Skip to main content

The Role of Phenotypic Plasticity in Marine Biological Invasions

  • Chapter
Biological Invasions in Marine Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 204))

The outcome of a species introduction depends, in large measure, on the abilities of the invader and species in the receiving community to respond to their new environments. A successful invader must survive changing environmental conditions at all stages leading to and following its introduction. Residents in the invaded community, in turn, must cope with environmental changes that result from the arrival of the new species. Adaptive responses (i.e., those that confer a fitness benefit) by either party have been viewed primarily to result from evolutionary changes in fixed traits in populations (Thompson 1998; Mooney and Cleland 2001; Cox 2004). Although intense selection can result in rapid phenotypic shifts across generations (Huey et al. 2000; Gilchrist et al. 2001; Reznick and Ghalambor 2001), this process does not encompass fully the dynamic nature of many invasions. A burgeoning literature indicates that individual organisms are capable of modifying ecologically important physiological, morphological, behavioral, and life-history features within a lifetime in response to environmental cues (Harvell 1986; Stearns 1989; Kingsolver and Huey 1998; Schlichting and Pigliucci 1998; West-Eberhard 2003; DeWitt and Scheiner 2004a). This phenomenon, known as phenotypic plasticity, provides a means by which an invader can respond relatively quickly to its new biotic or abiotic environment. Similarly, phenotypic plasticity may allow resident species to mitigate changes wrought by the invader. The role of adaptive phenotypic plasticity in biological invasions, however, has been largely ignored in marine settings.

Our understanding and interpretation of marine biological invasions will be incomplete on several counts if we fail to acknowledge or test for the potential influence of phenotypic plasticity. First, phenotypic plasticity can provide a mechanistic explanation to understand and predict (1) why and how some individuals or species invade and others do not, (2) what the ecological effects and eventual ranges of the invader might be, and (3) how native species might respond to the introduction. In particular, knowledge of the type, direction, and magnitude of induced responses is critical if we are to decipher direct and indirect ecological effects stemming from species introductions. Second, recognition of phenotypic plasticity's influence should aid in our interpretation of spatial patterns or temporal changes that develop following marine introductions. In particular, changes in characteristics of populations following an invasion cannot necessarily be assumed to reflect selection (rapid or otherwise). Rather, studies need to test for environmental and genetic influences and their interactive contribution to phenotype across ecologically relevant environments. Such studies will give a better indication of factors driving short- and long-term evolutionary responses to marine invasions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321 –326

    Article  PubMed  CAS  Google Scholar 

  • Agrawal AA, Laforsch C, Tollrian R (1999) Transgenerational induction of defenses in animals and plants. Nature 401:60 –63

    Article  CAS  Google Scholar 

  • Appleton RD, Palmer AR (1988) Water-borne stimuli released by predatory crabs and damaged prey induce more predator-resistant shells in a marine gastropod. Proc Natl Acad Sci U S A 85:4387 –4391

    Article  PubMed  Google Scholar 

  • Arsenault DJ, Marchinko KB, Palmer AR (2001) Precise tuning of barnacle leg length to coastal wave action. Proc R Soc London B 268:2149 –2154

    Article  CAS  Google Scholar 

  • Baldridge A (2006) The role of phenotypic plasticity in the interaction between an invasive crab predator, Carcinus maenas, and its native snail prey, Littorina obtusata. Masters thesis. Smith College, Northampton, Massachusetts

    Google Scholar 

  • Behrens Yamada S, Boulding EG (1998) Claw morphology, prey size selection and foraging efficiency in generalist and specialist shell-breaking crabs. J Exp Mar Biol Ecol 220:191 –211

    Article  Google Scholar 

  • Berrigan D, Scheiner SM (2004) Modeling the evolution of phenotypic plasticity. In: DeWitt TJ, Scheiner SM (eds) Phenotypic plasticity: functional and conceptual approaches. Oxford University Press, New York, p 82 –97

    Google Scholar 

  • Bock MJ, Mayer LM (1999) Digestive plasticity of the marine benthic omnivore Nereis virens. J Exp Mar Biol Ecol 240:77 –92

    Article  Google Scholar 

  • Bollens SM, Frost BW (1991) Diel vertical migration in zooplankton: rapid individual-response to predators. J Plankton Res 13:1359 –1365

    Article  Google Scholar 

  • Bortolus A, Laterra P, Iribarne O (2004) Crab-mediated phenotypic changes in Spartina densiflora Brong. Estuarine Coastal Shelf Sci 59:97 –107

    Article  Google Scholar 

  • Boulding EG, Hay TK (1993) Quantitative genetics of shell form of an intertidal snail: constraints on short-term response to selection. Evolution 47:576 –592

    Article  Google Scholar 

  • Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115 –155

    Article  Google Scholar 

  • Byers DL, Quinn JA (1998) Demographic variation in Alliaria petiolata (Brassicaceae) in four contrasting habitats. J Torrey Bot Soc 125:138 –149

    Article  Google Scholar 

  • Callaway RM, Pennings SC, Richards CL (2003) Phenotypic plasticity and interactions among plants. Ecology 84:1115 –1128

    Article  Google Scholar 

  • Carlton JT (1985) Transoceanic and interoceanic dispersal of coastal marine organisms: the biology of ballast water. Oceanogr Mar Biol Annu Rev 23:313 –371

    Google Scholar 

  • Carlton JT, Geller JB (1993) Ecological roulette: the global transport of nonindigenous marine organisms. Science 261:78 –82

    Article  Google Scholar 

  • Caro AU, Castilla JC (2004) Predator-inducible defenses and local intra-population variability of the intertidal mussel Semimytilus algosusin central Chile. Mar Ecol Prog Ser 276:115 –123

    Article  Google Scholar 

  • Carroll SP, Dingle H (1996) The biology of post-invasion events. Biol Conserv 78:207 –214

    Article  Google Scholar 

  • Castillo JM, Rubio-Casal AE, Redondo S, Alvarez-López AA, Luque T, Luque C, Nieva FJ, Castellanos EM, Figueroa ME (2005) Short-term responses to salinity of an invasive cordgrass. Biol Invas 7:29 –35

    Article  Google Scholar 

  • Charmantier G, Giménez L, Charmantier-Daures M, Anger K (2002) Ontogeny of osmoregula-tion, physiological plasticity and larval export strategy in the grapsid crab Chasmagnathus granulata(Crustacea, Decapoda). Mar Ecol Prog Ser 229:185 –194

    Article  Google Scholar 

  • Chester CM (1996) The effect of adult nutrition on the reproduction and development of the estua- rine nudibranch, Tenellia adspersa(Nordmann, 1845). J Exp Mar Biol Ecol 198:113 –130

    Article  Google Scholar 

  • Clements DR, DiTommaso A, Jordan N, Booth BD, Cardina J, Doohan D, Mohler CL, Murphy SD, Swanton CJ (2004) Adaptability of plants invading North American cropland. Agric Ecosyst Environ 104:379 –398

    Article  Google Scholar 

  • Conover DO, Schultz ET (1995) Phenotypic similarity and the evolutionary significance of countergradient variation. Trends Ecol Evol 10:248 –252

    Article  Google Scholar 

  • Corti M, Loy A, Cataudella S (1996) Form changes in the sea bass, Dicentrarchus labrax(Moronidae: Teleostei), after acclimation to freshwater: an analysis using shape coordinates. Environ Biol Fish 47:165 –175

    Article  Google Scholar 

  • Coutts ADM, Moore KM, Hewitt CL (2003) Ships' sea-chests: an overlooked transfer mechanism for non-indigenous marine species? Mar Pollut Bull 46:1504 –1515

    Article  CAS  Google Scholar 

  • Cox GW (2004) Alien species and evolution. Island Press, Washington, DC

    Google Scholar 

  • Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183 –211

    Article  Google Scholar 

  • Dalziel B, Boulding EG (2005) Water-borne cues from a shell-crushing predator induce a more massive shell in experimental populations of an intertidal snail. J Exp Mar Biol Ecol 317:25 –35

    Article  Google Scholar 

  • David JR, Gibert P, Moreteau B (2004) Evolution of reaction norms. In: DeWitt TJ, Scheiner SM (eds) Phenotypic plasticity: functional and conceptual approaches. Oxford University Press, New York, pp 50 –63

    Google Scholar 

  • Davis JLD, Eckert-Mills MG, Young-Williams AC, Hines AH, Zohar Y (2005) Morphological conditioning of a hatchery-raised invertebrate, Callinectes sapidus, to improve field survivorship after release. Aquaculture 243:147 –158

    Article  Google Scholar 

  • Day T, Pritchard J, Schluter D (1994) A comparison of two sticklebacks. Evolution 48:1723 –1734

    Article  Google Scholar 

  • DeWitt TJ, Langerhans RB (2004) Integrated solutions to environmental heterogeneity: theory of multimoment reaction norms. In: DeWitt TJ, Scheiner SM (eds) Phenotypic plasticity: functional and conceptual approaches. Oxford University Press, New York, pp 98 –111

    Google Scholar 

  • DeWitt TJ, Scheiner SM (eds) (2004a) Phenotypic plasticity: functional and conceptual approaches. Oxford University Press, New York

    Google Scholar 

  • DeWitt TJ, Scheiner SM (2004b) Phenotypic variation from single genotypes: a primer. In: DeWitt TJ, Scheiner SM (eds) Phenotypic plasticity: functional and conceptual approaches. Oxford University Press, New York, pp 1 –9

    Google Scholar 

  • DeWitt TJ, Sih A, Wilson DS (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 13:77 –81

    Article  Google Scholar 

  • Dill LM, Heithaus MR, Walters CJ (2003) Behaviorally mediated indirect interactions in marine communities and their conservation implications. Ecology 84:1151 –1157

    Article  Google Scholar 

  • Doughty P, Reznick DN (2004) Patterns and analysis of adaptive phenotypic plasticity in animals. In: DeWitt TJ, Scheiner SM (eds) Phenotypic plasticity: functional and conceptual approaches. Oxford University Press, New York, pp 126 –150

    Google Scholar 

  • Drent J, Luttikhuizen PC, Piersma T (2004) Morphological dynamics in the foraging apparatus of a deposit feeding marine bivalve: phenotypic plasticity and heritable effects. Funct Ecol 18:349 –356

    Article  Google Scholar 

  • Dzialowski AR, Lennon JT, O'Brien WJ, Smith VH (2003) Predator-induced phenotypic plasticity in the exotic cladoceran Daphnia lumholtzi. Freshwater Biol 48:1593 –1602

    Article  Google Scholar 

  • Eastman JT, Devries AL (1997) Biology and phenotypic plasticity of the Antarctic nototheniid fish Trematomus newnesi in McMurdo Sound. Antarct Sci 9:27 –35

    Article  Google Scholar 

  • Ebert TA (1996) Adaptive aspects of phenotypic plasticity in echinoderms. Oceanol Acta 19:347 –355

    Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasive- ness in plants? Proc Natl Acad Sci U S A 97:7043 –7050

    Article  PubMed  CAS  Google Scholar 

  • Ernande B, Boudry P, Clobert J, Haure J (2004) Plasticity in resource allocation based life history traits in the Pacific oyster, Crassostrea gigas. I. Spatial variation in food abundance. J Evol Biol 17:342 –356

    Article  PubMed  CAS  Google Scholar 

  • Etter RJ (1988) Asymmetrical developmental plasticity in an intertidal snail. Evolution 42:322 –334

    Article  Google Scholar 

  • Etter RJ (1996) The effect of wave action, prey type, and foraging time on growth of the predatory snail Nucella lapillus(L). J Exp Mar Biol Ecol 196:341 –356

    Article  Google Scholar 

  • Fordyce JA (2006) The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. J Exp Biol 209:2377 –2383

    Article  PubMed  Google Scholar 

  • Freeman AS, Byers JE (2006) Divergent induced responses to an invasive predator in marine mussel populations. Science 313:831 –833

    Article  PubMed  CAS  Google Scholar 

  • Frost BW, Bollens SM (1992) Variability of diel vertical migration in the marine planktonic cope-pod Pseudocalanus newmaniin relation to its predators. Can J Fish Aquat Sci 49:1137 –1141

    Google Scholar 

  • Gallagher JC, Wood AM, Alberte RS (1984) Ecotypic differentiation in the marine diatom Skeletonema costatum: influence of light intensity on the photosynthetic apparatus. Mar Biol 82:121 –134

    Article  CAS  Google Scholar 

  • Gandolfi A, Todeschi EBA, Van Doninck K, Rossi V, Menozzi P (2001) Salinity tolerance of Darwinula stevensoni(Crustacea, Ostracoda). Ital J Zool 68:61 –67

    Article  Google Scholar 

  • Garbary DJ, Fraser SJ, Hubbard C, Kim KY (2004) Codium fragile: rhizomatous growth in the Zosterathief of eastern Canada. Helgol Mar Res 58:141 –146

    Article  Google Scholar 

  • George SB (1999) Egg quality, larval growth and phenotypic plasticity in a forcipulate seastar. J Exp Mar Biol Ecol 237:203 –224

    Article  Google Scholar 

  • Gilbert JJ (1999) Kairomone-induced morphological defenses in rotifers. In: Tollrian R, Harvell CD (eds) The ecology and evolution of inducible defenses. Princeton University Press, Princeton, NJ, pp 127 –141

    Google Scholar 

  • Gilchrist GW, Huey RB, Serra L (2001) Rapid evolution of wing size clines in Drosophila subob-scura. Genetica 112/113:273 –286

    Article  Google Scholar 

  • Gotthard K, Nylin S (1995) Adaptive plasticity and plasticity as an adaptation: a selective review of plasticity in animal morphology and life history. Oikos 74:3 –17

    Article  Google Scholar 

  • Govind CK (1987) Muscle and muscle fiber type transformation in clawed crustaceans. Am Zool 27:1079 –1098

    Google Scholar 

  • Grosholz ED, Ruiz GM (1996) Predicting the impact of introduced marine species: lessons from the multiple invasions of the European green crab Carcinus maenas. Biol Conserv 78:59 –66

    Article  Google Scholar 

  • Hadfield MG, Strathmann MF (1996) Variability, flexibility and plasticity in life histories of marine invertebrates. Oceanol Acta 19:323 –334

    Google Scholar 

  • Hamdoun AM, Cheney DP, Cherr GN (2003) Phenotypic plasticity of HSP70 and HSP70 gene expression in the Pacific oyster (Crassostrea gigas): implications for thermal limits and induction of thermal tolerance. Biol Bull 205:160 –169

    Article  PubMed  CAS  Google Scholar 

  • Hart MW, Strathmann RR (1994) Functional consequences of phenotypic plasticity in echinoid larvae. Biol Bull 186:291 –299

    Article  Google Scholar 

  • Harvell CD (1986) The ecology and evolution of inducible defenses in a marine bryozoan: cues, costs, and consequences. Am Nat 128:810 –823

    Article  Google Scholar 

  • Harvell CD (1999) Complex biotic environments, coloniality, and heritable variation for inducible defenses. In: Tollrian R, Harvell CD (eds) The ecology and evolution of inducible defenses. Princeton University Press, Princeton, NJ, pp 231 –244

    Google Scholar 

  • Harvell CD, Helling R (1993) Experimental induction of localized reproduction in a marine bryo-zoan. Biol Bull 184:286 –295

    Article  Google Scholar 

  • Harvell CD, Padilla DK (1990) Inducible morphology, heterochrony, and size hierarchies in a colonial invertebrate monoculture. Proc Natl Acad Sci U S A 87:508 –512

    Article  PubMed  CAS  Google Scholar 

  • Heyland A, Hodin J (2004) Heterochronic developmental shift caused by thyroid hormone in larval sand dollars and its implications for phenotypic plasticity and the evolution of nonfeeding development. Evolution 58:524 –538

    PubMed  CAS  Google Scholar 

  • Hill MS, Hill AL (2002) Morphological plasticity in the tropical sponge Anthosigmella varians: responses to predators and wave energy. Biol Bull 202:86 –95

    Article  PubMed  Google Scholar 

  • Huey RB, Gilchrist GW, Carlson ML, Berrigan D, Serra L (2000) Rapid evolution of geographic cline in size in an introduced fly. Science 287:308 –309

    Article  PubMed  CAS  Google Scholar 

  • Janzen FJ (1995) Experimental evidence for the evolutionary significance of temperature-dependent sex determination. Evolution 49:864 –873

    Article  Google Scholar 

  • Kingsolver JG, Huey RB (1998) Evolutionary analyses of morphological and physiological plasticity in thermally variable environments. Am Zool 38:545 –560

    Google Scholar 

  • Kinlan BP, Gaines SD (2003) Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84:2007 –2020

    Article  Google Scholar 

  • Kollmann J, Banuelos MJ (2004) Latitudinal trends in growth and phenology of the invasive alien plant Impatiens glandulifera(Balsaminaceae). Divers Distrib 10:377 –385

    Article  Google Scholar 

  • Kuhlmann H-W, Kusch J, Heckmann K (1999) Predator-induced defenses in ciliated protozoa. In: Tollrian R, Harvell CD (eds) The ecology and evolution of inducible defenses. Princeton University Press, Princeton, NJ, pp 142 –159

    Google Scholar 

  • Lavoie DM, Smith LD, Ruiz GM (1999) The potential for intracoastal transfer of non-indigenous species in the ballast water of ships. Estuarine Coastal Shelf Sci 48:551 –564

    Article  Google Scholar 

  • Leclaire M, Brandl R (1994) Phenotypic plasticity and nutrition in a phytophagous insect: consequences of colonizing a new host. Oecologia 100:379 –385

    Article  Google Scholar 

  • Lee CE, Petersen CH (2002) Genotype-by-environment interaction for salinity tolerance in the freshwater-invading copepod Eurytemora affinis. Physiol Biochem Zool 75:335 –344

    Article  PubMed  Google Scholar 

  • Lee CE, Remfert JL, Gelembiuk GW (2003) Evolution of physiological tolerance and performance during freshwater invasions. Integr Comp Biol 43:439 –449

    Article  Google Scholar 

  • Lee ES, Lewitus AJ, Zimmer RK (1999) Chemoreception in a marine cryptophyte: behavioral plasticity in response to amino acids and nitrate. Limnol Oceanogr 44:1571 –1574

    Google Scholar 

  • Leonard GH, Bertness MD, Yund PO (1999) Crab predation, waterborne cues, and inducible defenses in the blue mussel, Mytilus edulis. Ecology 80:1 –14

    Google Scholar 

  • Lively CM, Hazel WN, Schellenberger MJ, Michelson KS (2000) Predator-induced defense: variation for inducibility in an intertidal barnacle. Ecology 81:1240 –1247

    Google Scholar 

  • Losos JB, Warheit KI, Schoener TW (1997) Adaptive differentiation following experimental island colonization in Anolislizards. Nature 387:70 –73

    Article  CAS  Google Scholar 

  • Losos JB, Creer DA, Glossip D, Goellner R, Hampton A, Roberts G, Haskell N, Taylor P, Ettling J (2000) Evolutionary implications of phenotypic plasticity in the hindlimb of the lizard Anolis sagrei. Evolution 301–305

    Google Scholar 

  • Lowell RB, Markham JH, Mann KH (1991) Herbivore-like damage induces increased strength and toughness in a seaweed. Proc R Soc London B 243:31 –38

    Article  Google Scholar 

  • Marchinko KB (2003) Dramatic phenotypic plasticity in barnacle legs (Balanus glandulaDarwin): magnitude, age dependence, and speed of response. Evolution 57:1281 –1290

    PubMed  Google Scholar 

  • Marchinko KB, Palmer AR (2003) Feeding in flow extremes: dependence of cirrus form on wave- exposure in four barnacle species. Zoology 106:127 –141

    Article  PubMed  Google Scholar 

  • Marinovic B, Mangel M (1999) Krill can shrink as an ecological adaptation to temporarily unfavourable environments. Ecol Lett 2:338 –343

    Google Scholar 

  • Milberg P, Lamont BB, Perez-Fernandez MA (1999) Survival and growth of native and exotic composites in response to a nutrient gradient. Plant Ecol 145:125 –132

    Article  Google Scholar 

  • Miles JS (1991) Inducible agonistic structures in the tropical corallimorpharian, Discosoma sanc-tithomae. Biol Bull 180:406 –415

    Article  Google Scholar 

  • Miner BG, Vonesh JR (2004) Effects of fine grain environmental variability on morphological plasticity. Ecol Lett 7:794 –801

    Article  Google Scholar 

  • Miner BG, Sultan SE, Morgan SG, Padilla DK, Relyea RA (2005) Ecological consequences of phenotypic plasticity. Trends Ecol Evol 20:685 –692

    Article  PubMed  Google Scholar 

  • Monro K, Poore AGB (2005) Light quantity and quality induce shade-avoiding plasticity in a marine macroalga. J Evol Biol 18:426 –435

    Article  PubMed  CAS  Google Scholar 

  • Mooney HA, Cleland EE (2001) The evolutionary impact of invasive species. Proc Natl Acad Sci U S A 98:5446 –5451

    Article  PubMed  CAS  Google Scholar 

  • Moore RD, Griffiths RA, O'Brien CM, Murphy A, Jay D (2004) Induced defenses in an endangered amphibian in response to an introduced snake predator. Oecologia 141:139 –147

    Article  PubMed  Google Scholar 

  • Muñoz RC, Warner RR (2003) Alternative contexts of sex change with social control in the buck-tooth parrotfish, Sparisoma radians. Environ Biol Fish 68:307 –319

    Article  Google Scholar 

  • Niinemets U, Valladares F, Ceulemans R (2003) Leaf-level phenotypic variability and plasticity of invasive Rhododendron ponticumand non-invasive Ilex aquifoliumco-occurring at two contrasting European sites. Plant Cell Environ 26:941 –956

    Article  PubMed  Google Scholar 

  • Padilla DK (1998) Inducible phenotypic plasticity of the radula in Lacuna(Gastropoda: Littorinidae). Veliger 41:201 –204

    Google Scholar 

  • Palmer AR (1990) Effect of crab effluent and scent of damaged conspecifics on feeding, growth, and shell morphology of the Atlantic dogwhelk Nucella lapillus(L.). Hydrobiologia 193:155 –182

    Article  Google Scholar 

  • Palumbi SR (1984) Tactics of acclimation: morphological changes of sponges in an unpredictable environment. Science 225:1478 –1480

    Article  PubMed  Google Scholar 

  • Parker IM, Rodriguez J, Loik ME (2003) An evolutionary approach to understanding the biology of invasions: local adaptation and general-purpose genotypes in the weed Verbascum thapsus. Conserv Biol 17:59 –72

    Article  Google Scholar 

  • Peckol P, Krane JM, Yates JL (1996) Interactive effects of inducible defense and resource availability on phlorotannins in the North Atlantic brown alga Fucus vesiculosus. Mar Ecol Progr Ser 138:209 –217

    Article  CAS  Google Scholar 

  • Piersma T, Drent J (2003) Phenotypic flexibility and the evolution of organismal design. Trends Ecology Evol 18:228 –233

    Article  Google Scholar 

  • Pigliucci M (2001) Phenotypic plasticity: beyond nature and nurture. Johns Hopkins University Press, Baltimore, Maryland

    Google Scholar 

  • Podolsky RD, McAlister JS (2005) Developmental plasticity in Macrophiothrixbrittlestars: are morphologically convergent larvae also convergently plastic? Biol Bull 209:127 –138

    Article  PubMed  Google Scholar 

  • Raimondi PT, Forde SE, Delph LF, Lively CM (2000) Processes structuring communities: evidence for trait-mediated indirect effects through induced polymorphisms. Oikos 91:353 –361

    Article  Google Scholar 

  • Raniello R, Lorenti M, Brunet C, Buia MC (2004) Photosynthetic plasticity of an invasive variety of Caulerpa racemosain a coastal Mediterranean area: light harvesting capacity and seasonal acclimation. Mar Ecol Progr Ser 271:113 –120

    Article  Google Scholar 

  • Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655 –1661

    Article  Google Scholar 

  • Reznick DN, Ghalambor CK (2001) The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution? Genetica 112/113:183 –198

    Article  Google Scholar 

  • Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol Lett 9:981 –993

    Article  PubMed  Google Scholar 

  • Ruiz GM, Fofonoff PW, Carlton JT, Wonham MJ, Hines AH (2000) Invasion of coastal marine communities in North America: apparent patterns, processes and biases. Annu Rev Ecol Syst 31:481 –531

    Article  Google Scholar 

  • Scattergood LW (1952) The distribution of the green crab, Carcinides maenas(L.) in the northwestern Atlantic. Report No. Fisheries Circular 8, Maine Department of Sea and Shore Fisheries, Augusta, ME

    Google Scholar 

  • Schlichting CD (2004) The role of phenotypic plasticity in diversification. In: DeWitt TJ, Scheiner SM (eds) Phenotypic plasticity: functional and conceptual approaches. Oxford University Press, New York, pp 191 –200

    Google Scholar 

  • Schlichting CD, Pigliucci M (1998) Phenotypic evolution: a reaction norm perspective. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Schweitzer JA, Larson KC (1999) Greater morphological plasticity of exotic honeysuckle species may make them better invaders than native species. J Torrey Bot Soc 126:15 –23

    Article  Google Scholar 

  • Seeley RH (1986) Intense natural selection caused a rapid morphological transition in a living marine snail. Proc Natl Acad Sci U S A 83:6897 –6901

    Article  PubMed  Google Scholar 

  • Sexton JP, McKay JK, Sala A (2002) Plasticity and genetic diversity may allow saltcedar to invade cold climates in North America. Ecol Appl 12:1652 –1660

    Article  Google Scholar 

  • Sih A, Bell A, Johnson JC (2004) Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol Evol 19:372 –378

    Article  PubMed  Google Scholar 

  • Smith LD (2004) Biogeographic differences in claw size and performance in an introduced crab predator Carcinus maenas. Mar Ecol Prog Ser 276:209 –222

    Article  Google Scholar 

  • Smith LD, Jennings JA (2000) Induced defensive responses by the bivalve Mytilus edulisto predators with different attack modes. Mar Biol 136:461 –469

    Article  Google Scholar 

  • Smith LD, Palmer A (1994) Effects of manipulated diet on size and performance of brachyuran crab claws. Science 264:710 –712

    Article  PubMed  Google Scholar 

  • Smith LD, Wonham MJ, McCann LD, Ruiz GM, Hines AH, Carlton JT (1999) Invasion pressure to a ballast-flooded estuary and an assessment of inoculant survival. Biol Invas 1:67 –87

    Article  Google Scholar 

  • Sokolova IM, Pörtner H-O (2003) Metabolic plasticity and critical temperatures for aerobic scope in a eurythermal marine invertebrate (Littorina saxatilis, Gastropoda: Littorinidae) from different latitudes. J Exp Biol 206:195 –207

    Article  PubMed  Google Scholar 

  • Stearns SC (1989) The evolutionary significance of phenotypic plasticity. BioScience 39:436 –445

    Article  Google Scholar 

  • Steffani CN, Branch GM (2003) Growth rate, condition, and shell shape of Mytilus galloprovin-cialis: responses to wave exposure. Mar Ecol Prog Ser 246:197 –209

    Article  Google Scholar 

  • Thompson JD (1991) Phenotypic plasticity as a component of evolutionary change. Trends Ecol Evol 6:246 –249

    Article  Google Scholar 

  • Thompson JN (1998) Rapid evolution as an ecological process. Trends Ecol Evol 13:329 –332

    Article  Google Scholar 

  • Tollrian R, Harvell CD (1999) The evolution of inducible defenses: current ideas. In: Tollrian R, Harvell CD (eds) The ecology and evolution of inducible defenses. Princeton University Press, Princeton, NJ, pp 306 –322

    Google Scholar 

  • Toth GB, Pavia H (2000) Water-borne cues induce chemical defense in a marine alga (Ascophyllum nodosum). Proc Natl Acad Sci U S A 97:14418 –14420

    Article  PubMed  CAS  Google Scholar 

  • Travis J (1994) Evaluating the adaptive role of morphological plasticity. In: Wainwright PC, Reilly SM (eds) Ecological morphology: integrative organismal biology. University of Chicago Press, Chicago, pp 99 –122

    Google Scholar 

  • Trussell GC (1996) Phenotypic plasticity in an intertidal snail: the role of a common crab predator. Evolution 50:448 –454

    Article  Google Scholar 

  • Trussell GC (1997) Phenotypic plasticity in the foot size of an intertidal snail. Ecology 78:1033 –1048

    Article  Google Scholar 

  • Trussell GC (2000) Phenotypic clines, plasticity, and morphological trade-offs in an intertidal snail. Evolution 54:151 –166

    PubMed  CAS  Google Scholar 

  • Trussell GC, Etter RJ (2001) Integrating genetic and environmental forces that shape the evolution of geographic variation in a marine snail. Genetica 112:321 –337

    Article  PubMed  Google Scholar 

  • Trussell GC, Smith LD (2000) Induced defenses in response to an invading crab predator: an explanation of historical and geographic phenotypic change. Proc Natl Acad Sci U S A 97: 2123 –2127

    Article  PubMed  CAS  Google Scholar 

  • Trussell GC, Ewanchuk PJ, Bertness MD (2002) Field evidence of trait-mediated indirect interactions in a rocky intertidal food web. Ecol Lett 5:241 –245

    Article  Google Scholar 

  • Trussell GC, Ewanchuk PJ, Bertness MD (2003) Trait-mediated effects in rocky intertidal food chains: predator risk cues alter prey feeding rates. Ecology 84:629 –640

    Article  Google Scholar 

  • van Alstyne KL (1988) Herbivore grazing increases polyphenolic defenses in the intertidal brown alga Fucus distichus. Ecology 69:655 –663

    Article  Google Scholar 

  • Verling E, Ruiz GM, Smith LD, Galil B, Miller AW, Murphy KR (2005) Supply-side invasion ecology: characterizing propagule pressure in coastal ecosystems. Proc R Soc B 272: 1249 –1257

    Article  PubMed  Google Scholar 

  • Vermeij GJ (1982a) Environmental change and the evolutionary history of the periwinkle (Littorina littorea) in North America. Evolution 36:561 –580

    Article  Google Scholar 

  • Vermeij GJ (1982b) Phenotypic evolution in a poorly dispersing snail after arrival of a predator. Nature 299:349 –350

    Article  Google Scholar 

  • Via S, Gomulkiewicz R, Jong GD, Scheiner SM, Schlichting CD, Tienderen PV (1995) Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol Evol 10:212 –217

    Article  Google Scholar 

  • Weigle SM, Smith LD, Carlton JT, Pederson J (2004) Assessing the risk of introducing exotic species via the live marine species trade. Conserv Biol 19:213 –223

    Article  Google Scholar 

  • Weinig C (2000) Plasticity versus canalization: population differences in the timing of shade-avoidance responses. Evolution 54:441 –451

    PubMed  CAS  Google Scholar 

  • Weis AE, Gorman WL (1990) Measuring selection on reaction norms: an exploration of the Eurosta-Solidago system. Evolution 44:820 –831

    Article  Google Scholar 

  • Welch WR (1968) Changes in the abundance of the green crab, Carcinus maenas(L.), in relation to recent temperature changes. Fish Bull 67:337 –345

    Google Scholar 

  • Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology 84:1083 –1100

    Article  Google Scholar 

  • West JM (1997) Plasticity in the sclerites of a gorgonian coral: tests of water motion, light level, and damage cues. Biol Bull 192:279 –289

    Article  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, New York

    Google Scholar 

  • Whitlow WL, Rice NA, Sweeney C (2003) Native species vulnerability to introduced predators: testing an inducible defense and a refuge from predation. Biol Invas 5:23 –31

    Article  Google Scholar 

  • Wikelski M, Thom C (2000) Marine iguanas shrink to survive El Nino. Nature 403:37 –38

    Article  PubMed  CAS  Google Scholar 

  • Willis AJ, Memmott J, Forrester RI (2000) Is there evidence for the post-invasion evolution of increased size among invasive plant species? Ecol Lett 3:275 –283

    Article  Google Scholar 

  • Windig JJ, De Kovel CGF, De Jong G (2004) Genetics and mechanics of plasticity. In: Dewitt TJ, Scheiner SM (eds) Phenotypic plasticity: functional and conceptual approaches. Oxford University Press, New York, pp 31 –49

    Google Scholar 

  • Yates JL, Peckol P (1993) Effects of nutrient availability and herbivory on polyphenolics in the seaweed Fucus vesiculosus. Ecology 74:1757 –1766

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. David Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smith, L.D. (2009). The Role of Phenotypic Plasticity in Marine Biological Invasions. In: Rilov, G., Crooks, J.A. (eds) Biological Invasions in Marine Ecosystems. Ecological Studies, vol 204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79236-9_10

Download citation

Publish with us

Policies and ethics