Skip to main content

Representations of the Polarization of Beamlike Fields

  • Chapter
  • First Online:
Characterization of Partially Polarized Light Fields

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 147))

  • 982 Accesses

This chapter deals with the problem of characterizing the polarization of light waves behaving as beamlike fields, i.e., fields whose electric vector E essentially lies in planes orthogonal to the direction of propagation. This occurs within the so-called paraxial approach, in which the longitudinal component of E is negligible to good accuracy. A major simplification can then be introduced to the calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso, M. A., Korotkova, O., Wolf, E. (2006): Propagation of the electric correlation matrix and the van Cittert-Zernike theorem for random electromagnetic fields, J. Mod. Opt. 53, 969–978.

    ADS  MATH  Google Scholar 

  • Azzam, R. M. A., Bashara, N. M. (1987): Ellipsometry and Polarized Light (North-Holland, Amsterdam).

    Google Scholar 

  • Beran, M. J., Parrent, G. B. (1967): Theory of Partial Coherence (Prentice Hall, Englewood Cliffs, NJ)

    MATH  Google Scholar 

  • Bomzon, Z., Biener, G., Kleiner, V., Hasman, E. (2002): Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings, Opt. Lett. 27, 285–287.

    ADS  Google Scholar 

  • Born, M., Wolf, E. (1999): Principles of Optics, 7th ed., (Cambridge University Press, Cambridge).

    MATH  Google Scholar 

  • Brosseau, C. (1998): Fundamentals of Polarized Light (Wiley, New York).

    Google Scholar 

  • Chipman, R. A. (1994): Polarimetry, Chap. 22, Handbook of Optics, vol. II (McGraw-Hill, New York).

    Google Scholar 

  • Collett, E. (1992): Polarized Light, (Marcel Dekker, Inc. New York).

    Google Scholar 

  • Deng, D., Guo, Q., Wu, L., Yang, X. (2007): Propagation of radially polarized elegant light beams, J. Opt. Soc. Am. B 24, 636–643.

    ADS  Google Scholar 

  • Diehl, D. W., Schoonover, R. W., Visser, T. D. (2006): The structure of focused, radially polarized fields, Opt. Express 14, 3030–3038.

    ADS  Google Scholar 

  • Dorn, R., Quabis, S., Lenchs, G. (2003): Sharper focus for a radially polarized light beam, Phys. Rev. Lett. 91, 233901 (1–4).

    ADS  Google Scholar 

  • Erdelyi, M., Bor, Z. (2006): Radial and azimuthal polarizers, J. Opt. A: Pure Appl. Opt. 8, 737–742.

    ADS  Google Scholar 

  • Erdelyi, M., Gajdatsy, G. (2008): Radial and azimuthal polarizer by means of a birefringent plate, J. Opt. A: Pure Appl. Opt. 10, 055007 (1–6).

    Google Scholar 

  • Eyyuboglu, H. T., Baykal, Y., Cai, Y. (2007): Degree of polarization for partially coherent general beams in turbulent atmosphere, Appl. Phys. B 89, 91–97.

    ADS  Google Scholar 

  • Ge, D., Cai, Y. J., Lin, Q. (2004): Propagation of partially polarized Gaussian Schell-model beams in dispersive and absorbing media, Opt. Commun. 229, 93–98.

    ADS  Google Scholar 

  • Gevorgyan, A. H. (2003): Nonreciprocal waves in absorbing multilayer elements, Tech. Phys. Lett. 29, 819–823.

    ADS  Google Scholar 

  • Gil, J. J. (2000): Characteristic properties of Mueller matrices, J. Opt. Soc. Am. A 17, 328–334.

    ADS  Google Scholar 

  • Goldstein, D. (2003): Polarized Light, 2nd ed., Revised and Expanded (Optical Science and Engineering, Dekker).

    Google Scholar 

  • Gori, F., Palma, C. (1978): Partially coherent sources which give rise to highly directional light beams, Opt. Commun. 27, 185–188.

    ADS  Google Scholar 

  • Gori, F. (1980): Collett-Wolf sources and multimode lasers, Opt. Commun. 34, 301–305.

    ADS  Google Scholar 

  • Gori, F. (1983): Mode propagation of the field generated by Collett-Wolf sources, Opt. Commun. 46, 149–154.

    ADS  Google Scholar 

  • Gori, F. (1998a): Matrix treatment for partially polarized, partially coherent beams, Opt. Lett. 23, 241–243.

