Skip to main content

Benefits of Arbuscular Mycorrhizal Fungi to Sustainable Crop Production

  • Chapter
  • First Online:
Microbial Strategies for Crop Improvement

Abstract

The majority of agricultural crops form relationships with arbuscular mycorrhizal (AM) fungi, which affect physiology and, consequently, yields and food qualities of plants. Mycorrhiza occur naturally in agroecosystems, but their abundance decreases with soil degradation, pollution or excessive use of agrochemicals. Additionally, mycorrhiza may be negatively affected by soil management practices and disadvantageous crop rotation. Conversely, mycorrhizal fungi are usually more abundant in sustainable and medium-to-low-input production systems. In order to exploit the beneficial effects of AM fungi, appropriate management practices, such as the design of suitable crop rotations, appropriate tillage practices, the introduction of multi-microbial inoculants, and the regulated use of agrochemicals, have to be employed. An alternative strategy for improved use of AM in sustainable crop production is to target crop breeding programs involving AM-favoring traits. Understanding the multifarious activities of AM fungi is likely to provide a prospective tool for sustainable crop production in different agro-ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alguacil MM, Lumini E, Roldan A, Salinas-Garcia JR, Bonfante P, Bianciotto V (2008) The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol Appl 18:527–536

    CAS  PubMed  Google Scholar 

  • Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Google Scholar 

  • Azcon-Aguilar C, Barea JM (1997) Applying mycorrhiza biotechnology to horticulture: significance and potential. Sci Hortic-Amsterdam 68:1–24

    Google Scholar 

  • Batkhuugyin E, Rydlova J, Vosátka M (2000) Effectiveness of indigenous and non-indigenous isolates of arbuscular mycorrhizal fungi in soils from degraded ecosystems and man-made habitats. Appl Soil Ecol 14:201–211

    Google Scholar 

  • Bi HH, Song YY, Zeng RS (2007) Biochemical and molecular responses of host plants to mycorrhizal infection and their roles in plant defence. Allelopathy J 20:15–27

    Google Scholar 

  • Brehmer B, Struik PC, Sanders J (2008) Using an energetic and exergetic life cycle analysis to assess the best applications of legumes within a biobased economy. Biomass Bioenerg 32:1175–1186

    CAS  Google Scholar 

  • Brimner TA, Boland GJ (2003) A review of the non-target effects of fungi used to biologically control plant diseases. Agr Ecosyst Environ 100:3–16

    Google Scholar 

  • Connor DJ (2008) Organic agriculture cannot feed the world. Field Crop Res 106:187–190

    Google Scholar 

  • Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494

    CAS  PubMed  Google Scholar 

  • Copetta A, Lingua G, Bardi L, Masoero G, Berta G (2007) Influence of arbuscular mycorrhizal fungi on growth and essential oil composition in Ocimum basilicum var. Genovese. Caryologia 60:106–110

    Google Scholar 

  • Croll D, Wille L, Gamper HA, Mathimaran N, Lammers PJ, Corradi N, Sanders IR (2008) Genetic diversity and host plant preferences revealed by simple sequence repeat and mitochondrial markers in a population of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 178:672–687

    CAS  PubMed  Google Scholar 

  • Dalpe Y (2005) Mycorrhizae: a potential tool for plant protection but not a panacea. Phytoprotection 86:53–59

    Google Scholar 

  • Daniell TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol Ecol 36:203–209

    CAS  PubMed  Google Scholar 

  • Dassi B, Dumas-Gaudot E, Gianinazzi S (1998) Do pathogenesis-related (PR) proteins play a role in bioprotection of mycorrhizal tomato roots towards Phytophthora parasitica? Physiol Mol Plant P 52:167–183

    CAS  Google Scholar 

  • Drew EA, Murray RS, Smith SE, Jakobsen I (2004) Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore sizes. Plant Soil 251:105–114

    Google Scholar 

  • Ernst E (2000) Herbal medicines: where is the evidence? Growing evidence of effectiveness is counterbalanced by inadequate regulation. Brit Med J 321:395–396

    CAS  PubMed  Google Scholar 

  • Flores AC, Luna AAE, Portugal VO (2007) Yield and quality enhancement of marigold flowers by inoculation with Bacillus subtilis and Glomus fasciculatum. J Sustain Agr 31:21–31

    Google Scholar 

  • Franco AD, Garcia JRS, Cano IG, Perez NM (2008) Impact of tillage and arbuscular mycorrhiza inoculation on charcoal rot and yield of maize under semiarid conditions. Revista Fitotecnia Mexicana 31:257–263

    Google Scholar 

  • Freitas MSM, Martins MA, Vieira EIJC (2004) Yield and quality of essential oils of Mentha arvensis in response to inoculation with arbuscular mycorrhizal fungi. Pesqui Agropecu Bras 39:887–894

    Google Scholar 

  • George E, Lee YJ (2005) Development of a nutrient film technique culture system for arbuscular mycorrhizal plants. HortScience 40:378–380

    Google Scholar 

  • Gerdemann JW (1968) Vesicular-arbuscular mycorrhiza and plant growth. Annu Rev Phytopathol 6:397–418

    Google Scholar 

  • Gianinazzi S, Vosátka M (2004) Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business. Can J Bot 82:1264–1271

    Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agr Ecosyst Environ 113:17–35

    Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin HR, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    CAS  PubMed  Google Scholar 

  • Grodzinsky AM (1992) Allelopathic effects of cruciferous plant in crop rotation. In: Rizvi SJH, Rizvi V (eds) Allelopathy: basic and applied aspects. Chapman & Hall, London

    Google Scholar 

  • Gryndler M, Vosátka M, Hrselova H, Catska V, Chvatalova I, Jansa J (2002) Effect of dual inoculation with arbuscular mycorrhizal fungi and bacteria on growth and mineral nutrition of strawberry. J Plant Nutr 25:1341–1358

    CAS  Google Scholar 

  • Hamel C (1996) Prospects and problems pertaining to the management of arbuscular mycorrhizae in agriculture. Agr Ecosyst Environ 60:197–210

    Google Scholar 

  • Hamel C (2004) Impact of arbuscular mycorrhizal fungi on N and P cycling in the root zone. Can J Soil Sci 84:383–395

    CAS  Google Scholar 

  • Hao LF, Zhang JL, Chen FJ, Christie P, Li XL (2008) Response of two maize inbred lines with contrasting phosphorus efficiency and root morphology to mycorrhizal colonization at different soil phosphorus supply levels. J Plant Nutr 31:1059–1073

    CAS  Google Scholar 

  • Harrier LA, Watson CA (2003) The role of arbuscular mycorrhizal fungi in sustainable cropping systems. Adv Agron 79:185–225

    Google Scholar 

  • Hart MM, Trevors JT (2005) Microbe management: application of mycorrhyzal fungi in sustainable agriculture. Front Ecol Environ 3:533–539

    Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature 394:431

    CAS  PubMed  Google Scholar 

  • Herrick JE (2000) Soil quality an indicator of sustainable land management. Appl Soil Ecol 15:75–83

    Google Scholar 

  • Hetrick B, Wilson GWT, Cox TS (1992) Mycorrhizal dependence of modern wheat-varieties, landraces, and ancestors. Can J Bot 70:2032–2040

    Google Scholar 

  • Hijri M, Sanders IR (2005) Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. Nature 433(7022):160–163

    CAS  PubMed  Google Scholar 

  • Hijri I, Sykorova Z, Oehl F, Ineichen K, Mäder P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289

    CAS  PubMed  Google Scholar 

  • Jackson LE, Burger M, Cavagnaro TR (2008) Roots nitrogen transformations, and ecosystem services. Annu Rev Plant Biol 59:341–363

    CAS  PubMed  Google Scholar 

  • Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91

    PubMed  Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234

    CAS  PubMed  Google Scholar 

  • Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164–1176

    Google Scholar 

  • Javaid A (2008) Allelopathy in mycorrhizal symbiosis in the Poaceae family. Allelopathy J 21:207–217

    Google Scholar 

  • Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687–696

    CAS  PubMed  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. Fems Microbiol Ecol 48:1–13

    CAS  PubMed  Google Scholar 

  • Kesavan PC, Swaminathan MS (2008) Strategies and models for agricultural sustainability in developing Asian countries. Philos T R Soc B 363:877–891

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture – A review. Agron Sustain Dev 27:29–43

    Google Scholar 

  • Kirkegaard J, Christen O, Krupinsky J, Layzell D (2008) Break crop benefits in temperate wheat production. Field Crop Res 107:185–195

    Google Scholar 

  • Kjoller R, Rosendahl S (2000) Effects of fungicides on arbuscular mycorrhizal fungi: differential responses in alkaline phosphatase activity of external and internal hyphae. Biol Fert Soils 31:361–365

    CAS  Google Scholar 

  • Koch AM, Croll D, Sanders IR (2006) Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growth. Ecol Lett 9:103–110

    PubMed  Google Scholar 

  • Lal R (2008) Soils and sustainable agriculture. A review. Agron Sustain Dev 28:57–64

    Google Scholar 

  • Leake JR, Johnson D, Donnelly DP, Muckle GE, Boddy L, Read DJ (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045

    Google Scholar 

  • Liebig M, Carpenter-Boggs L, Johnson JMF, Johnson JMF, Wright S, Barbour N (2006) Cropping system effects on soil biological characteristics in the Great Plains. Renew Agr Food Syst 21:36–48

    Google Scholar 

  • Ma N, Yokoyama K, Marumoto T (2006) Stimulatory effect of peat on spore germination and hyphal growth of arbuscular mycorrhizal fungus Gigaspora margarita. Soil Sci Plant Nutr 52:168–176

    Google Scholar 

  • MacDonald RM (1981) Routine production of axenic vesicular-arbuscular mycorrhizas. New Phytol 89:87–93

    Google Scholar 

  • Mathew J, Johari BN (1988) Propagation of vesicular-arbuscular mycorrhizal fungi in moong (Vigna radiata L) through nutrient film technique (NFT). Curr Sci India 57:156–158

    Google Scholar 

  • Mena-Violante HG, Ocampo-Jimenez O, Dendooven L, Martinez-Soto G, Gonzalez-Castaneda J, Davies FT, Olalde-Portugal V (2006) Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho (Capsicum annuum L. cv San Luis) plants exposed to drought. Mycorrhiza 16:261–267

    PubMed  Google Scholar 

  • Murillo-Williams A, Pedersen P (2008) Arbuscular mycorrhizal colonization response to three seed-applied fungicides. Agron J 100:795–800

    Google Scholar 

  • Nelson NO, Janke RR (2007) Phosphorus sources and management in organic production systems. Horttechnology 17:442–454

    CAS  Google Scholar 

  • Nogueira MA, Cardoso EJBN (2006) Plant growth and phosphorus uptake in mycorrhizal rangpur lime seedlings under different levels of phosphorus. Pesqui Agropecu Bras 41:93–99

    Google Scholar 

  • Oliveira RS, Vosátka M, Dodd JC, Castro PML (2005) Studies on the diversity of arbuscular mycorrhizal fungi and the efficacy of two native isolates in a highly alkaline anthropogenic sediment. Mycorrhiza 16:23–31

    CAS  PubMed  Google Scholar 

  • Opik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790

    Google Scholar 

  • Opik M, Moora M, Zobel M, Saks U, Wheatley R, Wright F, Daniell T (2008) High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. New Phytol 179:867–876

    CAS  PubMed  Google Scholar 

  • Paszkowski U (2006) A journey through signaling in arbuscular mycorrhizal symbioses. New Phytol 172:35–46

    CAS  PubMed  Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal. P Natl Acad Sci USA 99:13324–13329

    CAS  Google Scholar 

  • Perner H, Schwarz P, George E (2006) Effect of mycorrhizal inoculation and compost supply on growth and nutrient uptake of young leek plants grown on peat-based substrates. Hortscience 41:628–632

    Google Scholar 

  • Pimienta-Barrios E, del Castillo-Aranda MEG, Muñoz-Urias A, Nobel PA (2003) Effects of benomyl and drought on the mycorrhizal development and daily net CO2 uptake of a wild platyopuntia in a rocky semi arid environment. Ann Bot 92:239–245

    CAS  PubMed  Google Scholar 

  • Piotrowski JS, Rillig MC (2008) Succession of arbuscular mycorrhizal fungi: patterns, causes, and considerations for organic agriculture. Adv Agron 97:111–130

    CAS  Google Scholar 

  • Pirozynski KA, Dalpe Y (1992) The geological history of the Glomaceae with particular reference to mycorrhizal symbiosis. Symbiosis 7:1–36

    Google Scholar 

  • Plenchette C, Fortin JA, Furlan V (1983) Growth responses of several plant species to mycorrhizae in a soil of moderate P- fertility. I. Mycorrhizal dependency under field conditions. Plant Soil 70:199–209

    CAS  Google Scholar 

  • Plenchette C, Clermont-Dauphin C, Meynard JM, Fortin JA (2005) Managing arbuscular mycorrhizal fungi in cropping systems. Can J Plant Sci 85:31–40

    Google Scholar 

  • Pretty J (1995) Regenerating agriculture: policies and practice for sustainability and self-reliance. Earthscan, London, UK; National Academy Press, Washington, DC, p 320

    Google Scholar 

  • Pretty J (2008) Agricultural sustainability: concepts, principles and evidence. Philos T R Soc B 363:447–465

    Google Scholar 

  • Pypers P, Huybrighs M, Diels J, Abaidoo R, Smolders E, Merckx R (2007) Does the enhanced P acquisition by maize following legumes in a rotation result from improved soil P availability? Soil Biol Biochem 39:2555–2566

    CAS  Google Scholar 

  • Rai M, Acharya D, Singh A, Varma A (2001) Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza 11:123–128

    Google Scholar 

  • Reynolds M, Tuberosa R (2008) Translational research impacting on crop productivity in drought-prone environments. Curr Opin Plant Biol 11:171–179

    PubMed  Google Scholar 

  • Reynolds HL, Hartley AE, Vogelsang KM, Bever JD, Schultz PA (2005) Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytol 167:869–880

    CAS  PubMed  Google Scholar 

  • Rillig MC (2004a) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Google Scholar 

  • Rillig MC (2004b) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754

    Google Scholar 

  • Ryan MH, Graham JH (2002) Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil 244:263–271

    CAS  Google Scholar 

  • Sanders IR (2004) Plant and arbuscular mycorrhizal fungal diversity – are we looking at the relevant levels of diversity and are we using the right techniques? New Phytol 164:415–418

    Google Scholar 

  • Sawers RJH, Gutjahr C, Paszkowski U (2008) Cereal mycorrhiza: an ancient symbiosis in modern agriculture. Trends Plant Sci 13:93–97

    CAS  PubMed  Google Scholar 

  • Schreiner RP, Mishra RL, Mc Daniel KL, Benthlenfalvay GJ (2003) Mycorrhizal fungi influence plant and soil functions and interactions. Plant Soil 188:199–209

    Google Scholar 

  • Schroeder-Moreno MS, Janos DP (2008) Intra- and inter-specific density affects plant growth responses to arbuscular mycorrhizas. Botany-Botanique 86:1180–1193

    Google Scholar 

  • Schussler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Google Scholar 

  • Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515

    PubMed  Google Scholar 

  • Schweiger PF, Spliid NH, Jakobsen I (2001) Fungicide application and phosphorus uptake by hyphae of arbuscular mycorrhizal fungi into field-grown peas. Soil Biol Biochem 33:1231–1237

    CAS  Google Scholar 

  • Sharma MP, Adholeya A (2004) Effect of arbuscular mycorrhizal fungi and phosphorus fertilization on the post vitro growth and yield of micropropagated strawberry grown in a sandy loam soil. Can J Bot 82:322–328

    Google Scholar 

  • Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Deutsche Gesellschaft fur Technische Zasammenarbeit (GTZ) GmBH. Eschborn, Germany, p 371

    Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569

    CAS  Google Scholar 

  • Smil V (2001) Feeding the world: a challenge for the twenty-first century. MIT Press, Cambridge, MA, p 360

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, San Diego, p 604

    Google Scholar 

  • Sramek F, Dubsky M, Vosátka M (2000) Effect of arbuscular mycorrhizal fungi and Trichoderma harzianum on three species of balcony plants. Plant Prod Sci 46:127–131

    Google Scholar 

  • Stringer L (2008) Can the UN convention to combat desertification guide sustainable use of the world&s soils? Front Ecol Environ 6:138–144

    Google Scholar 

  • Subramanian KS, Santhanakrishnan P, Balasubramanian P (2006) Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Sci Hortic-Amsterdam 107:245–253

    Google Scholar 

  • Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Revs Gen 9:444–457

    CAS  Google Scholar 

  • Tanaka Y, Yano K (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ. 28:1247–1254

    CAS  Google Scholar 

  • Taylor J, Harrier LA (2000) A comparison of nine species of arbuscular mycorrhizal fungi on the development and nutrition of micropropagated Rubus idaeus L. cv. Glen Prosen (red raspberry). Plant Soil 225:53–61

    CAS  Google Scholar 

  • Taylor J, Harrier LA (2003) Beneficial infuences of arbuscular mycorrhizal (AM) fungi on the micropropagation of woody and fruit trees. In: Jain SM, Ishii K (eds) Micropropagation of woody trees and fruits. Kluwer, Dordrecht, the Netherlands, pp 129–150

    Google Scholar 

  • Thingstrup I, Kahiluoto H, Jakobsen I (2000) Phosphate transport by hyphae of field communities of arbuscular mycorrhizal fungi at two levels of P fertilization. Plant Soil 221:181–187

    CAS  Google Scholar 

  • Toussaint JP (2007) Investigating physiological changes in the aerial parts of AM plants: what do we know and where should we be heading? Mycorrhiza 17:349–353

    PubMed  Google Scholar 

  • Toussaint JP, Smith FA, Smith SE (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17:291–297

    CAS  PubMed  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Google Scholar 

  • Verma RK, Arya ID (1998) Effect of arbuscular mycorrhizal fungal isolates and organic manure on growth and mycorrhization of micropropagated Dendrocalamus asper plantlets and on spore production in their rhizosphere. Mycorrhiza 8:113–116

    Google Scholar 

  • Vestberg M, Estaun V (1994) Micropropagated plants, on opportunity to positively manage mycorrhizal activities. In: Giananazzi S, Schuepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhauser Verlag, Basel, Switzerland, pp 217–225

    Google Scholar 

  • Vestberg M, Cassells AC, Schubert A, Cordier C, Gianinazzi S (2002) Arbuscular mycorrhizal fungi and micropropagation of high value crops. In: Giananazzi S, Schuepp H, Barea JM, Hasselwandter K (eds) Mycorrhizal technology in agriculture. Birkhauser Verlag, Basel, Switzerland, pp 223–233

    Google Scholar 

  • Vestberg A, Kukkonen S, Saari K, Parikka P, Huttunen J (2004) Microbial inoculation for improving the growth and health of micropropagated strawberry. Appl Soil Ecol 27:243–258

    Google Scholar 

  • Vosátka M, Albrechtová J (2008) Theoretical aspects and practical uses of mycorrhizal technology in floriculture and horticulture. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, vol 5, 1st edn. Global Science Books, Isleworth, UK, pp 466–479

    Google Scholar 

  • Vosátka M, Dodd JC (2002) Ecological considerations for successful application of arbuscular mycorrhizal fungi inoculum. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhauser Verlag, Basel, pp 235–248

    Google Scholar 

  • Vosátka M, Jansa J, Vohnik M, Gryndler M (2000) Post-vitro mycorrhization and bacterization of micropropagated strawberry, potato and azalea. Acta Hortic 530:313–324

    Google Scholar 

  • Vosátka M, Albrechtová J, Patten R (2008) The international market development for mycorrhizal technology In: Varma A (ed), Chapter 21. Springer, Berlin, pp 419–438

    Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Google Scholar 

  • Whitfield L, Richards AJ, Rimmer DL (2004) Relationships between soil heavy metal concentration and mycorrhizal colonisation in Thymus polytrichus in northern England. Mycorrhiza 14:55–62

    CAS  PubMed  Google Scholar 

  • Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–442

    CAS  PubMed  Google Scholar 

  • Yao Q, Zhu HH, Zeng RS (2007) Role of phenolic compounds in plant defence: Induced by arbuscular mycorrhizal fungi. Allelopathy J 20:1–13

    Google Scholar 

  • Yao Q, Lin FX, Chen JZ, Lei XT, Zhu HH (2008) Responses of citrus seedlings and a leguminous herb, Stylosanthes gracilis, to arbuscular mycorrhizal fungal inoculation. Proceedings of the international symposium on citrus and other tropical and subtropical fruit crops 773:63–67

    Google Scholar 

  • Yokoyama K, Tateishi T, Saito M, Marumoto T (2005) Application of a molecular method for the identification of a Gigaspora margarita isolate released in a field. Soil Sci Plant Nutr 51:125–128

    CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the funding of the Ministry of Education, Youth and Sports of the Czech Republic from the projects No. 1P04OE187, the EU project E! 3375 EUROAGRI + MYCOTAGRIF, the Centre for Bioindication and Revitalization 1M0571, and the Institutional project AV0Z60050516 of the Institute of Botany, Academy of Sciences of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Albrechtová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vosátka, M., Albrechtová, J. (2009). Benefits of Arbuscular Mycorrhizal Fungi to Sustainable Crop Production. In: Khan, M., Zaidi, A., Musarrat, J. (eds) Microbial Strategies for Crop Improvement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01979-1_10

Download citation

Publish with us

Policies and ethics