Skip to main content

Strategies for Crop Improvement in Contaminated Soils Using Metal-Tolerant Bioinoculants

  • Chapter
  • First Online:
Microbial Strategies for Crop Improvement

Abstract

Heavy metal contamination due to natural and anthropogenic sources is a global environmental concern. Release of heavy metals without proper treatment poses a serious threat to public health because of its persistence, biomagnification and accumulation in food chain. Nonbiodegradability and sludge production are the two major constraints of metal treatment. The bioremediation of soil, sludge, sediments and wastes polluted with heavy metals generally involves the active microbiological processes of biosorption, bioaccumulation, sequestration and efflux. Bioremediation using microbes well adapted to diverse physiological conditions could be utilized for remediation of heavy metal-contaminated sites. The application of proteomics in environmental bioremediation program provides a global view of the protein compositions of the microbial cells and offers a promising approach to understand the molecular mechanisms of bioremediation. In this chapter, attention is paid to highlighting the strategies for crop improvement using metal-tolerant microbes in soils contaminated with heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abram F, Su WL, Wiedmann M, Boor KJ, Coote P, Botting C, Karatzas KAJ, O’ Bryne CP (2008) Proteomic analysis of a Listeria monocytogenes mutant lacking σB identify new components of the σB regulon and highlight a role for σB in the utilization of Glycerol. Appl Environ Microbiol 74:594–604

    CAS  PubMed  Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments: biochemistry, bioavailability and risks of metals. Springer, New York

    Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    CAS  PubMed  Google Scholar 

  • Alloway BJ (1995) Soil processes and the behaviour of heavy metals. In: Alloway B (ed) Heavy metals in soils. Chapman and Hall, New York, pp 11–37

    Google Scholar 

  • Azakami H, Yamashita M, Roh JH, Suzuki H, Kumagai H, Murooka Y (1994) Nucleotide sequence of the gene for monoamine oxidase (maoA) from Escherichia coli. J Ferment Bioeng 77:315–319

    CAS  Google Scholar 

  • Bae W, Chen X (2004) Proteomic study for the cellular responses to Cd2+ in Schizosaccharomyces pombe through amino acid-coded mass tagging and liquid chromatography tandem mass spectrometry. Mol Cell Proteomics 3(6):596–607

    CAS  PubMed  Google Scholar 

  • Bagdwal N, Gupta A, Goel R (2003) Metal resistant growth promotry fluorescent Pseudomonads. In: Trivedi PC (ed) Microbial biotechnology. Aavishkar, Jaipur, India, pp 126–161

    Google Scholar 

  • Baker AJM, Walker PL (1989) Ecophysiology of metal uptake by tolerant plants. In: Shaw A (ed) Heavy metal tolerance in plants - evolutionary aspects. CRC, Boca Raton, pp 155–177

    Google Scholar 

  • Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141:876–887

    CAS  PubMed  Google Scholar 

  • Blencowe DK, Morby AP (2003) Zn(II) metabolism in prokaryotes. FEMS Microbiol Rev 27:291–311

    CAS  PubMed  Google Scholar 

  • Borsetti F, Francia F, Turner RJ, Zannoni D (2007) The thiol:disulfide oxidoreductase DsbB mediates the oxidizing effects of the toxic metalloid tellurite (TeO3 2–) on the plasma membrane redox system of the facultative phototroph Rhodobacter capsulatus. J Bacteriol 189:851–857

    CAS  PubMed  Google Scholar 

  • Cavet JS, Borrelly GPM, Robinson NJ (2003) Zn, Cu and Co in cyanobacteria: selective control of metal availability. FEMS Microbiol Rev 27:165–181

    CAS  PubMed  Google Scholar 

  • Chang WC, Hsu GS, Chiang SM, Su MC (2006) Heavy metal removal from aqueous solution by wasted biomass from a combined AS-biofilm process. Bioresource Technol 97:1503–1508

    CAS  Google Scholar 

  • Chen G, Gharib TG, Huang CC, Taylor JM, Misek DE, Kardia SL, Giordano TJ, Iannettoni MD, Orringer MB, Hanash SM, Beer DG (2002) Discordant protein and mRNA expression in lungadenocarcinomas. Mol Cell Proteomics 1:304–313

    CAS  PubMed  Google Scholar 

  • Cho UH, Park JO (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9

    CAS  PubMed  Google Scholar 

  • Choudhury R, Srivastava S (2001) Zinc resistance mechanism in bacteria. Curr Sci 81:768–775

    CAS  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    CAS  Google Scholar 

  • Di S, Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Google Scholar 

  • Dintilhac A, Claverys JP (1997) The adc locus, which affects competence for genetic transformation in Streptococcus pneumoniae, encodes an ABC transporter with a putative lipoprotein homologous to a family of streptococcal adhesins. Res Microbiol 148:119–131

    CAS  PubMed  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109

    CAS  PubMed  Google Scholar 

  • Dutt MJ, Lee KH (2000) Proteomic analysis. Curr Opin Biotechnol 11:176–179

    CAS  PubMed  Google Scholar 

  • Ernst WHO (1998) The origin and ecology of contaminated, stabilized and non-pristine soils. In: Vangronsveld J, Cunningham SD (eds) Metal-contaminated soil. Springer, New York, pp 17–29

    Google Scholar 

  • Ferianc P, Farewell A, Nyström T (1998) The cadmium-stress stimulon of Escherichia coli K-12. Microbiology 144:1045–1050

    CAS  PubMed  Google Scholar 

  • Ferianc P, Pukárová A, Godoíková J, Polek B, Tóth D (2000) The effect of cadmium on culturability, macromolecule synthesis and protein degradation in a marine Vibrio sp. Biologia 55:653–659

    CAS  Google Scholar 

  • Flathman PE, Lanza GR (1998) Phytoremediation: current views on an emerging green technology. J Soil Contam 7:415–432

    Google Scholar 

  • Foulkes EC (1998) Biological membranes in toxicology. Taylor and Francis, Philadelphia

    Google Scholar 

  • Gadd GM (1988) Accumulation of metals by microorganisms and algae. In: Rehm HJ (ed) Biotechnology: a comprehensive treatise. VCH Verlagsgesellschaft, Weinheim, pp 401–433

    Google Scholar 

  • Geslin C, Llanos J, Prieur D, Jeanthon C (2001) The manganese and iron superoxide dismutases protect Escherichia coli from heavy metal toxicity. Res Microbiol 152:901–905

    CAS  PubMed  Google Scholar 

  • Glick BR, Pattern CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanism used by plant growth promoting bacteria. Imperial College Press, London

    Google Scholar 

  • Griffin TJ, Gygi SP, Ideker T, Rist B, Eng J, Hood L, Aebersold R (2002) Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol Cell Proteomics 1:323–333

    CAS  PubMed  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    CAS  PubMed  Google Scholar 

  • Hall JL (2000) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Google Scholar 

  • Hamon RE, Mclaughlin MJ, Naidu R, Correll R (1998) Long-term changes in cadmium bioavailability in soil. Envion Sci Technol 32:3699–3703

    CAS  Google Scholar 

  • Harrison JJ, Ceri H, Turner RJ (2007) Multimetal resistance and tolerance in microbial biofilms. Nature 5:928–938

    CAS  Google Scholar 

  • Heaton ACP, Rugh CL, Wang NJ, Meagher RB (1998) Phytoremediation of mercury- and methylmercury-polluted soils using genetically engineered plants. J Soil Contam 7:497–509

    CAS  Google Scholar 

  • Higham DP, Sadler PJ, Scawen MD (1984) Cadmium resistance in Pseudomonas putida: growth and uptake of cadmium. J Gen Microbiol 131:2539–2544

    Google Scholar 

  • Hu P, Brodie EL, Sujuki Y, McAdams HH, Anderson GL (2005) Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bacteriol 187:8437–8449

    CAS  PubMed  Google Scholar 

  • Hughes MN, Poole RK (1989) Metals and micro-organisms. Chapman and Hall, New York, NY, p 290

    Google Scholar 

  • Humphery-Smith I, Cordwell SJ, Blackstock WP (1997) Proteome research: complementarity and limitations with respect to the RNA and DNA worlds. Electrophoresis 18:1217–1242

    CAS  PubMed  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC, London

    Google Scholar 

  • Kaewchai S, Praseptsan P (2002) Biosorption of heavy metal by thermotolerant polymer producing bacterial cells and the bioflocculant. Songklanakarin J Sci Technol 24:421–430

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem lett 7:1–19

    Google Scholar 

  • Kloepper JW, Litshitz R, Zablotowicz RM (1989) Free living bacterial inocula for enhancing crop producitivity. Trends Biotechnol 7:39–43

    Google Scholar 

  • Koeppe DE (1981) Lead: understanding the minimal toxicity of lead in plants. In: Lepp NW (ed) Effect of heavy metal pollution on plants, vol 2. Applied Science, London and New Jersey, pp 55–76

    Google Scholar 

  • Kunito T, Oyaizu H, Matsumoto S (1998) Ecology of soil heavy metal-resistant bacteria and perspective of bioremediation of heavy metal-contaminated soils. Rec Res Dev Agric Biol Chem 2:185–206

    CAS  Google Scholar 

  • Laddaga RA, Silver S (1985) Cadmium uptake in Escherichia coli K-12. J Bacteriol 162:1100–1105

    CAS  PubMed  Google Scholar 

  • Lawrence JR, Chenies MR, Roy R, Beaumier D, Fortin N, Swerhone GDW, Neu TR, Greer CW (2004) Microscale and molecular assessment of impacts of nickel, nutrients, and oxygen level on structure and function of river biofilm communities. Appl Environ Microbiol 70:4326–4339

    CAS  PubMed  Google Scholar 

  • Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253

    CAS  PubMed  Google Scholar 

  • Lohmeier-Vogel EM, Ung S, Turner RJ (2004) In vivo 31P nuclear magnetic resonance investigation of tellurite toxicity in Escherichia coli. Appl Environ Microbiol 70:7342–7347

    CAS  PubMed  Google Scholar 

  • Lovely DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289

    Google Scholar 

  • Lozano-Rodriguez E, Hernandez LE, Bonay P, Carpena-Ruiz RO (1997) Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. J Exp Bot 306:123–128

    Google Scholar 

  • Mahesh S, Ramesh HS, Sudhir HS, Kumar BR (2001) Microbial scavengers-fungi for Cu+2 removal from industrial waste water. J Ind Pollut Control 17:135–140

    CAS  Google Scholar 

  • Mullen MD, Wolf DC, Ferris FC, Beveridge TJ, Flemming CA, Bailey FW (1989) Bacterial sorption of heavy metals. Appl Environ Microbiol 55:3143–3149

    CAS  PubMed  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Google Scholar 

  • Munoz R, Alvarez MT, Munoz A, Terrazas E, Guieysse B, Mattiasson B (2006) Sequential removal of heavy metal ions and organic pollutants using an algal-bacterial consortium. Chemosphere 63:903–911

    CAS  PubMed  Google Scholar 

  • Naidu R, Oliver D, McConnell S (2003) Heavy metal phytoxicity in soils. In: Proceedings of the Fifth National Workshop on the assessment of site contamination. Adelaide, May 2002

    Google Scholar 

  • Naz N, Young HK, Ahmed N, Gadd GM (2005) Cadmium accumulation and DNA homology with metal resistance genes in sulfate-reducing bacteria. Appl Environ Microbiol 71:4610–4618

    CAS  PubMed  Google Scholar 

  • Neilands JB (1983) Siderophores. In: Eichhorn L, Marzilli LG (eds) Advances in inorganic biochemistry, vol 5. Elsevier, Amsterdam, pp 137–166

    Google Scholar 

  • Nies DH (1995) The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J Bacteriol 177:2707–2712

    CAS  PubMed  Google Scholar 

  • Okinaka RT, Cloud K, Hampton O et al (1999) Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J Bacteriol 181:6509–6515

    CAS  PubMed  Google Scholar 

  • Osborn AM, Bruce KD, Strike P, Ritchie DA (1997) Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon). FEMS Microbiol Rev 19:239–262

    CAS  PubMed  Google Scholar 

  • Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846

    CAS  PubMed  Google Scholar 

  • Pandey A, Nigam P, Singh D (2001) Biotechnological treatment of pollutants. Chem Ind Digest 14:93–95

    CAS  Google Scholar 

  • Pazirandeh M, Wells BM, Ryan RL (1998) Development of bacterium-based heavy metal biosorbents: enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif. Appl Environ Microbiol 64:4068–4072

    CAS  PubMed  Google Scholar 

  • Perry RD, Silver S (1982) Cadmium and manganese transport in Staphylococcus aureus membrane vesicles. J Bacteriol 150:973–976

    CAS  PubMed  Google Scholar 

  • Poole RK, Gadd GM (1989) Metal-microbe interaction. IRL, Oxford

    Google Scholar 

  • Pukárová A, Janeek S, Ferianc P, Polek B (2001) Putative Cd-stress proteins YodA, YrpE and pXO1–130 share sequence similarity with adhesin AdcA. Biologia 56:337–339

    Google Scholar 

  • Rab MFGS, Abdel FSA, Fukumori Y (2006) Effects of cadmium stress on growth, morphology and protein expression in Rhodobacter capsulatus B10. pp. Biosci Biotechnol Biochem 70:2394–2402

    Google Scholar 

  • Rani A, Shouche Y, Goel R (2008) Declination of copper toxicity in pigeon pea and soil system by growth promoting Proteus vulgaris KNP3 strain. Curr Microbiol 57:78–82

    CAS  PubMed  Google Scholar 

  • Rani A, Shouche Y, Goel R (2009) Comparative assessment for in situ bioremediation potential of cadmium resistant acidophilic Pseudomonas putida 62BN and alkalophilic Pseudomonas monteilli 97AN strains on soybean. Int J Biodet Biodegrad 63:62–66

    CAS  Google Scholar 

  • Rauser WE (1991) Cadmium-binding peptides from plants. Methods Enzymol 205:319–333

    CAS  PubMed  Google Scholar 

  • Rawlings DE, Johnson DB (2007) The microbiology of biomining: development and optimization of mineral oxidizing microbial consortia. Microbiology 153:315–324

    CAS  PubMed  Google Scholar 

  • Romero-Puertas MC, Palma JM, Gomez M, Del Rıo LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686

    CAS  Google Scholar 

  • Ross S (1994) Toxic metals in soil-plant systems. Wiley, Chichester, UK

    Google Scholar 

  • Rough DA, Lee BTO, Morby AP (1995) Understanding celllular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance. J Ind Microbiol 14:132–141

    Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    CAS  PubMed  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, Del Rıo LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    CAS  PubMed  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    PubMed  Google Scholar 

  • Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Goldbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887–898

    PubMed  Google Scholar 

  • Sengar RS, Pandey M (1996) Inhibition of chlorophyll biosynthesis by lead in greening Pisum sativum leaf segments. Biol Plant 38:459–462

    CAS  Google Scholar 

  • Silver S, Walderhaug M (1992) Gene-regulation of plasmid-determined and chromosome-determined inorganic ion transport in bacteria. Microbiol Rev 56:195–228

    CAS  PubMed  Google Scholar 

  • Singh R, Paul D, Jain R (2006) Biofilms: implications in bioremediation. Trends Microbiol 14:389–397

    CAS  PubMed  Google Scholar 

  • Sorokin A, Bolotin A, Purnelle B, Hilbert H, Lauber J, Dusterhoft A, Ehrlich SD (1997) Sequence of the Bacillus subtilis genome region in the vicinity of the lev operon reveals two new extracytoplasmic function RNA polymerase sigma factors SigV and SigZ. Microbiology 143:2939–2943

    CAS  PubMed  Google Scholar 

  • Stiborova M, Doubravova M, Leblova SC (1986) Comparative study of the effect of heavy metal ions on ribulose-1, 1-biphosphate carboxylase and phosphoenolpyruvete carboxylase. Biochem Physiol Pflanzen 181:373–379

    CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    CAS  PubMed  Google Scholar 

  • Sugino H, Sasaki M, Azakami H, Yamashita M, Murooka Y (1992) A monoamine-regulated Klebsiella aerogenes operon containing the monoamine oxidase structural gene (maoA) and the maoC gene. J Bacteriol 174:2485–2492

    CAS  PubMed  Google Scholar 

  • Tripathi M, Munot HP, Shouche Y, Meyer JM, Goel R (2005) Isolation and functional characterization of siderophore producing lead and cadmium resistant Pseudomonas putida KNP9. Curr Microbiol 50:233–237

    CAS  PubMed  Google Scholar 

  • Tyers M, Mann M (2003) From genomics to proteomics. Nature 422:193–197

    CAS  PubMed  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:19–206

    Google Scholar 

  • VanBogelen RA, Kelley PM, Neidhardt FC (1987) Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. J Bacteriol 169:26–32

    CAS  PubMed  Google Scholar 

  • VanBogelen RA, Abshire KZ, Pertsemlidis A, Clark RL, Neidhardt FC (1996) Gene-protein database of Escherichia coli K-12. In: Neidhardt FC (ed) Escherichia coli and Salmonella. American Society for Microbiology, Washington, DC, pp 2067–2117

    Google Scholar 

  • Vasudevan P, Padmavathy V, Tewari N, Dhingra SC (2001) Biosorption of heavy metal ions. J Sci Ind Res 60:112–120

    CAS  Google Scholar 

  • Vilchez R, Pozo C, Gomez MA, Rodelas B, Gonzalez-Lopez J (2007) Dominance of sphingomonads in a copper exposed biofilm community for groundwater treatment. Microbiology 153:325–337

    CAS  PubMed  Google Scholar 

  • Volesky B (1990) Biosorption of heavy metals. CRC, Boca Raton

    Google Scholar 

  • Wang V, Brown HN, Crowley DE, Szaniszlo PJ (1993) Evidence for direct utilization of siderophore, ferroxamine B in axenically grown cucumber. Plant Cell Environ 16:579–585

    CAS  Google Scholar 

  • Wang CL, Michel PC, Dawson SC, Kitisakkul S, Baross JA, Keasling JD, Clark DS (1997) Cadmium removal by a new strain of Pseudomonas aeruginosa in aerobic culture. Appl Environ Microbiol 63:4075–4078

    CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007a) Cadmium, chromium and copper in greengram plants. Agron Sustain Dev 27:145–153

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007b) Impact of heavy metal toxicity on plant growth, symbiosis, seed yield and nitrogen and metal uptake in chickpea. Aust J Exp Agric 47:712–720

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007c) Chromium reduction, plant growth-promoting potentials, and metal solubilization by Bacillus sp. isolated from alluvial soil. Curr Microbiol 54:237–243

    CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007d) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70:36–45

    CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008a) Effects of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Bull Environ Contam Toxicol 81:152–158

    CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008b) Chromium reducing and plant growth promoting Mesorhizobium improves chickpea growth in chromium amended soil. Biotechnol Lett 30:159–163

    CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008c) Effect of metal tolerant plant growth promoting Rhizobium on the performance of pea grown in metal amended soil. Arch Environ Contam Toxicol 55:33–42

    CAS  PubMed  Google Scholar 

  • Yoshida N, Kato T, Yoshida T, Ogawa K, Yamashita M, Murooka Y (2002) Bacterium-based heavy metal biosorbents: enhanced uptake of cadmium by Escherichia coli expressing a metallothionein fused to β-galactosidase. Biotechniques 32:551–558

    CAS  PubMed  Google Scholar 

  • Zannoni D, Borsetti F, Harrison JJ, Turner RJ (2007) The bacterial response to the chalcogen metalloids Se and Te. Adv Microb Physiol 53:1–71

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reeta Goel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rani, A., Goel, R. (2009). Strategies for Crop Improvement in Contaminated Soils Using Metal-Tolerant Bioinoculants. In: Khan, M., Zaidi, A., Musarrat, J. (eds) Microbial Strategies for Crop Improvement. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01979-1_5

Download citation

Publish with us

Policies and ethics