    ADS  Google Scholar 

  • Gori, F., Santarsiero, M., Vicalvi, S., Borghi, R., Guattari, G. (1998b): Beam coherence-polarization matrix, J. Eur. Opt. Soc. A: Pure Appl. Opt. 7, 941–951.

    ADS  Google Scholar 

  • Gori, F., Santarsiero, M., Borghi, R., Piquero, G. (2000): Use of the van Cittert-Zernike theorem for partially polarized sources, Opt. Lett 25, 1291–1293.

    ADS  Google Scholar 

  • Gori, F., Santarsiero, M., Piquero, G., Borghi, R., Mondello, A., Simon, R. (2001): Partially polarized Gaussian Schell-model beams, J. Opt. A: Pure Appl. Opt. 3, 1–9.

    ADS  Google Scholar 

  • Gori, F., Santarsiero, M., Borghi, R., Ramírez-Sánchez, V. (2008): Realizability condition for electromagnetic Schell-model sources, J. Opt. Soc. Am. A 25, 1016–1020.

    ADS  MathSciNet  Google Scholar 

  • Gupta, D. N., Kant, N., Kim, D. E., Suk, H. (2007): Electron acceleration to GeV energy by a radially polarized laser, Phys. Lett. A 368, 402–407.

    ADS  Google Scholar 

  • Hanson, S. G., Wang, W., Jakobsen, M. L., Takeda, M. (2008): Coherence and polarization of electromagnetic beams modulated by random phase screens and their changes through complex ABCD optical systems, J. Opt. Soc. Am. A 25, 2338–46.

    ADS  Google Scholar 

  • Hecht, E. (1998): Optics (Addison Wesley Longman, London).

    Google Scholar 

  • Korotkova, O., Salem, M., Wolf, E. (2004): Beam conditions for radiation generated by an electromagnetic Gaussian Schell-model source, Opt. Lett. 29, 1173–1175.

    ADS  Google Scholar 

  • Kozawa, Y., Sato, S. (2007): Sharper focal spot formed by higher-order radially polarized laser beams, J. Opt. Soc. Am. A 24, 1793–1798.

    ADS  Google Scholar 

  • Lu, B. D., Pan, L. Z. (2002): Propagation of vector Gaussian-Schell-model beams through a paraxial optical ABCD system, Opt. Commun. 205, 7–16.

    ADS  Google Scholar 

  • Lumer, Y., Moshe, I., Horovitz, Z., Jackel, S., Machavariani, G., Meir, A. (2008): Thermally induced birefringence in nonsymmetrically pumped laser rods and its implications for attainment of good beam quality in high-power, radially polarized lasers, Appl. Opt. 47, 3886–3891.

    ADS  Google Scholar 

  • Lumer, Y., Moshe, I., (2009): Radial and azimuthal beam parameters, Opt. Lett. 34, 265–267.

    ADS  Google Scholar 

  • Machavariani, G., Lumer, Y., Moshe, I., Meir, A., Jackel, S. (2007): Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes, Opt. Lett. 32, 1468–1470.

    ADS  Google Scholar 

  • Mandel, L., Wolf, E. (1995): Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge).

    Google Scholar 

  • Martínez-Herrero, R., Mejías, P. M., Piquero, G. (2006): Overall parameters for the characterization of non-uniformly totally polarized beams, Opt. Commun. 265, 6–10.

    ADS  Google Scholar 

  • Martínez-Herrero, R., Mejías, P. M., Piquero, G. (2008): Global parameters for characterizing the radial and azimuthal polarization content of totally polarized beams, Opt. Commun. 281, 1976–1980.

    ADS  Google Scholar 

  • Mejías, P. M., Martínez-Herrero, R., Piquero, G., Movilla, J. M. (2002): Parametric characterization of the spatial structure of non-uniformly polarized laser beams, Prog. Quantum Electron. 26, 65–130.

    ADS  Google Scholar 

  • Meier, M., Romano, V., Feurer, T. (2007): Material processing with pulsed radially and azimuthally polarized laser radiation, Appl. Phys. 86, 329–334.

    Google Scholar 

  • Moshe, I., Jackel, S., Meir, A. (2003): Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects, Opt. Lett. 28, 807–809.

    ADS  Google Scholar 

  • Moshe, I., Jackel, S., Meir, A., Lumer, Y, Leibush, E. (2007): 2 kW, M2<10 radially polarized beams from aberration-compensated rod-based Nd:YAG lasers, Opt. Lett. 32, 47–49.

    ADS  Google Scholar 

  • Moser, T., Glur, H., Romano, V., Pigeon, F., Parriaux, O., Ahmed, M. A., Graf, T. (2005): Polarization-selective grating mirrors used in the generation of radial polarization, Appl. Phys. B 80, 707–713.

    ADS  Google Scholar 

  • Nieminen, T. A., Heckenberg, N. R., Rubinsztein-Dunlop, H. (2008): Forces in optical tweezers with radially and azimuthally polarized trapping beams, Opt. Lett. 33, 122–124.

    ADS  Google Scholar 

  • Niziev, V. G., Nesterov, A. V. (1999): Influence of beam polarization on laser cutting efficiency, J. Phys. D: Appl. Phys. 32, 1455–1461.

    ADS  Google Scholar 

  • O’Neill, E. L. (1963): Introduction to Statistical Optics (Addison-Wesley, Reading, Massachusetts).

    Google Scholar 

  • Oron, R., Blit, S., Davidson, N., Fiesem, A. A. (2000): The formation of laser beams with pure azimuthal or radial polarization, Appl. Phys. Lett. 77, 3322–3324.

    ADS  Google Scholar 

  • Pan, L., Lu, B. (2003): Propagation properties of partially polarized Gaussian Schell-model beams through an axis-unsymmetric paraxial ABCD system, Opt. Quantum Electron. 35, 129–138.

    Google Scholar 

  • Pasilly, N., Denis, R. S. (2005): Aït-Ameur, K., Treussart, F., Hierle, R., Roch, J. F., Simple interferometric technique for generation of a radially polarized light beam, J. Opt. Soc. Am. A 22, 984–991.

    ADS  Google Scholar 

  • Perina, J. (1971): Coherence of Light (Van Nostrand Reinhold Company, London).

    Google Scholar 

  • Phua, P. B., Lai, W. J. (2007): Simple coherent polarization manipulation scheme for generating high power radially polarized beam, Opt. Express 15, 14251–14256.

    ADS  Google Scholar 

  • Piquero, G., Movilla, J. M., Mejías, P. M., Martínez-Herrero, R. (1999): Degree of polarization of non-uniformly partially polarized beams: a proposal, Opt. Quant. Electron. 31, 223–225.

    Google Scholar 

  • Piquero, G., Borghi, R., Santarsiero, M. (2001a): Gaussian Schell-model beams propagating through polarization gratings, J. Opt. Soc. Am. A 18, 1399–1405.

    ADS  Google Scholar 

  • Piquero, G., Borghi, R., Mondello, A., Santarsiero, M. (2001b): Far field of beams generated by quasi-homogeneous sources passing through polarization gratings, Opt. Comm. 195, 339–350.

    ADS  Google Scholar 

  • Piquero, G., Gori, F., Romanini, P., Santarsiero, M., Borghi, R., Mondello, A. (2002): Synthesis of partially polarized Gaussian Schell-model sources, Opt. Commun. 208, 9–16.

    ADS  Google Scholar 

  • Piquero, G., Vargas-Balbuena, J. (2004): Non-uniformly polarized beams across their transverse profiles: an introductory study for undergraduate optics courses, Eur. J. Phys. 25, 793–800.

    Google Scholar 

  • Provenziani, D., Ciattoni, A., Cincotti, G., Palma, C., Ravaccia, F., Sapia, C. (2002): Stokes parameters of a Gaussian beam in a calcite crystal, Opt. Express 10, 699–706.

    ADS  Google Scholar 

  • Quabis, S., Dorn, R., Leuchs, G. (2005): Generation of a radially polarized doughnut mode of high quality, Appl. Phys. B 81, 597–600.

    ADS  Google Scholar 

  • Qiu, Y., Liu, J., Chen, Z. (2009): Propagation properties of radially polarized partially coherent LG (0,1)* beams, Opt. Commun. 282, 69–73.

    ADS  Google Scholar 

  • Roth, M. S., Wyss, E. W., Glur, H., Weber, H. P. (2005): Generation of radially polarized beams in a Nd:YAG laser with self-adaptive overcompensation of the thermal lens, Opt. Lett. 30, 1665–1667.

    ADS  Google Scholar 

  • Roychowdhury, H., Korotkova, O. (2005): Realizability conditions for electromagnetic Gaussian Schell-model sources, Opt. Commun. 249, 379–385.

    ADS  Google Scholar 

  • Santarsiero, M., Borghi, R., Ramírez-Sánchez, V. (2009): Synthesis of electromagnetic Schell-model sources, J. Opt. Soc. Am. A 26, 1437–1443.

    ADS  Google Scholar 

  • Santis, P., Gori, F., Palma, C. (1979): Generalized Collett-Wolf sources, Opt. Commun. 28, 151–155.

    ADS  Google Scholar 

  • Santis, P., Gori, F., Guattari, G., Palma, C. (1986): Synthesis of partially coherent fields, J. Opt. Soc. Am. A 3, 1258–1262.

    ADS  Google Scholar 

  • Sheppard, C. J. R., Choudhury, A. (2004): Annular pupils, radial polarization, and superresolution, Appl. Opt. 43, 4322–4327.

    ADS  Google Scholar 

  • Shirai, T. (2005a): Polarization properties of a class of electromagnetic Gaussian Schell-model beams which have the same far-zone intensity distribution as a fully coherent laser beam, Opt. Commun. 256, 197–209.

    ADS  Google Scholar 

  • Shirai, T.; Korotkova, O.; Wolf, E. (2005b): A method of generating electromagnetic Gaussian Schell-model beams, J. Opt. A: Pure Appl. Opt 7, 232–237.

    ADS  Google Scholar 

  • Shurcliff, W. A. (1962): Polarized Light (Harvard University Press, Cambridge, Mass.).

    Google Scholar 

  • Simon, R. (1982): The connection between the Jones and Mueller matrices, Opt. Commun. 42, 293–297.

    ADS  Google Scholar 

  • Simon, R., Sudarshan, E. C. G., Mukunda, N. (1987): Cross polarization in laser beams, Appl. Opt. 26, 1589–1593.

    ADS  Google Scholar 

  • Stalder, M., Schadt, M. (1996): Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters, Opt. Lett. 21, 1948–50.

    ADS  Google Scholar 

  • Tidwell, S. C., Ford, D. H., Kimura, W. D. (1990): Generating radially polarized beams interferometrically, Appl. Opt. 29, 2334–2339.

    Google Scholar 

  • Tovar, A. (1998): Production and propagation of cylindrically polarized Laguerre-Gaussian Laser beams, J. Opt. Soc. Am. A 15, 2705–2711.

    ADS  Google Scholar 

  • Volpe, G., Petrov, D. (2004): Optical tweezers with cylindrical vector beams produced by optical fibers, Opt. Commun. 237, 89–95.

    ADS  Google Scholar 

  • Wang, H., Wang, X., Zeng, A., Yang, K. (2007): Effects of coherence on anisotropic electromagnetic Gaussian-Schell model beams on propagation, Opt. Lett. 32, 2215–2217.

    ADS  Google Scholar 

  • Whitney, C. (1971): Pauli-algebraic operators in polarization optics, J. Opt. Soc. Am. 61, 1207–1213.

    ADS  Google Scholar 

  • Wolf, E. (1959): Coherence properties of partially polarized electromagnetic radiation, Il Nuovo Cimento 13, 1165–1181.

    ADS  MathSciNet  MATH  Google Scholar 

  • Wolf, E. (2007): Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, Cambridge).

    MATH  Google Scholar 

  • Wu, G., Lou, Q., Zhou, J., Dong, J., Wei, Y. (2007): Focal shift in focused radially polarized ultrashort pulsed laser beams, Appl. Opt. 46, 6251–6255.

    ADS  Google Scholar 

  • Yonezawa, K., Kozawa, Y., Sato, S. (2008): Focusing of radially and azimuthally polarized beams through a uniaxial crystal, J. Opt. Soc. Am A 25, 469–472.

    ADS  Google Scholar 

  • Zhan, Q. W. (2004): Trapping metallic Rayleigh particles with radial polarization, Opt. Express 12, 3377–3382.

    ADS  Google Scholar 

  • Zhao, G. P. (2006): Spectral switches of vector Gaussian Schell-model beams passing through a spherically aberrated lens, J. Mod. Opt. 53, 1083–1092.

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Martínez-Herrero .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martínez-Herrero, R., Mejías, P.M., Piquero, G. (2009). Representations of the Polarization of Beamlike Fields. In: Characterization of Partially Polarized Light Fields. Springer Series in Optical Sciences, vol 147. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01327-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01327-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01326-3

  • Online ISBN: 978-3-642-01327-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics