Skip to main content

Microalgae in Polar Regions: Linking Functional Genomics and Physiology with Environmental Conditions

  • Chapter
Psychrophiles: from Biodiversity to Biotechnology

Protists inhabiting polar regions have been the subject of intense interest ever sincethe first explorers ventured into the inhospitable seas of the Arctic and Southern Oceans (Ehrenberg 1841, 1853; Hooker 1847; Sutherland 1852). The first records of microbial biodiversity in extreme environments were made with the most basic of microscopes, and until the mid 1900s (ultimately when scientific programs in polar regions became more common) much of the work on protists remained largely descriptive and restricted to the more robust physiological experiments that could be attempted under unfavorable field conditions. Despite the fact that there have been nearly 170 years of research into algae living in the Arctic and Antarctic, it is only in the last 20 years that there has been a revolution in laboratory facilities available at remote sites, and of course the technological advances that allow collection, extraction and subsequent cultivation of organisms in home laboratories. Coupled to this, we now have sophisticated molecular tools to determine the true extent of this diversity and, in turn, we know the molecular and physiological capabilities that permit life to continue at the extremes of low temperature. That is not to belittle the need to still look down the microscopes as works such as Scott and Marchant (2005) eloquently demonstrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6:36–42.

    Article  CAS  PubMed  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WW, Lane TW, Larimer F W, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86.

    Article  CAS  PubMed  Google Scholar 

  • Arrigo KR, Thomas DN (2004) Large scale importance of sea ice biology in the Southern Ocean. Antarct Sci 16:471–486.

    Article  Google Scholar 

  • Beil U, Thiede J (1990) Geophysical history of polar oceans: Arctic versus Antarctic. Kluwer, Dordrecht.

    Google Scholar 

  • Boyd PW (2002) Environmental factors controlling phytoplankton processes in the Southern Ocean. J Phycol 38:844–861.

    Article  Google Scholar 

  • Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, Buesseler KO, Coale KH, Cullen JJ, de Baar HJW, Follows M, Harvey M, Lancelot C, Levasseur M, Owens NPJ, Pollard R, Rivkin RB, Sarmiento J, Schoemann V, Smetacek V, Takeda S, Tsuda A, Turner S, Watson AJ (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315:612–617.

    Article  CAS  PubMed  Google Scholar 

  • Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA (1997) Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078.

    CAS  PubMed  Google Scholar 

  • Brierley AS, Thomas DN (2002) The ecology of Southern Ocean pack ice. Adv Mar Biol 43:171–278.

    Article  PubMed  Google Scholar 

  • Cannone N, Guglielmin M, Gerdol R (2004) Relationships between vegetation patterns and periglacial landforms in northwestern Svalbard. Polar Biol 27:562–571.

    Article  Google Scholar 

  • Cheng CHC (1998) Evolution of the divers antifreeze proteins. Curr Opin Genet Devel 8:715–720.

    Article  CAS  Google Scholar 

  • Cockell CS, Stokes MD (2004) Widespread colonization by polar hypoliths. Nature 431:414.

    Article  CAS  PubMed  Google Scholar 

  • Comiso JC (2003) Large-scale characteristics and variability of the global sea ice cover. In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 112–142.

    Google Scholar 

  • Cota GF (1985) Photoadaptation of high Arctic ice algae. Nature 315:219–222.

    Article  CAS  Google Scholar 

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309.

    Article  CAS  PubMed  Google Scholar 

  • Detrich HW, Johnson KA, Marchese-Ragona SP (1989) Polymerization of Antarctic fish tubulins at low temperatures: energetic aspects. Biochemistry 28:10085–10093.

    Article  CAS  PubMed  Google Scholar 

  • Devos N, Ingouff M, Loppes R, Matagne R (1998) Rubisco adaptation to low temperatures: a comparative study in psychrophilic and mesophilic unicellular algae. J Phycol 34:665–669.

    Article  Google Scholar 

  • Dieckmann GS, Hellmer HH (2003) The importance of sea ice: An overview. In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 1–21.

    Google Scholar 

  • Eicken H (1992) The role of sea ice in structuring Antarctic ecosystems. Polar Biol 12:3–13.

    Article  Google Scholar 

  • Eicken H (2003) From the microscopic, to the macroscopic, to the regional scale: Growth, microstructure, and properties of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 22–81.

    Google Scholar 

  • Ehrenberg CG (1841) Einen Nachtrag zu dem Vortrage über Verbreitung und Einfluß des mikroskopischen Lebens in Süd- und Nordamerika. Berichte über die zur Bekanntmachung geeigneten Verhandlung der Königlich-Preussischen Akademie der Wissenschaften zu Berlin, Monatsberichte 1841, pp 202–207.

    Google Scholar 

  • Ehrenberg CG (1853) Über neue Anschauungen des kleinsten nördlichen Polarlebens. Berichte über die zur Bekanntmachung geeigneten Verhandlung der Königlich-Preussischen Akademie der Wissenschaften zu Berlin, Monatsberichte 1853, pp 522–529.

    Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes; hot topics in cold adaptation. Nat Rev Microbiol 1:200–208.

    Article  CAS  PubMed  Google Scholar 

  • Fiala M, Oriol L (1990) Light-temperature interactions on the growth of Antarctic diatoms. Polar Biol 10:9–13.

    Article  Google Scholar 

  • Fogg GE (1998) The biology of polar habitats. Oxford University Press, Oxford.

    Google Scholar 

  • Friedmann EI, Kappen L, Meyer MA, Nienow JA (1993) Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica. Microb Ecol 25:51–69.

    Article  CAS  PubMed  Google Scholar 

  • Fritzen CH, Priscu JC (1999) Seasonal change in the optical properties of the permanent ice cover on Lake Bonney, Antarctica: consequences for lake productivity and phytoplankton dynamics. Limnol Oceanogr 44:447–454.

    Google Scholar 

  • Fujita Y (2001) Chromatic cariation of the abundance of PS II complexes observed with the red alga Prophyridium cruentum. Plant Cell Physiol 42:1239–1244.

    Article  CAS  PubMed  Google Scholar 

  • Gleitz M, Thomas DN (1993) Variation in phytoplankton standing stock, chemical composition and physiology during sea ice formation in the southeastern Weddell Sea, Antarctica. J Exp Mar Biol Ecol 173:211–230.

    Article  CAS  Google Scholar 

  • Gleitz M, Rutgers vd Loeff M, Thomas DN, Dieckmann GS, Millero FJ (1995) Comparison of summer and winter inorganic carbon, oxygen and nutrient concentrations in Antarctic sea ice brine. Mar Chem 51:81–91.

    Article  CAS  Google Scholar 

  • Gleitz M, Bartsch A, Dieckmann GS, Eicken H (1998) Composition and succession of sea ice diatom assemblages in the eastern and southern Weddell Sea, Antarctica. Antarct Res Ser 73:107–120.

    Google Scholar 

  • Granskog GA, Kaartokallio H, Kuosa H, Thomas DN, Vainio J (2006) Sea ice in the Baltic Sea—a review. Estuar Coast Shelf Sci 70:145–160.

    Article  Google Scholar 

  • Haas C (2003) Dynamics versus thermodynamics. In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 82–111.

    Google Scholar 

  • Haas C, Thomas DN, Bareiss J (2001) Surface properties and processes of perennial Antarctic sea ice in summer. J Glaciol 47:613–625.

    Article  CAS  Google Scholar 

  • Hansom JD, Gordon JE (1998) Antarctic environments and resources—a geographical perspective. Addison Wesley Longman, Harlow, Essex.

    Google Scholar 

  • Hodson AJ, Mumford PN, Kohler J, Wynn PM (2005) The High Arctic glacial ecosystem: new insights from nutrient budgets. Biogeochem 72:233–256.

    Article  CAS  Google Scholar 

  • Hoham RW, Duval B (2001) Microbial ecology of snow and freshwater ice with emphasis on snow algae. In: Jones HG, Pomeroy JW, Walker DA, Hoham RW (eds) Snow ecology: an interdisciplinary examination of snow-covered ecosystems. Cambridge University Press, Cambridge, pp 168–228.

    Google Scholar 

  • Hooker JD (1847) The botany of the Antarctic voyage of H.M. Discovery ships Erebus and Terror in the years 1838–1843. Part 1. Flora Antarctica. Reeve Brothers, London.

    Google Scholar 

  • Horner RA (1985) Sea ice biota. CRC, Baco Raton, Florida, pp 468.

    Google Scholar 

  • Hoshino T, Kiriaki M, Ohgiya S, Fujiwara M, Kondo H, Nishimiya Y, Yumoto I, Tsuda S (2003) Antifreeze proteins from snow mold fungi. Can J Bot 81:1175–1181.

    Article  CAS  Google Scholar 

  • Hsiao S (1983) A checklist of marine phytoplankton and sea ice microalgae recorded from Arctic Canada. Nova Hedwigia 37:225–314.

    Google Scholar 

  • Ikävalko J, Gradinger R (1997) Flagellates and heliozoans in the Greenland Sea ice studied alive using light microscopy. Polar Biol 17:473–481.

    Article  Google Scholar 

  • Janech MG, Krell A, Mock T, Kang J-S, Raymond JA (2006) Ice-binding proteins from sea ice diatoms (Bacillariophyceae). J Phycol 42:410–416.

    Article  CAS  Google Scholar 

  • Johnston CG, Vestal JR (1991) Photosynthetic carbon incorporation and turnover in Antarctic cryptoendolithic microbial communities: are they the slowest-growing communities on Earth? Appl Environ Microbiol 57:2308–2311.

    CAS  PubMed  Google Scholar 

  • Jones EP, Swift JH, Anderson LG, Lipizer M, Civitarese G, Falkner KK, Kattner G, McLaughlin F (2003) Tracing Pacific water in the North Atlantic Ocean. J Geophys Res 108:3116.

    Article  Google Scholar 

  • Junge K, Imhoff F, Staley T, Deming JW (2002) Phylogenetic diversity of numerically important Arctic sea ice bacteria at subzero temperature. Microb Ecol 43:315–328.

    Article  CAS  PubMed  Google Scholar 

  • Junge K, Eicken H, Deming JW (2004) Bacterial activity at −2 to −20°C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557.

    Article  CAS  PubMed  Google Scholar 

  • Kan G-F, Miao J-L, Shi C-J, Li G-Y (2006) Proteomic alterations of Antarctic ice microalga Chlamydomonas sp. under low-temperature stress. J Integr Plant Physiol 48:965–970.

    Article  CAS  Google Scholar 

  • Kattner G, Thomas DN, Haas C, Kennedy H, Dieckmann GS (2004) Surface ice and gap layers in Antarctic sea ice: highly productive habitats. Mar Ecol Prog Ser 277:1–12.

    Article  Google Scholar 

  • Kennedy H, Thomas DN, Kattner K, Haas C, Dieckmann GS (2002) Particulate organic carbon in Antarctic summer sea ice: Concentration and stable carbon isotopic composition. Mar Ecol Prog Ser 238:1–13.

    Article  CAS  Google Scholar 

  • Kirst GO, Wiencke C (1995) Ecophysiology of polar algae. J Phycol 31:181–199.

    Article  Google Scholar 

  • Kooistra WHCF, Medlin LK (1996) Evolution of the diatoms (Bacillariophyta) IV. A reconstruction of their age from small subunit rRNA coding regions and the fossil record. Mol Phyl Evol 6:391–407.

    Article  CAS  Google Scholar 

  • Kopczynska EE, Weber LH, El-Sayed SZ (1986) Phytoplankton species composition and abundance in the Indian sector of the Antarctic Ocean. Polar Biol 6:161–169.

    Article  Google Scholar 

  • Krell A (2006) Salt stress tolerance in the psychrophilic diatom Fragilariopsis cylindrus. Dissertation, University of Bremen, Germany.

    Google Scholar 

  • Krembs C, Engel A (2001) Abundance and variability of microorganisms and transparent exopolymer particles across the ice water interface of melting first-year sea ice in the Laptev Sea (Arctic). Mar Biol 138:173–185.

    Article  Google Scholar 

  • Krembs C, Gradinger R, Spindler M (2000) Implications of brine channel geometry and surface area for the interaction of sympagic organisms in Arctic sea ice. J Exp Mar Biol Ecol 243:55–80.

    Article  Google Scholar 

  • Leventer A (1998) The fate of Antarctic “Sea ice diatoms” and their use as paleoenvironmental indicators. Antarct Res Ser 73:121–137.

    Google Scholar 

  • Lizotte MP (2001) The contributions of sea ice algae to Antarctic marine primary production. Amer Zoologist 41:57–73.

    Article  Google Scholar 

  • Lizotte MP (2003a) Microbiology of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea Ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 184–210.

    Google Scholar 

  • Lizotte MP (2003b) The influence of sea ice on Ross Sea biogeochemical processes. Antarct Res Ser 78:107–122.

    Google Scholar 

  • Lizotte MP, Priscu JC (1992) Spectral irradiance and biooptical properties in perennial ice-covered lakes of the dry valleys (McMurdo Sound Antarctica). Antarct Res Ser 57:1–14.

    Google Scholar 

  • Lovejoy C, Massana R, Pedros-Alio C (2006) Diversity and distribution of microbial eukaryotes in the Arctic Ocean and adjacted seas. Appl Envir Microb 72:3085–3095.

    Article  CAS  Google Scholar 

  • McKay CP, Andersen D, Pollard WH, Heldmann JL, Doran PT, Fritzen CH, Priscu JC (2005) Polar lakes, streams and springs as analogs for the hydrological cycle on Mars. In: Takano T (ed) Water on Mars and life. Springer, Berlin, pp 219–233.

    Google Scholar 

  • Merico AT, Tyrell T, Brown CW, Groom SB, Miller PI (2003) Analysis of satellite imagery for Emiliania huxleyi blooms in the Bering Sea before 1997. J Geophys Res Lett 30:1337.

    Article  Google Scholar 

  • Mindl B, Anesio AM, Meirer K, Hodson AJ, Laybourn-Parry J, Sommaruga R Sattler B (2007) Factors influencing bacterial dynamics along a transect from supralgacial runoff to proglacial lakes of a high Arctic glacier. FEMS Microbiol Ecol 59:307–317.

    Article  CAS  PubMed  Google Scholar 

  • Mock T, Gradinger R (1999) Determination of ice algal production with a new in situ incubation technique. Mar Ecol Prog Ser 177:15–26.

    Article  CAS  Google Scholar 

  • Mock T, Kroon BMA (2002a) Photosynthetic energy conversion under extreme conditions. I. Important role of lipids as structural modulators and energy sink under N-limited growth in Antarctic sea ice diatoms. Phytochemistry 61:41–51.

    Article  CAS  PubMed  Google Scholar 

  • Mock T, Kroon BMA (2002b) Photosynthetic energy conversion under extreme conditions. II. The significance of lipids at low temperature and low irradiances in Antarctic sea ice diatoms. Phytochemistry 61:53–60.

    Article  CAS  PubMed  Google Scholar 

  • Mock T, Valentin K (2004) Photosynthesis and cold acclimation: molecular evidence from a polar diatom. J Phycol 40:732–741.

    Article  CAS  Google Scholar 

  • Mock T, Hoch N (2005) Long-term acclimation of photosynthesis in steady-state cultures of the polar diatom Fragilariopsis cylindrus. Photosyn Res 85:307–317.

    Article  CAS  PubMed  Google Scholar 

  • Mock T, Thomas DN (2005) Sea ice—recent advances in microbial studies. Environ Microbiol. 7:605–619.

    Article  CAS  PubMed  Google Scholar 

  • Mock T, Junge K (2007) Psychrophilic diatoms: mechanisms for survival in freeze–thaw cycles. In: Seckbach J (ed) Extremophilic algae, cyanobacteria and non-photosynthetic protists. Springer, New York, in press.

    Google Scholar 

  • Mock T, Krell A, Gloeckner G, Kolukisaoglu U, Valentin K (2006) Analysis of expressed sequence tags (ESTs) from the polar diatom Fragilariopsis cylindrus. J Phycol 42: 78–85.

    Article  Google Scholar 

  • Morgan-Kiss RM, Ivanov AG, Pocock T, Krol M, Gudynaite-Savitch L, Huner NPA (2005) The Antarctic psychrophile, Chlamydomonas raudensis ETTL (UWO241) (Chorophyceae, Chlorophyta), exhibits a limited capacity to photoacclimate to red light. J Phycol 41:791–800.

    Article  Google Scholar 

  • Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microb Mol Biol Rev 70:222–252.

    Article  CAS  Google Scholar 

  • Nelson DM, Treguer P, Brezezinski MA, Leynaert A, Queguiner B (1995) Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem Cycles 9:359–372.

    Article  CAS  Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568.

    Article  CAS  PubMed  Google Scholar 

  • Muller T, Bleiss W, Martin C-D, Rogaschewski S, Fuhr G (1998) Snow algae from northwest Svalbard: their identification, distribution, pigment and nutrient content. Polar Biol 20:14–32.

    Article  Google Scholar 

  • Odom OW, Shenkenberg DL, Garcia JA, Herrin DL (2004) A horizontally acquired group II intron in the chloroplast psbA gene of a psychrophilic Chlamydomonas: in vitro self-splicing and genetic evidence for maturase activity. RNA 10:1097–1107.

    Article  CAS  PubMed  Google Scholar 

  • Palmisano AC, Garrison DL (1993) Microorganisms in Antarctic sea ice. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 167–218.

    Google Scholar 

  • Priscu JC (1995) Phytoplankton nutrient deficiency in lakes of the McMurdo Dry Valleys, Antarctica. Freshwater Biol 34:215–227.

    Article  Google Scholar 

  • Priscu JC (1998) Ecosystem dynamics in a polar desert: the McMurdo Dry Valleys, Antarctica. American Geophysical Union, Washington DC.

    Google Scholar 

  • Quillfeldt von CH (2004) The diatom Fragilariopsis cylindrus and its potential as an indicator species for cold water rather than for sea ice. Vie Milieu 54:137–143.

    Google Scholar 

  • Ralph PJ, McMinn A, Ryan KG, Ashworth C (2005) Short-term effects of temperature on the photokinetics of microalgae from the surface layers of Antarctic pack ice. J Phycol 41:763–769.

    Article  Google Scholar 

  • Remias D, Lutz-Meindl U, Lutz C (2005) Photosynthesis, pigment and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol 40:259–268.

    Article  CAS  Google Scholar 

  • Ryan KG, Ralph PJ, McMinn A (2004) Photoacclimation of Antarctic bottom ice algal communities to lowered salinities during melting. Polar Biol 27:679–686.

    Article  Google Scholar 

  • Rigano VdM, Vona V, Lobosco O, Carillo P, Lunn JE, Carfagna S, Esposito S, Caiazzo M, Rigano C (2006) Temperature dependence of nitrate reductase in the psychrophilic unicellular alga Koliella antarctica and the mesophilic alga Chlorella sorokiniana. Plant Cell Envir 29:1400–1409.

    Article  CAS  Google Scholar 

  • Sakshaug E, Slagstad D (1991) Light and productivity of phytoplankton in polar marine ecosystems: a physiological view. Polar Res 10:69–85.

    Article  Google Scholar 

  • Säwström C, Mumford PN, Marshall W, Hodson AJ, Layboum-Parry J (2002) The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard, 79°N). Polar Biol 25:591–596.

    Google Scholar 

  • Shi H, Lee B, Wu S, Zhu J (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85.

    Article  CAS  PubMed  Google Scholar 

  • Scott FJ, Marchant HJ (2005) Antarctic Marine Protists. Australian Biological Resources Study, Canberra.

    Google Scholar 

  • Smetacek V (1998) Diatoms and the silicate factor. Nature 391:224–225.

    Article  CAS  Google Scholar 

  • Smetacek V, Nicol S (2005) Polar ocean ecosystems in a changing world. Nature 437:362–368.

    Article  CAS  PubMed  Google Scholar 

  • Smetacek V, Klaas C, Menden-Deuer S, Rynearson TA (2002) Mesoscale distribution of dominant diatom species relative to the hydrographical field along the Antarctic Polar Front. Deep Sea Res 49:3835–3848.

    Article  CAS  Google Scholar 

  • Smith WO, Codispoti LA, Nelson DM, Manley T, Buskey EL, Niebauer HJ, Cota GF (1991) Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle. Nature 352:514–516.

    Article  Google Scholar 

  • Schnack-Schiel SB (2003) The macrobiology of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Oxford, pp 211–239.

    Google Scholar 

  • Sommer U (1989) Maximum growth rates of Antarctic phytoplankton: only weak dependence on cell size. Limnol Oceanogr 34:1109–1112.

    Article  Google Scholar 

  • Stoecker DK, Gustafson DE, Merrell JR, Black MMD, Baier CT (1997) Excystment and growth of chryophytes and dinoflagellates at low temperatures and high salinities in Antarctic sea-ice. J Phycol 33:585–595.

    Article  Google Scholar 

  • Stoecker DK, Gustafson DE, Black MMD, Baier CT (1998) Population dynamics of microalgae in the upper land-fast sea ice at a snow free location. J Phycol 34:60–69.

    Article  Google Scholar 

  • Stoecker DK, Gustafson DE, Baier CT, Black MMD (2000) Primary production in the upper sea ice. Aquat Microb Ecol 21:275–287.

    Article  Google Scholar 

  • Streb P, Shang W, Feierabend J, Bligny R (1998) Divergent strategies of photoprotection in high mountain plants. Planta 207:313–324.

    Article  CAS  Google Scholar 

  • Sutherland P C (1852) Journal of a voyage in Baffin’s Bay and Barrow Straits in the years 1850–51, performed by H.M. ships “Lady Franklin” and “Sophia”, under the command of Mr.William Penny in search of the missing crews of H.M. ships “Erebus” and “Terror”. Vol.s 1 and 2. Longmans, London.

    Google Scholar 

  • Tang EPY, Vincent WF, Proulx D, Lessard P, Noue JdL (1997) Polar cyanobacteria versus green algae for tertiary waste-water treatment in cool climates. J Appl Phycol 9:371–381.

    Article  CAS  Google Scholar 

  • Takeuchi N (2002) Optical characteristics of cryoconite (surface dust) on glaciers: the relationship between light absorbency and the property of organic matter contained in the cryoconite. Ann Glaciol 34:409–414.

    Article  CAS  Google Scholar 

  • Thomas DN, Dieckmann GS (2002) Antarctic sea ice—a habitat for extremophiles. Science 295:641–644.

    Article  CAS  PubMed  Google Scholar 

  • Tomczak M, Godfrey JS (2003) Regional oceanography: an introduction, 2nd edn. Elsevier, New York.

    Google Scholar 

  • Weissenberger J, Dieckmann GS, Gradinger R, Spindler M (1992) Sea ice: a cast technique to examine and analyse brine pockets and channel structure. Limnol Oceanogr 37:179–183.

    Article  Google Scholar 

  • Werner I (2006) Seasonal dynamics, cryo-pelagic interactions and metabolic rates of Arctic pack-ice and under-ice fauna—a review. Polarforschung 75:1–19.

    Google Scholar 

  • Williams WE, Gorton HL, Vogelmann TC (2003) Surface gas-exchange processes of snow algae. Proc Natl Acad Sci USA 100:562–566.

    Article  CAS  PubMed  Google Scholar 

  • Willem S, Srahna M, Devos N, Gerday C, Loppes R, Matagne RF (1999) Protein adaptation to low temperatures: a comparative study of alpha-tubulin sequences in mesophilic and psychrophilic algae. Extremophiles 3:221–226.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mock, T., Thomas, D.N. (2008). Microalgae in Polar Regions: Linking Functional Genomics and Physiology with Environmental Conditions. In: Margesin, R., Schinner, F., Marx, JC., Gerday, C. (eds) Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74335-4_17

Download citation

Publish with us

Policies and ethics