

    Article  PubMed  CAS  Google Scholar 

  183. Front D, Israel O, Mor M, Keidar Z, Gaitini D, Epelbaum R, Engel A, et al (2000) A new technology of combined transmission (CT) and F-18 fluorodeoxyglucose (FDG) emission tomography (TET) in the evaluation of cancer patients. J Nucl Med 41:284 (abstr)

    Google Scholar 

  184. Israel O, Mor M, Guralnik L, Gaitini D, Zachs Y, Keidar Z, Kuten A (2000) The new technology of transmission and emission F-18 FDG tomography (FDG-TET) in the diagnosis and management of cancer patients. Clin Positron Imaging 3:143 (Abstr)

    Article  PubMed  Google Scholar 

  185. Israel O, Keidar Z, Iosilevsky G, Bettman L, Sachs J, Frenkel A (2001) The fusion of anatomic and physiologic imaging in the management of patients with cancer. Semin Nucl Med 31:191–205

    Article  PubMed  CAS  Google Scholar 

  186. Dizendorf EV, Baumert BG, von Schulthess GK, Lutolf UM, Steinert HC (2003) Impact of whole-body 18F-FDG PET on staging and managing patients for radiation therapy. J Nucl Med 44:24–29

    PubMed  Google Scholar 

  187. Bradley J, Thorstad WL, Mutic S, Miller TR, Dehdashti F, Siegel BA, Bosch W, et al (2004) Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 59:78–86

    Article  PubMed  Google Scholar 

  188. Heron DE, Andrade RS, Flickinger J, Johnson J, Agarwala SS, Wu A, Kalnicki S, Avril N (2004) Hybrid PET-CT simulation for radiation treatment planning in head-and-neck cancers: A brief technical report. Int J Radiat Oncol Biol Phys 60:1419–1424

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jana, S., Abdel-Dayem, H.M. (2006). Basis of Tumor Imaging 2: Scintigraphic and Pathophysiologic Correlation. In: Elgazzar, A.H. (eds) The Pathophysiologic Basis of Nuclear Medicine. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-47953-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47953-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23992-5

  • Online ISBN: 978-3-540-47953-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics