Skip to main content

Review: The Dark Side of Relict Species Biology: Cave Animals as Ancient Lineages

  • Conference paper
  • First Online:
Relict Species

Abstract

Due to their fascinating biology and phenomena belonging to the realm of scientific curiosity, cave animals have been objects of study for zoologists for numerous decades. This chapter not only focuses on the extremes (e.g., absence of eyes, specialization to extreme environments), but also serves as an introduction to understand the geographic distribution patterns and history of these highly diverse ecological groups with their relict characteristics. After an introduction to the subterranean environment in Sect. 1, we briefly review the biology and ecology of cave animals with their regressive and progressive evolutionary tendencies in order to understand the innate reasons for restricted distribution patterns (Sect. 2). In Sect. 3, we summarize the main aspects of our knowledge regarding the distribution of these species, especially in the Holarctic; and finally in Sect. 4, we highlight the relict characteristics of cave animal distribution and the ancient phylogenetic splits between cave and surface lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Assmann T, Lompe A (2006) Aphaenopidius Müller, 1913. In: Müller-Motzfeld G (ed) Carabidae. Elsevier, Heidelberg, p 149

    Google Scholar 

  • Barr TC (1985) Pattern and process in speciation of trechine beetles in Eastern North America (Coleoptera: Carabidae: Trechinae). In: Ball GE (ed) Taxonomy, phylogeny and zoogeography of beetles and ants. Dr. W. Junk Publishers, Dordrecht, pp 350–407

    Google Scholar 

  • Barr TC, Holsinger JR (1985) Speciation in cave animals. Annu Rev Ecol Syst 16:313–337

    Article  Google Scholar 

  • Caccone A, Sbordoni V (2001) Molecular biogeography of cave life: a study using mitochondrial DNA from Bathysciine beetles. Evolution 55:122–130

    CAS  PubMed  Google Scholar 

  • Casale A, Laneyrie R (1982) Trechodinae et Trechinae du monde: tableau des sous-familles, tribus, séries phylétiques, genres, et catalogue général des espèces. Mémoires de Biospéologie 9:1–226

    Google Scholar 

  • Casale A, Vigna-Taglianti A, Juberthie C (1998) Coleoptera Carabidae. In: Juberthie C, Decu V (eds) Encyclopedia biospeologica. Tome II. Société de Biospéologie, Moulis (France), pp 1047–1081

    Google Scholar 

  • Christiansen K (2005) Morphological adaptations. In: Culver DC, White WB (eds) Encyclopedia of caves. Elsevier, Amsterdam, pp 386–397

    Google Scholar 

  • Culver D (1982) Cave life: evolution and ecology. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Culver D, Sket B (2000) Hotspots of subterranean biodiversity in caves and wells. J Cave Karst Stud 62:11–17

    Google Scholar 

  • Culver D, White WB (2005) Encyclopedia of caves. Elsevier, Burlington, MA

    Google Scholar 

  • Culver DC, Kane TC, Fong DW (1995) Adaptation and natural selection in caves. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Culver DC, Master LL, Christman MC, Hobbs HH (2000) Obligate cave fauna of the 48 contiguous United States. Conserv Biol 14:386–401

    Article  Google Scholar 

  • Culver DC, Christman MC, Elliott WR, Hobbs HH, Reddell JR (2003) The North American obligate cave fauna: regional patterns. Biodivers Conserv 12:441–468

    Article  Google Scholar 

  • Culver DC, Deharveng L, Bedos A, Lewis JJ, Madden M, Reddell JR, Sket B, Trontelj P, White D (2006) The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography 29:120–128

    Article  Google Scholar 

  • Daffner H (1993) Die Arten der Gattung Arctaphaenops Meixner, 1925 (Coleoptera: Carabidae). Koleopterologische Rundschau/Coleopterological Revue 63:1–18

    Google Scholar 

  • Drees C, Matern A, von Oheimb G, Reimann T, Assmann T (2009) Multiple glacial refuges of unwinged ground beetles in Europe - molecular data support classical phylogeographic models. In: Habel JC, Assmann T (eds) Relict species - phylogeography and conservation biology. Springer, Heidelberg. yet to update

    Google Scholar 

  • Drovenik B, Weber F, Paill WG, Assmann T (2008) Aphaenopidius kamnikensis Drovenik, 1987 in Kärnten. Angewandte Carabidologie 8:73–76

    Google Scholar 

  • Durand JP (1998) Amphibia. In: Juberthie C, Decu V (eds) Encyclopedia Biospeologica II. Société de Biospéologie, Moulis, pp 1215–1243

    Google Scholar 

  • Erwin T (1985) The taxon pulse: a general pattern of lineage radiation and extinction among carabid beetles. In: Ball GE (ed) Taxonomy, phylogeny and zoogeography of beetles and ants. Dr. W. Junk Publishers, Dordrecht, pp 437–493

    Google Scholar 

  • Gers C (1996) Stratégies alimentaires des Coléoptères troglobies du genre Aphaenops (Coleoptera, Trechinae). Mémoires de Biospéologie 17:35–45

    Google Scholar 

  • Gers C (1998) Diversity of energy fluxes and interactions between arthropod communities: from soil to cave. Acta Oecol Int J Ecol 19:205–213

    Article  Google Scholar 

  • Giachino PM, Decu V, Juberthie C (1998) Coleoptera Cholevidae. In: Juberthie C, Decu V (eds) Encyclopaedia biospeologia. Société de Biospéologie, Moulis (France), pp 1083–1122

    Google Scholar 

  • Gibert J, Culver D (2005) Diversity patterns in Europe. In: Culver D, White WB (eds) Encyclopedia of caves. Elsevier, Amsterdam, pp 196–201

    Google Scholar 

  • Ginés A, Ginés J (1992) Karst phenomena and biospeleological environments. Monografias Museo Nacional de Ciencias Naturales 7:27–56

    Google Scholar 

  • Glacon-Deleurance S (1963) Recherches sur les colépteres troglobies de la sous-famille des Bathyscininae. Ann Sci Nat 5:1–172

    Google Scholar 

  • Herman JS (2005) Water chemistry in caves. In: Culver D, White WB (eds) Encyclopedia of caves. Elsevier, Burlington, MA, pp 609–614

    Google Scholar 

  • Holdhaus K (1954) Die Spuren der Eiszeit in der Tierwelt Europas. Wagner, Innsbruck

    Google Scholar 

  • Howarth FG (1983) Ecology of cave arthropods. Annu Rev Entomol 28:365–389

    Article  Google Scholar 

  • Hüppop K (2005) Adaptation to low food. In: Culver D, White WB (eds) Encyclopedia of caves. Elsevier, Amsterdam, pp 4–10

    Google Scholar 

  • Jeannel R (1924) Monographie des Bathysciinae. Archives de zoologie expérimentale et générale 63:1–436

    Google Scholar 

  • Jeffery WR (2005) Adaptive evolution of eye degeneration in the Mexican blind cavefish. J Hered 96:185–196

    Article  CAS  PubMed  Google Scholar 

  • Jeffery WR (2008) Emerging model systems in evo-devo: cavefish and microevolution of development. Evol Dev 10:265–272

    Article  PubMed  Google Scholar 

  • Jeffery WR (2009) Evolution of cave fish. Annual Review of Genetics 43:25–47

    Google Scholar 

  • Juberthie C (1969) Relations entre le climat, le microclimat et les Aphaenops cerberus dans le grotte de Sainte-Catherine (Ariege). Annales de Spéléologie 24:75–104

    Google Scholar 

  • Juberthie C (1979) L’évolution des coléopteres Trechinae souterrains (Coleoptera, Carabidae). In: Den Boer PJ, Thiele HU, Weber F (eds) On the evolution of behaviour in carabid beetles. Veenman and Zonen, Wageningen, pp 83–102

    Google Scholar 

  • Juberthie C, Decu V (eds) (1998) Encyclopaedia Biologica, Tome II. Société Internationale de Biospéologie, Moulis and Bucarest

    Google Scholar 

  • Juberthie C, Delay B, Bouillon M (1980) Extension du milieu souterrain en zone non calcaire: description d’un nouveau milieu et de son peuplement par les Coléoptères troglobies. Mémoires de Biospéologie 7:19–52

    Google Scholar 

  • Kane TC, Poulson TL (1976) Foraging by cave beetles: spatial and temporal heterogeneity of prey. Ecology 57:793–800

    Article  Google Scholar 

  • Lamoreux J (2004) Stygobites are more wide-ranging than troglobites. J Cave Karst Stud 66:18–19

    Google Scholar 

  • Lamprecht G, Weber F (1979) The regressive evolution of the circadian system controlling locomotion in cavernicolous animals. In: Den Boer PJ, Thiele HU, Weber F (eds) On the evolution of behaviour in carabid beetles. Veenman and Zonen, Wageningen, pp 69–82

    Google Scholar 

  • Lamprecht G, Weber F (1992) Spontaneous locomation behaviour in cavernicolous animals: the regression of the endogenous circadian system. In: Camacho AI (ed) The natural history of biospeleology. Museo Nacional de Ciencias Naturales, Madrid, pp 225–262

    Google Scholar 

  • Löbl I, Smetana A (eds) (2003) Catalogue of Palearctic Coleoptera Vol. 1: Archostemata, Myxophaga, Adephaga. Apollo Books, Stenstrup

    Google Scholar 

  • Lorenz W (2005) A systematic list of extant ground beetles of the world (Coleoptera “Geadephaga”: Trachypachydiae and Carabidae, incl. Paussinae, Cicindelinae, Rhysodinae). 2nd edition. Lorenz, Tutzing

    Google Scholar 

  • Moldovan OT (2005) Beetles. In: Culver D, White WB (eds) Encyclopedia of caves. Elsevier, Amsterdam, pp 45–51

    Google Scholar 

  • Ober KA (2003) Arboreality and morphological evolution in ground beetles (Carabidae: Harpalinae): testing the taxon pulse model. Evolution 57:1343–1358

    PubMed  Google Scholar 

  • Peck SB (1998) A summary of diversity and distribution of the obligate cave-inhabiting faunas of the United States and Canada. J Cave Karst Stud 60:18–26

    Google Scholar 

  • Porter ML (2007) Subterranean biogeography: what have we learned from molecular techniques? J Cave Karst Stud 69:179–186

    Google Scholar 

  • Porter ML, Dittmar K, Perez-Losada M (2007) How long does evolution of the troglomorphic form take? Estimating divergence times in Astyanax mexicanus. Time in Karst - 2007 (Slovenska Akademija Znanosti Umetnosti): 173–182

    Google Scholar 

  • Rusdea E (1994) Population dynamics of Laemostenus schreibersi (carabidae) in a cave in Carinthia (Austria). In: Desender K, Dufrene M, Loreau M, Luff ML, Maelfait J-P (eds) Carabid beetles - ecology and evolution. Kluwer, Dordrecht, pp 207–212

    Google Scholar 

  • Rusdea E (2000) Langlebigkeit der Adulten - ein Faktor, der die Populationsgröße stabilisieren kann. Erläutert am Beispiel einer Langzeituntersuchung am Höhlenlaufkäfer Laemostenus schreibersi (Coleoptera, Carabidae). Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandten Entomologie 12:517–521

    Google Scholar 

  • Sarbu SM, Kane TC, Kinkle BK (1996) A chemoautotrophically based cave ecosystem. Science 272:1953–1955

    Article  CAS  PubMed  Google Scholar 

  • Schuldt A, Assmann T (2009) Environmental and historical effects on richness and endemism patterns of carabid beetles in the Western Palearctic. Ecography. doi:10.1111/j.1600-0587.2009.05763.x

    Google Scholar 

  • Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS (2006) Comparative phylogeography of unglaciated Eastern North America. Mol Ecol 15:4261–4293

    Article  PubMed  Google Scholar 

  • Stearns SC (1977) The evolution of life history traits: a critique of the theory and a review of the data. Ann Rev Ecol Syst 8:145–171

    Article  Google Scholar 

  • Strecker U, Bernatchez L, Wilkens H (2003) Genetic divergence between cave and surface populations of Astyanax in Mexico (Characidae, Teleostei). Mol Ecol 12:699–710

    Article  CAS  PubMed  Google Scholar 

  • Strecker U, Faundez VH, Wilkens H (2004) Phylogeography of surface and cave Astyanax (Teleostei) from Central and North America based on cytochrome b sequence data. Mol Phylogen Evol 33:469–481

    Article  CAS  Google Scholar 

  • Thienemann A (1950) Die Binnengewässer XVIII: Verbreitungsgeschichte der Süsswassertierwelt Europas. Verlag Schweizerbart, Stuttgart

    Google Scholar 

  • Vandel A (1965) Biospeleology: The biology of cavernicolous animals. Pergamon Press, Oxford

    Google Scholar 

  • Verovnik R, Sket B, Trontelj P (2004) Phylogeography of subterranean and surface populations of water lice Asellus aquaticus (Crustacea: Isopoda). Mol Ecol 13:1519–1532

    Article  CAS  PubMed  Google Scholar 

  • Verovnik R, Sket B, Trontelj P (2005) The colonization of Europe by the freshwater crustacean Asellus aquaticus (Crustacea: Isopoda) proceeded from ancient refugia and was directed by habitat connectivity. Mol Ecol 14:4355–4369

    Article  CAS  PubMed  Google Scholar 

  • Vieites DR, Min MS, Wake DB (2007) Rapid diversification and dispersal during periods of global warming by plethodontid salamanders. Proc Natl Acad Sci USA 104:19903–19907

    Article  CAS  PubMed  Google Scholar 

  • Weisrock DW, Harmon LJ, Larson A (2005) Resolving deep phylogenetic relationships in salamanders: analyses of mitochondrial and nuclear genomic data. Syst Biol 54:758–777

    Article  PubMed  Google Scholar 

  • Wilkens H, Culver DC, Humphreys WF (2000) Subterranean ecosystems. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Assmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Assmann, T., Casale, A., Drees, C., Habel, J.C., Matern, A., Schuldt, A. (2010). Review: The Dark Side of Relict Species Biology: Cave Animals as Ancient Lineages. In: Habel, J.C., Assmann, T. (eds) Relict Species. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92160-8_4

Download citation

Publish with us

Policies and ethics