Skip to main content

Factors Affecting the Variation of Microbial Communities in Different Agro-Ecosystems

  • Chapter
  • First Online:
Microbial Strategies for Crop Improvement

Abstract

Soil microbial communities play an important role in supplying essential nutrients to plants by decomposing various organic matters. Composition, structure and functions of microbial communities in soil are, however, under the constant control of the environment including various agricultural management practices. Due to scarcity of convenient methods for exploration, our understanding of the different degrees and dynamics of microbial community variations are limited. An attempt will be made to understand such structural and functional variations employing molecular tools. Earlier it was believed that it is the plant community that exerts control over the microbial community, but recently, some findings have suggested that it is actually the microbial community that acts as a driver of plant community structure and dynamics. Attention will therefore be paid to highlight some of these issues, and the effect of various farm management practices on the composition and functions of microbial communities This is likely to lead to the development of best management practices for improving soil fertility and, consequently, agricultural productivity to improve the sustainability of agro-ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adkins A, Wright RB, Scott GAJ, Adkins A, Wright RB, Scott GAJ (2001) Microbial diversity and activity in a stressed boreal forest ecosystem (Manitoba, Canada), vol Abstract I-37. American Society for MicroBiology, Orlando, FL

    Google Scholar 

  • Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci 105:11512–11519

    Article  PubMed  Google Scholar 

  • Allison VJ, Miller RM, Jastrow JD, Matamala R, Zak DR (2005) Changes in soil microbial community structure in a tallgrass prairie chronosequence. Soil Sci Soci Am J 69:1412–1421

    Article  CAS  Google Scholar 

  • Anderson TH, Domsch KH (1993) The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol Biochem 25:393–395

    Article  Google Scholar 

  • Anderson TH, Joergensen RG (1997) Relationship between SIR and FE estimates of microbial biomass C in deciduous forest soils at different pH. Soil Biol Biochem 29:1033–1042

    Article  CAS  Google Scholar 

  • Andersson S, Ingvar Nilsson S (2001) Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humus. Soil Biol Biochem 33:1181–1191

    Article  CAS  Google Scholar 

  • Aon MA, Cabello MN, Sarena DE, Colaneri AC, Franco MG, Burgos JL, Cortassa S (2001) I. Spatio-temporal patterns of soil microbial and enzymatic activities in an agricultural soil. Appl Soil Ecol 18:239–254

    Article  Google Scholar 

  • Assmus B, Hutzler P, Kirchhof G, Amann R, Lawrence JR, Hartmann A (1995) In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl Environ Microbiol 61:1013–1019

    PubMed  CAS  Google Scholar 

  • Atlas RM (1984) Use of microbial diversity measurements to assess environmental stress. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. ASM, Washington, pp 540–545

    Google Scholar 

  • Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791

    Article  PubMed  CAS  Google Scholar 

  • Baath E (1996) Adaptation of soil bacterial communities to prevailing pH in different soils. FEMS Microbiol Ecol 19:227–237

    CAS  Google Scholar 

  • Baath E (1998) Growth rates of bacterial communities in soils at varying pH: a comparison of the thymidine and leucine incorporation techniques. Microb Ecol 36:316–327

    Article  PubMed  CAS  Google Scholar 

  • Baath E, Berg B, Lohm U, Lundgren B, Lundkvist H, Rosswall T, Soderstrom B, Wiren A (1980) Effects of experimental acidification and liming on soil organisms and decomposition in a Scots pine forest. Pedobiologia 20:85–100

    Google Scholar 

  • Baath E, Frostegard A, Pennanen T, Fritze H (1995) Microbial community structure and pH response in relation to soil organic matter quality in wood–ash fertilized, clear-cut or burned coniferous forest soils. Soil Biol Biochem 27:229–240

    Article  Google Scholar 

  • Bais HP, Park S, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  PubMed  CAS  Google Scholar 

  • Batten KM, Scow KM, Davies KF, Harrison SP (2006) Two invasive plants alter soil microbial community composition in serpentine grasslands. Biol Invasions 8:217–230

    Article  Google Scholar 

  • Bauhus J, Paré D, Côté L (1998) Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biol Biochem 30:1077–1089

    Article  CAS  Google Scholar 

  • Beare MH (1997) Fungal and bacterial pathways of organic matter decomposition and nitrogen mineralization in arable soils. In: Brussaard L, Ferrera-Cerrato R (eds) Soil ecology in sustainable agricultural systems. Lewis, Boca Raton, Florida, USA, pp 37–70

    Google Scholar 

  • Bending GD, Turner MK, Jones JE (2002) Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biol Biochem 34:1073–1082

    Article  CAS  Google Scholar 

  • Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol 85:561–573

    Article  Google Scholar 

  • Bolan NS, Currie LD, Baskaran S (1996) Assessment of the influence of phosphate fertilizers on the microbial activity of pasture soils. Biol Fertil Soils 21:284–292

    Article  Google Scholar 

  • Bormann BT, Sidle RC (1990) Changes in productivity and distribution of nutrients in a chronosequence at Glacier-Bay national park, Alaska. J Ecol 78:561–578

    Article  Google Scholar 

  • Borneman J, Triplett EW (1997) Molecular microbial diversity of soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl Environ Microbiol 63:2647–2653

    PubMed  CAS  Google Scholar 

  • Bosse U, Frenzel P (1997) Activity and distribution of methane-oxidizing bacteria in flooded rice soil microcosms and in rice plants (Oryza sativa). Appl Environ Microbiol 63:1199–1207

    PubMed  CAS  Google Scholar 

  • Bowen GD, Rovira AD (1991) The rhizosphere, the hidden half. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots – the hidden half. Marcel Dekker, New York, pp 641–649

    Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744

    Article  PubMed  CAS  Google Scholar 

  • Brookes PC (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fertil Soils 19:269–289

    Article  CAS  Google Scholar 

  • Buckley DH, Schmidt TM (2001) The structure of microbial communities in soil and the lasting impact of cultivation. Microb Ecol 42:11–21

    PubMed  CAS  Google Scholar 

  • Buyer JS, Roberts DP, Russek-Cohen E (1999) Microbial community structure and function in the spermosphere as affected by soil and seed type. Can J Microbiol 45:138–144

    Article  CAS  Google Scholar 

  • Campbell CD, Grayston SJ, Hirst DJ (1997) Use of rhizosphere carbon sources in soil carbon source tests to discriminate soil microbial communities. J Microbiol Methods 30:33–41

    Article  Google Scholar 

  • Chandini TM, Dennis P (2002) Microbial activity, nutrient dynamics and litter decomposition in a Canadian Rocky Mountain pine forest as affected by N and P fertilizers. For Ecol Manage 159:187–201

    Article  Google Scholar 

  • Chiarini L, Bevivino A, Dalmastri C, Nacamulli C, Tabacchioni S (1998) Influence of plant development, cultivar and soil type on microbial colonization of maize root. Appl Soil Ecol 8:11–18

    Article  Google Scholar 

  • Chu HY, Hosen Y, Yagi K, Okada K, Ito O (2005) Soil microbial biomass and activities in Japanese Andisol as affected by controlled release and application depth of urea. Biol Fertil Soils 42:89–96

    Article  Google Scholar 

  • CÔté L, Brown S, Paré D, Fyles J, Bauhus J (2000) Dynamics of carbon and nitrogen mineralization in relation to stand type, stand age and soil texture in the boreal mixed wood. Soil Biol Biochem 32:1079–1090

    Article  Google Scholar 

  • Crawford JW, Harris JA, Ritz K, Young IM (2005) Towards an evolutionary ecology of life in soil. Trends Ecol Evol 20:81–87

    Article  PubMed  Google Scholar 

  • Da Silva KRA, Salles JF, Seldin L, van Elsas JD (2003) Application of a novel Paenibacillus-specific PCR-DGGE method and sequence analysis to assess the diversity of Paenibacillus spp. in the maize rhizosphere. J Microbiol Methods 54:213–231

    Article  PubMed  CAS  Google Scholar 

  • Dakora FD (2003) Defining new roles for plant and rhizobial molecules in sole and mixed plant cultures involving symbiotic legumes. New Phytol 158:39–49

    Article  CAS  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • De Leij FAAM, Whipps JM, Lynch JM (1994) The use of colony development for the characterization of bacterial communities in soil and on roots. Microb Ecol 27:81–97

    Article  Google Scholar 

  • de Lima TCS, Grisi BM, Bonato MCM (1999) Bacteria isolated from a sugarcane agroecosystem: their potential production of polyhydroxyalcanoates and resistance to antibiotics. Revista de Microbiologia 30:214–224

    Article  Google Scholar 

  • de Luna RG, Grisi BM (1996) Biomassa e atividade microbianas de solos cultivados com cana-de-açúcar, sob efeito da vinhaça. Rev Nordest Biol 11:15–29

    Google Scholar 

  • Doran JW (1980) Soil microbial and biochemical changes associated with reduced tillage. Soil Sci Soc Am J 44:765–771

    CAS  Google Scholar 

  • Duineveld BM, Rosado AS, van Elsas JD, van Veen JA (1998) Analysis of the dynamics of bacterial communities in the rhizosphere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns. Appl Environ Microbiol 64:4950–4957

    PubMed  CAS  Google Scholar 

  • Ekundayo EO (2003) Effect of common pesticides used in the Niger Delta basin of southern Nigeria on soil microbial populations. Environ Monit Assess 89:35–41

    Article  PubMed  CAS  Google Scholar 

  • Follett RF, Schimel DS (1989) Effect of tillage practices on microbial biomass dynamics. Soil Sci Soc Am J 53:1091–1096

    Google Scholar 

  • Franzluebbers AJ, Zuberer DA, Hons FM (1995) Comparison of microbiological methods for evaluating quality and fertility of soil. Biol Fertil Soils 19:135–140

    Article  Google Scholar 

  • Fraterrigo JM, Turner MG, Pearson SM, Dixon P (2005) Effects of past land use on spatial heterogeneity of soil nutrients in southern Appalachian forests. Ecol Monogr 75:215–230

    Article  Google Scholar 

  • Fraterrigo JM, Balser TC, Turner MG (2006) Microbial community variation and its relationship with nitrogen mineralization in historically altered forests. Ecology 87:570–579

    Article  PubMed  Google Scholar 

  • Frostegard A, Tunlid A, Baath E (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617

    PubMed  CAS  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    Article  PubMed  CAS  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270

    Article  PubMed  CAS  Google Scholar 

  • Garland JL (1996) Patterns of potential C source utilization by rhizosphere communities. Soil Biol Biochem 28:223–230

    Article  CAS  Google Scholar 

  • Garland JL (1999) Potential and limitations of BIOLOG for microbial community analysis. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Microbial biosystems: new frontiers. Proceedings of the 8th International Symposium on Microbial Ecology. Atlantic Canada Society for Microbial Ecology, Halifax, Canada, pp 1–7

    Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359

    PubMed  CAS  Google Scholar 

  • Germida JJ, Siciliano SD, Freitas JR, Seib AM (1998) Diversity of rootassociated bacteria associated with fieldgrown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol 26:43–50

    Article  CAS  Google Scholar 

  • Gilbert B, Frenzel P (1998) Rice roots and CH4 oxidation: the activity of bacteria, their distribution and the microenvironment. Soil Biol Biochem 30:1903–1916

    Article  CAS  Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer C, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63

    Article  PubMed  CAS  Google Scholar 

  • Grayston SJ, Campbell CD (1996) Functional biodiversity of microbial communities in the rhizosphere of hybrid larch (Larix eurolepis) and Sitka spruce (Picea sitchensis). Tree Physiol 16:1031–1038

    PubMed  Google Scholar 

  • Grayston SJ, Wang S, Campbell C, Edwards A (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  • Grayston SJ, Campbell CD, Bardgett RD, Mawdsley JL, Mawdsley Clegg CD, Ritz K, Griffiths BS, Rodwell JS, Edwards SJ, Davies WJ, Elston DJ, Millard P (2003) Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Appl Soil Ecol 25:63–84

    Article  Google Scholar 

  • Grayston SJ, Campbell CD, Bardgett RD, Mawdsley JL, Clegg CD, Ritz K, Griffith BS, Rodwell JS, Edwards SJ, Davies WJ (2004) Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Appl Soil Ecol 25:63–84

    Article  Google Scholar 

  • Gregorich EG, Carter MR, Angers DA, Monreal CM, Ellert BH (1994) Towards a minimum set to assess soil organic matter quality in agricultural soils. Can J Soil Sci 76:367–385

    Google Scholar 

  • Griffiths BS, Ritz K, Ebblewhite N, Dobson G (1999) Soil microbial community structure: effects of substrate loading rates. Soil Biol Biochem 31:145–153

    Article  CAS  Google Scholar 

  • Guanghua W, Junjie L, Qi Xiaoning Q, Jian J, Yang W, Xiaobing L (2008) Effects of fertilization on bacterial community structure and function in a black soil of Dehui region estimated by Biolog and PCR-DGGE methods. Acta Ecol Sin 28:220–226

    Article  Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Haack SK, Garchow H, Klug MJ, Forney LJ (1995) Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns. Appl Environ Microbiol 61:1458–1468

    PubMed  CAS  Google Scholar 

  • Haynes RJ (1999) Size and activity of the soil microbial biomass under grass and arable management. Biol Fertil Soils 30:210–216

    Article  Google Scholar 

  • Hiltner L (1904) Uber neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berucksichtigung der Grundungung und Brache. [German]. Arb Dtsch Landwirtsch Ges 98:59–78

    Google Scholar 

  • Houlden A, Timms-Wilson TM, Day MJ, Bailey MJ (2008) Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops. FEMS Microbiol Ecol 65:193–201

    Article  PubMed  CAS  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:6793–6794

    Google Scholar 

  • Ibekwe AM, Kennedy AC (1998) Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions. FEMS Microbiol Ecol 26:151–163

    Article  CAS  Google Scholar 

  • Ibekwe AM, Kennedy AM, Frohne PS, Papiernik SK, Yang CH, Crowley DE (2002) Microbial diversity along a transect of agronomic zones. FEMS Microbiol Ecol 26:151–163

    Google Scholar 

  • Innes L, Hobbs PJ, Bardgett RD (2004) The impacts of individual plant species on rhizosphere microbial communities in soils of different fertility. Biol Fertil Soils 40:7–13

    Article  Google Scholar 

  • Jackson LE, Calderon FJ, Steenwerth KL, Scow KM, Rolston DE (2003) Responses of soil microbial processes and community structure to tillage events and implications for soilquality. Geoderma 114:305–317

    Article  CAS  Google Scholar 

  • Johansson M (1995) The chemical composition of needle and leaf litter from Scots pine, Norway spruce and white birch in Scandinavian forests. Forestry 68:49–62

    Article  Google Scholar 

  • Kang S, Mills AL (2004) Soil bacterial community structure changes following disturbance of the overlying plant community. Soil Sci 169:55–65

    Article  CAS  Google Scholar 

  • Kennedy N, Connolly J, Clipson N (2004) Impact of lime and nitrogen and plant species on fungal community structure in grassland microcosms. Environ Microbiol 7:780–788

    Article  CAS  Google Scholar 

  • Kennedy NM, Gleeson DE, Connolly J, Clipson NJW (2005) Seasonal and management influences on bacterial community structure in an upland soil. FEMS Microbiol Ecol 53:329–337

    Article  PubMed  CAS  Google Scholar 

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236

    Article  PubMed  CAS  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188

    Article  PubMed  CAS  Google Scholar 

  • Konopka A, Oliver L, Turco JRF (1998) The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microb Ecol 35:103–115

    Article  PubMed  CAS  Google Scholar 

  • Kowalchuk GA, Hol WHG, van Veen JA (2006) Rhizosphere fungal communities are influenced by Senecio jacobaea pyrrolizidine alkaloid content and composition. Soil Biol Biochem 38:2852–2859

    Article  CAS  Google Scholar 

  • Ladd JN, Amato M, Li-Kui Z, Schultz JE (1994) Differential effects of rotation, plant residue and nitrogen fertilizer on microbial biomass and organic matter in the Australian alfisol. Biol Fertil Soils 26:821–831

    Google Scholar 

  • Latour X, Corberand T, Laguerre G, Allard F, Lemanceau P (1996) The composition of fluorescent Pseudomonas population associated with roots is influenced by plant and soil type. Appl Environ Microbiol 62:2449–2456

    PubMed  CAS  Google Scholar 

  • Li X, Inubushi K, Sakamoto K (2002) Nitrous oxide concentrations in an Andisol profile and emissions to the atmosphere as influenced by the application of nitrogen fertilizres and manure. Biol Fertil Soil 35:108–113

    Article  CAS  Google Scholar 

  • Lupwayi NZ, Rice WA, Clayton GW (1998) Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol Biochem 30:1733–1741

    Article  CAS  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    Article  CAS  Google Scholar 

  • Mahaffee WF, Klöpper JW (1997) Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativus L.). Microb Ecol 34:210–223

    Article  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445

    Article  CAS  Google Scholar 

  • Matthies C, Erhard HP, Drake HL (1997) Effects of pH on the comparative culturability of fungi and bacteria from acidic and less acidic forest soils. J Basic Microbiol 37:335–343

    Article  CAS  Google Scholar 

  • Merilä P, Strömmer R, Fritze H (2002) Soil microbial activity and community structure along a primary succession transect on the landuplift coast of western Finland. Soil Biol Biochem 34:1647–1654

    Article  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Odum EP (1971) Fundamentals of ecology. W.B. Saunders, Philadelphia

    Google Scholar 

  • ØvreÃ¥s L, Torsvik V (1998) Microbial diversity and community structure in two different agricultural soil communities. Microb Ecol 36:303–315

    Article  PubMed  Google Scholar 

  • Pennanen T (2001) Microbial communities in boreal coniferous forest humus exposed to heavy metals and changes in soil pH-a summary of the use of phospholipid fatty acids, Biologw and 3H thymidine incorporation methods in field studies. Geoderma 100:91–126

    Article  CAS  Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2001) The rhizosphere. Biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York

    Google Scholar 

  • Potthoff M, Steenwerth KL, Jackson LE, Drenovsky RE, Scow KM, Joergensen RG (2006) Soil microbial community composition as affected by restoration practices in California grassland. Soil Biol Biochem 38:1851–1860

    Article  CAS  Google Scholar 

  • Preston-Mafham J, Boddy L, Randerson PF (2002) Analysis of microbial community functional diversity using sole-carbon-source utilization profiles-a critique. FEMS Microbiol Ecol 42:1–14

    PubMed  CAS  Google Scholar 

  • Priha O, Smolander A (1997) Microbial biomass and activity in soil and litter under Pinus sylvestris, Picea abies and Betula pendula at originally similar field afforestation sites. Biol Fertil Soils 24:45–51

    Article  CAS  Google Scholar 

  • Priha O, Smolander A (1999) Nitrogen transformations in soil under Pinus sylvestris and Betula pendula at originally similar forest sites. Soil Biol Biochem 31:965–977

    Article  CAS  Google Scholar 

  • Priha O, Grayston SJ, Hiukka R, Pennanen T, Smolander A (2001) Microbial community structure and characteristics of the organic matter in soils under Pinus sylvestris, Picea abies, and Betula pendula at two forest sites. Biol Fertil Soils 33:17–24

    Article  CAS  Google Scholar 

  • Ratcliff AW, Busse MD, Shestak CJ (2006) Changes in microbial community structure following herbicide (glyphosate) additions to forest soils. Appl Soil Ecol 34:114–124

    Article  Google Scholar 

  • Reinhart KO, Callaway RM (2006) Soil biota and invasive plants. New Phytol 170:445–457

    Article  PubMed  Google Scholar 

  • Rooney DC, Clipson NJW (2009) Phosphate addition and plant species alters microbial community structure in acidic upland grassland soil. Microb Ecol 57:4–13

    Article  PubMed  Google Scholar 

  • Rozak DB, Colwell RR (1978) Survival strategies of bacteria in the natural environment. Microbiol Rev 51:365–379

    Google Scholar 

  • Ruiyu L, Hong R, Junjian Z, Cuiping Y, Chenying Y, Liangsheng C, Wenxiong L (2007) Impact of allelopathic rice seedlings on rhizospheric microbial populations and their functional diversity. Acta Ecol Sin 27:3644–3654

    Article  Google Scholar 

  • Saetre P, Bååth E (2000) Spatial variation and patterns of soil microbial community structure in a mixed spruce-birch stand. Soil Biol Biochem 32:909–917

    Article  CAS  Google Scholar 

  • Saliana-Garcia JR, Hons FM, Matocha JE (1997) Long-term effects of tillage and fertilization on soil organic matter dynamics. Soil Sci Soc Am J. 61:152–159

    Google Scholar 

  • Sessitich A, Weilharter A, Gerzabek MH, Kirchmann H, Kandeler E (2006) Microbial population structure in soil particle size fractions of a long-term fertilizer field experiment. Appl Environ Microbiol 67:4215–4224

    Article  Google Scholar 

  • Smit E, Leeflang P, Gommans S, Broek JVD, Mil SV, Wernars K (2001) Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl Environ Microbiol 67:2284–2291

    Article  PubMed  CAS  Google Scholar 

  • Staddon WJ, Duchesne LC, Trevors JT (1998a) Impact of clearcutting and prescribed burning on microbial diversity and community structure in Jack pine (Pinus banksiana Lamb.) clear-cut using Biologe gram-negative microplates. World J Microbiol Biotechnol 14:119–123

    Article  Google Scholar 

  • Staddon WJ, Trevors JT, Duchesne LE, Colombo CA (1998b) Soil microbial diversity and community structure across a climatic gradient in western Canada. Biodivers Conserv 7:1081–1092

    Article  Google Scholar 

  • Steenwerth KL, Jackson LE, Calderón FJ, Stromberg MR, Scow KM (2003) Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California. Soil Biol Biochem 35:489–500

    Article  Google Scholar 

  • Steenwerth KL, Jackson LE, Calderon FJ, Scow KM, Rolston DE (2005) Response of microbial community composition and activity in agricultural and grassland soils after a simulated rainfall. Soil Biol Biochem 37:2249–2262

    Article  CAS  Google Scholar 

  • Stromberger M, Shah Z, Westfall D (2007) Soil microbial communities of no-till dryland agroecosystems across an evapotranspiration gradient. Appl Soil Ecol 35:94–106

    Article  Google Scholar 

  • Sun HY, Deng SP, Raun WR (2004) Bacterial community structure and diversity in a century-old manure-treated agroecosystem. Appl Environ Microbiol 70:5868–5874

    Article  PubMed  CAS  Google Scholar 

  • Tabatabai MA, Fu MH, Basta NT (1992) Effects of cropping systems on nitrification in soils. Commun Soil Sci Plant Anal 23:1885–1891

    Article  CAS  Google Scholar 

  • Torsvik V, ØvreÃ¥s L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  PubMed  CAS  Google Scholar 

  • Torsvik V, Salte K, Sorheim R, Goksoyr J (1990) Comparison of phenotypic diversity and DNA heterogenity in a population of soil bacteria. Appl Environ Microbiol 56:776–781

    PubMed  CAS  Google Scholar 

  • Torsvik VL, Daae FL, Goksfyr J, Sfrheim R, Vreas L (1997) Diversity of bacteria in soil and marine environments. In: Martins MT, Sato MIZ, Tiedje JM, Hagler LCN, Döbereiner J, Sanchez PS (eds) Progress in microbial ecology. SBM–ICOME, São Paulo, pp 115–120

    Google Scholar 

  • Torsvik V, ØvreÃ¥s L, Thingstad TF (2002) Prokaryotic diversity-magnitude, dynamics, and controlling factors. Science 296:1064–1066

    Article  PubMed  CAS  Google Scholar 

  • Trasar-Cepeda C, Leiros C, Gil-Sotres F, Seoane S (1998) Towards a biochemical quality index for soils: an expression relating several biological and biochemical properties. Biol Fertil Soils 26:100–106

    Article  CAS  Google Scholar 

  • Van Elsas JD, Trevors JT, Wellington EHM (1997) Modern soil microbiology. Marcel Dekker, New York, NY

    Google Scholar 

  • Vineela C, Wani SP, Ch S, Padmaja B, Vittal KPR (2008) Microbial properties of soils as affected by cropping and nutrient management practices in several long-term manurial experiments in the semi-arid tropics of India. Appl Soil Ecol 40:165–173

    Article  Google Scholar 

  • Waisel Y, Eshel A, Kafkafi U (1991) Plant roots- the hidden half. Marcel Dekkar, New York

    Google Scholar 

  • Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32:1837–1846

    Article  CAS  Google Scholar 

  • Wang M, Ming G, Zang H, Hua X, Yao J, Pang Y, Yang Y (2006) Effect of methamidophos and urea application on microbial communities in soils as determined by microbial biomass and community level physiological profiles. J Environ Sci Health B 41:399–413

    PubMed  CAS  Google Scholar 

  • Wardle DA, Yeates GW, Nicholson KS, Bonner KI, Watson RN (1999) Response of soil microbial dynamics, activity and plant litter decomposition to agricultural intensification over a seven-year period. Soil Biol Biochem 31:1707–1720

    Article  CAS  Google Scholar 

  • Weisskopf L, Tomasi N, Santelia D, Martinoia E, Langlade NB, Tabacchi R, Abou-Mansour E (2006) Isoflavonoid exudation from white lupin roots is influenced by phosphate supply, root type and cluster-root stage. New Phytol 171:657–668

    PubMed  CAS  Google Scholar 

  • Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microbiol 67:5849–5854

    Article  PubMed  CAS  Google Scholar 

  • Williamson WM, Wardle DA (2007) The soil microbial community response when plants are subjected to water stress and defoliation disturbance. Appl Soil Ecol 37:139–149

    Article  Google Scholar 

  • Winding A (1993) Fingerprinting bacterial soil communities using Biologw microtiter plates. In: Ritz K, Dighten J, Giller KE (eds) Beyond the biomass: compositional and functional analysis of soil microbial communities. Wiley, Chichester, United Kingdom, pp 85–94

    Google Scholar 

  • Winding A (1994) Fingerprinting bacterial soil communities with BIOLOGE microtitre plates. In: Ritz K, Dighton J, Giller KE (eds) Beyond the biomass: compositional and functional analysis of soil microbial communities. Wiley, Chichester, pp 85–94

    Google Scholar 

  • Yang C, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    Article  PubMed  CAS  Google Scholar 

  • Young IM, Ritz K (2000) Tillage, habitat space and function of soil microbes. Soil Tillage Res 53:201–213

    Article  Google Scholar 

  • Zak JC, Willig MR, Moorhead DL, Wildman HG (1994) Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochem 26:1101–1108

    Article  Google Scholar 

  • Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–2050

    Article  Google Scholar 

  • Zhang P, Zheng J, Pan G, Zhang X, Li L, Tippkotter R (2007) Changes in microbial community structure and function within particle size fractions of a paddy soil under different long-term fertilization treatments from the Tai Lake region, China. Colloids Surf B Biointerf 58:264–270

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Saghir Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ahemad, M., Zaidi, A., Khan, M.S., Oves, M. (2009). Factors Affecting the Variation of Microbial Communities in Different Agro-Ecosystems. In: Khan, M.S., Zaidi, A., Musarrat, J. (eds) Microbial Strategies for Crop Improvement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01979-1_15

Download citation

Publish with us

Policies and ethics