Skip to main content

Introduction of Bacterial Plastics PHA, PLA, PBS, PE, PTT, and PPP

  • Chapter
  • First Online:
Plastics from Bacteria

Part of the book series: Microbiology Monographs ((MICROMONO,volume 14))

Abstract

Polyhydroxyalkanoates (PHA), poly(lactic acid) (PLA), poly(butylene succinate) (PBS), polyethylene (PE), poly(trimethylene terephthalate) (PTT), and poly(p-phenylene) (PPP) are the best studied polymers containing at least one monomer synthesized via bacterial transformation. Among them, PHA, PLA, and PBS are well known for their biodegradability, whereas PE, PTT and PPP are probably less biodegradable or have been less studied in terms of their biodegradability. Over the past few years, their properties and applications have been studied in detail, and products have been developed. Physical and chemical modifications to reduce their cost or improve their properties have been conducted. Throughout this book, you will find more a detailed description of these bacterial plastics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aamer AS, Fariha H, Abdul H, Safia A (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265

    Article  CAS  Google Scholar 

  • Abou-Zeid DM, Müller RJ, Deckwer WD (2001) Anaerobic biodegradation of natural and synthetic polyesters. Dissertation, Technical University of Braunschweig. http://opus.tu-bs.de/opus/volltexte/2001/246

  • Albertsson AC, Barenstedt C, Karlsson S (1994) Abiotic degradation products from enhanced environmentally degradable polyethylene. Acta Polym 45:97–103

    Article  CAS  Google Scholar 

  • Avella M, La Rota G, Martuscelli E, Raimo M (2000) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and wheat straw fibre composites: thermal, mechanical properties and biodegradation behaviour. J Mater Sci 35:829–836

    Article  CAS  Google Scholar 

  • Baki H, Steinbüchel A (2007) Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol 74:1–12

    Article  CAS  Google Scholar 

  • Ballard DGH, Courtis A, Shirley IM, Taylor SC (1988) Synthesis of polyphenylene from a cis-dihydrocatechol, a biologically produced monomer. Macromolecules 21:294–304

    Article  CAS  Google Scholar 

  • Balsamo V, Müller AJ, Gyldenfeldt F, Stadler R (1998) Ternary ABC block copolymers based on one glassy and two crystallizable blocks: polystyrene-block-polyethylene-block-poly(e-caprolactone). Macromol Chem Phys 199:1063–1070

    CAS  Google Scholar 

  • Bao Z, Yu L (1995) Exploration of palladium-catalyzed reactions for the synthesis of conjugated polymers. Proc SPIE 2528:210–218

    Article  CAS  Google Scholar 

  • Bao Z, Chan WK, Yu L (1995) Exploration of the Stille coupling reaction for the synthesis of functional polymers. J Am Chem Soc 117:12426–12435

    Article  CAS  Google Scholar 

  • Bhatia A, Gupta RK, Bhattacharya SN, Choi HJ (2007) Compatibility of biodegradable poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) blends for packaging application. Korea Aust Rheol J 19:125–131

    Google Scholar 

  • Bikiaris D, Prinos J, Koutsopoulos K, Vouroutzis N, Pavlidou E, Frangis N et al (1998) LDPE/plasticized starch blends containing PE-g-MA copolymer as compatibilizer. Polym Degrad Stab 59:287–291

    Article  CAS  Google Scholar 

  • Birgerson J, Fahlman M, Bröms P, Salaneck WR (1996a) Conjugated polymer surfaces and interfaces: a mini-review and some new results. Synth Met 80:125–130

    Article  CAS  Google Scholar 

  • Birgerson J, Kaeriyama K, Barta P, Bröms P, Fahlman M, Granlund T, Salaneck WR (1996b) Efficient blue-light emitting devices from conjugated polymer blends. Adv Mater 8:983–985

    Article  Google Scholar 

  • Bonhomme S, Cuer A, Delort AM, Lemaire J, Sancelme M, Scott C (2003) Environmental biodegradation of polyethylene. Polym Degrad Stab 81:441–452

    Article  CAS  Google Scholar 

  • Cargill (2007) Developing products that protect the environment. http://www. cargill.com/about/citizenship/developing products.htm

  • Chaturvedi V, Tanaka S, Kaeriyama K (1992) Preparation of poly(p-phenylene) via processable precursors. J Chem Soc Chem Commun 22:1658–1659

    Article  Google Scholar 

  • Chen GQ (2009) A polyhydroxyalkanoates based bio- and materials industry. Chem Soc Rev. doi:10.1039/b812677c

    Google Scholar 

  • Chen GQ, Wu Q (2005a) Microbial production and applications of chiral hydroxyalkanoates. Appl Microbiol Biotechnol 67:592–599

    Article  CAS  PubMed  Google Scholar 

  • Chen GQ, Wu Q (2005b) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Luo W, Wang S, Bei J (2003) Synthesis and properties of poly(L-lactide)-poly(ethylene glycol) multiblock copolymers by coupling triblock copolymers. Polym Adv Technol 14:245–253

    Article  CAS  Google Scholar 

  • Chen K, Tang X, Chen S, Fu G (2004) Study on the macrokinetics of poly(trimethylene terephthalate) polycondensation reaction. J Appl Polym Sci 92:1765–1770

    Article  CAS  Google Scholar 

  • Chen X, Yang K, Hou G, Chen Y, Dong Y, Liao Z (2007) Crystallization behavior and crystal structure of poly(ethylene-co-trimethylene terephthalate)s. J Appl Polym Sci 105:3069–3076

    Article  CAS  Google Scholar 

  • Chen ZF, Cheng ST, Xu KT (2009) Block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxyhexanoate-co-3- hydroxyoctanoate). Biomaterials 30:2219–2230

    Article  CAS  PubMed  Google Scholar 

  • Chiu FC, Ting MH (2007) Thermal properties and phase morphology of melt-mixed poly(trimethylene terephthalate)/polycarbonate blends-mixing time effect. Polym Test 26:338–350

    Article  CAS  Google Scholar 

  • Chuah HH (2004) Effect of process variables on bulk development of air-textured poly(trimethylene terephthalate) bulk continuous filament. J Appl Polym Sci 92:1011–1017

    Article  CAS  Google Scholar 

  • Chuah HH, Lin VD, Soni U (2001) PTT molecular weight and Mark-Houwink equation. Polymer 42:7137–7139

    Article  CAS  Google Scholar 

  • Cruz-Pinto JJC, Carvalho MES, Ferreira JFA (1994) The kinetics and mechanism of polyethylene photo-oxidation. Angew Makromol Chem 216:113–133

    Article  CAS  Google Scholar 

  • Darwin PRK, Abdelilah A, Elise D, Josefina LC, Sebastian MG (2003) Synthesis, characterization, and properties of poly(ethylene terephthalate)/poly(1, 4-butylene succinate) block copolymers. Polymer 44:1321–1330

    Article  Google Scholar 

  • Doi Y, Kumagai Y, Tanahashi N, Mukai K (1992) Structural effects on biodegradation of microbial and synthetic poly(hydroxyalkanoate). In: Vert M, Feijen J, Albertsson A, Scott G, Chiellini E (eds) Biodegradable polymers and plastics. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly(hydroxybutyrate-co-hydroxyhexanoate). Macromolecules 23:4822–4828

    Article  Google Scholar 

  • Edwards A, Blumstengel S, Sokolik I, Dorsinville R, Yun H, Kwei TK, Okamoto Y (1997) Blue photo- and electroluminescence from poly(benzoyl-1,4-phenylene). Appl Phys Lett 70:298–300

    Article  CAS  Google Scholar 

  • Fukuzaki H, Yoshida M, Asano M, Kumakura M (1989) Synthesis of copoly(D,L-lactic acid) with relative low molecular weight and in vitro degradation. Eur Polym J 25:1019–1026

    Article  CAS  Google Scholar 

  • Galegoa N, Rozsaa C, Sa’nchez R, Fungc J, Va’zquezd A, Tom JS (2000) Characterization and application of poly(β-hydroxyalkanoates) family as composite biomaterials. Polym Test 19:485–492

    Article  Google Scholar 

  • Gan ZH, Abe H, Kurokawa H, Doi Y (2001) Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters. Biomacromolecules 2:605–613

    Article  CAS  PubMed  Google Scholar 

  • Gilan I, Hadar Y, Sivan A (2004) Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl Microbiol Biotechnol 65:97–104

    CAS  Google Scholar 

  • Göpferich A (1997) Mechanisms of polymer degradation and elimination. In: Domb AJ, Kost J, Wiseman DM (eds) Handbook of biodegradable polymers. Harwood, Amsterdam, pp 451–471

    Google Scholar 

  • Griffin JL (1977) Biodegradable synthetic resin sheet material containing starch and a fatty material. Coloroll Limited Assignee. C08 J 003/20, US Patent 4,016,117

    Google Scholar 

  • Grimsdale AC, Müllen K (2006) Polyphenylene-type emissive materials: poly(para-phenylene)s, polyfluorenes, and ladder polymers. Adv Polym Sci. doi:10.1007/12_076

    Google Scholar 

  • Gu JD (2003) Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int Biodeterior Biodegrad 52:69–91

    Article  CAS  Google Scholar 

  • Gu JD, Ford TE, Mitton DB, Mitchell R (2000) Microbial corrosion of metals. In: Revie W (ed) The Uhlig corrosion handbook, 2nd edn. Wiley, New York, pp 915–927

    Google Scholar 

  • Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98:1093–1100

    Article  CAS  PubMed  Google Scholar 

  • Harada M, Ohya T, Iida K, Hayashi H, Hirano K, Fukuda H (2007) Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent. J Appl Polym Sci 106:1813–1820

    Article  CAS  Google Scholar 

  • Heidary S, Gordon B (1994) Hydrolyzable poly(ethylene terephthalate). J Environ Polym Degrad 2:19–26

    Article  CAS  Google Scholar 

  • Hiltunen K, Seppälä JV, Itävaara M, Härkönen M (1997) The biodegradation of lactic acid-based poly(ester-urethanes). J Environ Polym Degrad 5:167–173

    CAS  Google Scholar 

  • Hossein AK, Seyed HJ, Ahmad A (2008) A review on homopolymer, blends, and nanocomposites of poly(trimethylene terephthalate) as a new addition to the aromatic polyesters class. Iran Polym J 17:19–38

    Google Scholar 

  • Huang SJ, Byrne CA (1980) Biodegradable polymers: photolysis and fungal degradation of poly(aryleneketoesters). J Appl Polym Sci 25:1951–1960

    Article  CAS  Google Scholar 

  • Huang JS, Zhang HF, An HY, TianJ HJY, Chen BJ, Liu SY, Shen JC (1996) Blue electroluminescent diodes utilizing blend of poly(2,5-dibutoxyphenylene) in poly(N-vinylcarbazole). Chin Phys Lett 13:944–946

    Article  CAS  Google Scholar 

  • Jafari SH, Asadinezhad A, Yavari A, Khonakdar HA, Böhme F (2005) Compatibilizing effects on the phase morphology and thermal properties of polymer blends based on PTT and m-LLDPE. Polym Bull 54:417–426

    Article  CAS  Google Scholar 

  • Jendrossek D, Frisse A, Andermann M, Kratzin HD, Stanislawski T, Schlegel HG (1995) Biochemical and molecular characterization of the Pseudomonas lemoignei polyhydroxyalkanoate depolymerase system. J Bacteriol 1773:596–607

    Google Scholar 

  • Jeon O, Lee SH, Kim SH, Lee YM, Kim YH (2003) Synthesis and characterization of poly(l-lactide)−poly(ε-caprolactone) multiblock copolymers. Macromolecules 36:5585

    Article  CAS  Google Scholar 

  • Jin HJ, Lee BY, Kim MN, Yoon JS (2000a) Properties and biodegradation of poly(ethylene adipate) and poly(butylene succinate) containing styrene glycol units. Eur Polym J 36:2693–2698

    Article  CAS  Google Scholar 

  • Jin HJ, Lee BY, Kim MN (2000b) Thermal and mechanical properties of mandelic acid-copolymerized poly(butylene succinate) and poly(ethylene adipate). J Polym Sci Part B Polym Phys 38:1504–1511

    Article  CAS  Google Scholar 

  • Jin HJ, Lee BY, Kim MN, Yoon JS (2000c) Properties and biodegradation of poly(ethylene adipate) and poly(butylene succinate) containing styrene glycol units. Eur Polym J 36:2693–2698

    Article  CAS  Google Scholar 

  • Jin HJ, Kim DS, Lee BY, Kim MN, Lee IM, Lee HS et al (2000d) Chain extension and biodegradation of poly(butylene succinate) with maleic acid units. J Polym Sci Part B 38:2240–2246

    Article  CAS  Google Scholar 

  • Jin HJ, Kim DS, Kim MN, Lee IM, Lee HS, Yoon JS (2001) Synthesis and properties of poly(butylene succinate) with N-hexenyl side branches. J Appl Polym Sci 81:2219–2226

    Article  CAS  Google Scholar 

  • Jing WX, Kraft A, Moratti SC, Grüner J, Cacialli F, Hamer PJ, HolmesAB FRH (1994) Synthesis of a polyphenylene light-emitting polymer. Synth Met 67:161–163

    Article  CAS  Google Scholar 

  • Johnson E, Pometto AL, Nikolov ZL (1993) Degradation of degradable starch–polyethylene plastics in a compost environment. Appl Environ Microbiol 59:1155–1161

    CAS  PubMed  Google Scholar 

  • Jung IK, Lee KH, Chin IJ, Yoon JS, Kim MN (1999) Properties of biodegradable copolyesters of succinic acid-1,4-butanediol/succinic acid-1,4-cyclohexanedi- methanol. J Appl Polym Sci 72:553–561

    Article  CAS  Google Scholar 

  • Kasuya T, Nakajima H, Kitamoto K (1999) Cloning and characterization of the bipA gene encoding ER chaperone BiP from Aspergillus oryzae. J Biosci Bioeng 88:472–478

    Article  CAS  PubMed  Google Scholar 

  • Kim DJ, Kim WS, Lee DH, Min KE, Park LS, Kang IK, Jeon IR, Seo KH (2001) Modification of poly(butylene succinate) with peroxide: crosslinking, physical and thermal properties, and biodegradation. J Appl Polym Sci 81:1115–1124

    Article  CAS  Google Scholar 

  • Kita K, Mashiba S, Nagita M, Ishimaru K, Okamoto K, Yanase H, Kato N (1997) Cloning of poly(3-hydroxybutyrate) depolymerase from a marine bacterium, Alcaligenes faecalis AE122, and characterization of its gene product. Biochim Biophys Acta 1352:113–122

    CAS  PubMed  Google Scholar 

  • Krutphan P, Supaphol P (2005) Thermal and crystallization characteristics of poly(trimethylene terephthalate)/poly(ethylene naphthalate) blends. Eur Polym J 41:1561–1568

    Article  CAS  Google Scholar 

  • Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Wang S (2006) Biodegradable polymers-bamboo fibre composite with biobased coupling agent. Compos Part A 37:80–91

    Article  CAS  Google Scholar 

  • Li J, Li X, Ni X, Leong KW (2003) Synthesis and characterization of new biodegradable amphiphilic poly(ethylene oxide)-b-poly[(R)-3-hydroxybutyrate]-b-poly(ethylene oxide) triblock copolymers. Macromolecules 36:2661–2667

    Article  CAS  Google Scholar 

  • Li S, Li Z, Fang X, Chen GQ, Huang YM, Xu K (2008a) Synthesis and characterization of polyparaphenylene from cis-dihydrocatechol. J Appl Polym Sci 110:2085–2093

    Article  CAS  Google Scholar 

  • Li YD, Zeng JB, Wang XL, Yang KK, Wang YZ (2008b) Structure and properties of soy protein/poly(butylene succinate) blends with improved compatibility. Biomacromolecules 9:3157–3164

    Article  CAS  PubMed  Google Scholar 

  • Liu CY, Wang J, He JS (2002) Rheological and thermal properties of m-LLDPE blends with m-HDPE and LDPE. Polymer 43:3811–3818

    Article  CAS  Google Scholar 

  • Liu LF, Yu JY, Cheng LD, Yang XJ (2009) Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre. Polym Degrad Stab 94:90–94

    Article  CAS  Google Scholar 

  • Ljungberg N, Wesslen B (2002) The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). J Appl Polym Sci 86:1227–1234

    Article  CAS  Google Scholar 

  • Loh XJ, Goh SH, Li J (2007) Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly[(R)-3-hydroxybutyrate], poly(ethylene glycol), and poly(propylene glycol). Biomacromolecules 8:585–593

    Article  CAS  PubMed  Google Scholar 

  • Luo RC, Xu KT, Chen GQ (2007) Study of miscibility, crystallization, mechanical properties and thermal stability of blends of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). J Appl Polym Sci 105:3402–3408

    Article  CAS  Google Scholar 

  • Luyta AS, Geethamma VG (2007) Effect of oxidized paraffin wax on the thermal and mechanical properties of linear low-density polyethylene–layered silicate nanocomposites. Polym Test 26:461–470

    Article  CAS  Google Scholar 

  • Luzier WD (1992) Materials derived from biomass/biodegradable materials. Proc Natl Acad Sci U S A 89:839–842

    Article  CAS  PubMed  Google Scholar 

  • Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from polylactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97:2014–2025

    Article  CAS  Google Scholar 

  • McGehee MD, Heeger AJ (2000) Semiconducting (conjugated) polymers as materials for solid-state lasers. Adv Mater 12:1655–1668

    Article  CAS  Google Scholar 

  • Misra SK, Valappil S, Roy I, Boccaccini AR (2006) Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications. Biomacromolecules 7:2249–2258

    Article  CAS  PubMed  Google Scholar 

  • Mitschke U, Bäuerle P (2000) The electroluminescence of organic materials. J Mater Chem 10:1471–1507

    Article  CAS  Google Scholar 

  • Müller RJ, Kleeberg I, Deckwer WD (2001) Biodegradation of polyesters containing aromatic constituents. J Biotechnol 86:87–95

    Article  PubMed  Google Scholar 

  • Nadkarni VM, Rath AK (2002) In: Fakirov S (ed) Handbook of thermoplastic polyesters. Wiley-VCH, Weinheim

    Google Scholar 

  • Nagata M, Kitotsukuri T, Minami S, Tsutsumi N, Sakai W (1997) Enzymatic degradation of poly(ethylene terephthalate) copolymers with aliphatic dicarboxylic acids and: or poly(ethylene glycol). Eur Polym J 10:1701–1705

    Article  Google Scholar 

  • Nakayama A, Kawasaki N, Arvanitoyannis I, Aiba S, Yamamoto N (1996) Synthesis and biodegradation of poly(γ-butyrolactone-co-L-lactide). J Environ Polym Degrad 4:205–211

    Article  CAS  Google Scholar 

  • Ojumu TV, Yu J, Solomon BO (2004) Production of polyhydroxyalkanoates, a bacterial biodegradable polymer. Afr J Biotechnol 3:18–24

    CAS  Google Scholar 

  • Ou CF (2002) Study on poly(oxybenzoate-p-trimethylene terephthalate) copolymers. Eur Polym J 38:2405–2411

    Article  CAS  Google Scholar 

  • Pan JL, Zhong ML, Ning NY, Yang SY (2006) Double yielding in injection-molded polycarbonate/polyethylene blends: composition dependence. Macromol Mater Eng 291:477–484

    Article  CAS  Google Scholar 

  • Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247

    Article  CAS  Google Scholar 

  • Pisitsak P, Magaraphan R (2009) Rheological, morphological, thermal, and mechanical properties of blends of vectra A950 and poly(trimethylene terephthalate): a study on a high-viscosity-ratio system. Polym Test 28:116–127

    Article  CAS  Google Scholar 

  • Plastics recycling-Economic and Ecological Options (2006) ICPE 4:1–12. http://www.envis-icpe.com

  • Pospiech D, Komber H, Jehnichen D, Haussler L, Eckstein K, Scheibner H, Janke A, Kricheldorf HR, Petermann O (2005) Multiblock copolymers of l-lactide and trimethylene carbonate. Biomacromolecules 6:439–446

    Article  CAS  PubMed  Google Scholar 

  • Pranamuda H, Tokiwa Y (1999) Degradation of poly (L-lactide) by strains belonging to genus Amycolatopsis. Biotechnol Lett 21:901–905

    Article  CAS  Google Scholar 

  • Qiua Z, Ikeharab T, Nishi T (2003) Melting behaviour of poly(butylene succinate) in miscible blends with poly(ethylene oxide). Polymer 44:3095–3099

    Article  CAS  Google Scholar 

  • Romen F, Reinhardt S, Jendrossek D (2004) Thermotolerant poly(3-hydroxybutyrate)- degrading bacteria from hot compost and characterization of the PHB depolymerase of Schlegelella sp. KB1a. Arch Microbiol 182:157–164

    Article  CAS  PubMed  Google Scholar 

  • Run M, Song A, Wang Y, Yao C (2007) Melting, crystallization behaviors, and nonisothermal crystallization kinetics of PET/PTT/PBT ternary blends. J Appl Polym Sci 104:3459–3468

    Article  CAS  Google Scholar 

  • Salaneck WR (1997) Conjugated polymer surfaces and interfaces. Philos Trans R Soc Lond A 355:789–799

    Article  CAS  Google Scholar 

  • Savenkova L, Gercberga Z, Nikolaeva V, Dzene A, Bibers I, Kalnin M (2000) Mechanical properties and biodegradation characteristics of PHB-based films. Process Biochem 35:573–579

    Article  CAS  Google Scholar 

  • Scott G (1999) Polymers in modern life. Polymers and the environment. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Seo YW, Pang KY, Kim YH (2006) Property modulation of poly(trimethylene terephthalate) by incorporation of nonlinear isophthalate unit. Macromol Mater Eng 291:1327–1337

    Article  CAS  Google Scholar 

  • Shibata M, Inoue Y, Miyoshi M (2006) Mechanical properties, morphology, and crystallization behavior of blends of poly(L-lactide) with poly(butylene succinate-co-L-lactate) and poly(butylene succinate). Polymer 47:3557–3564

    Article  CAS  Google Scholar 

  • Sivan A, Szanto M, Pavlov V (2006) Biofilm development of the polyethylene degrading bacterium Rhodococcus ruber. Appl Microbiol Biotechnol 72:346–352

    Article  CAS  PubMed  Google Scholar 

  • Spyros A, Marchessault RH (1996) Segmental dynamics in poly(3-hydroxybutyrate-co-4-hydroxybutyrate)s above the glass transition temperature: 13C nuclear magnetic relaxation in the amorphous phase. Macromolecules 29:2479–2486

    Article  CAS  Google Scholar 

  • Steinbüchel A (1991) Polyhydroxyalkanoic acids. In: Byrom D (ed) Biomaterials. Macmillan, Basingstoke, pp 125–213

    Google Scholar 

  • Sun L, Liu YX, Zhu L, Hsiao BS, Avila-Orta CA (2004) Self-assembly and crystallization behavior of a double-crystalline polyethylene-block-poly(ethylene oxide) diblock copolymer. Polymer 45:8181–8193

    Article  CAS  Google Scholar 

  • Sun J, Dai ZW, Zhao Y, Chen GQ (2007) In vitro effect of oligo hydroxyalkanoates on the growth of murine fibroblast cell line L929. Biomaterials 28:3896–3903

    Article  CAS  PubMed  Google Scholar 

  • Suyatma NE, Copinet A, Tighzert L, Coma V (2004) Mechanical and barrier properties of biodegradable films made from chitosan and poly(lactic acid) blends. J Polym Environ 12:1–6

    Article  CAS  Google Scholar 

  • Takaku H, Kimoto A, Kodaira S, Nashimoto M, Takagi M (2006) Isolation of a gram-positive poly(3-hydroxybutyrate) (PHB)-degrading bacterium from compost, and cloning and characterization of a gene encoding PHB depolymerase of Bacillus megaterium N-18–25-9. FEMS Microbiol Lett 264:152–159

    Article  CAS  PubMed  Google Scholar 

  • Tanigaki N, Yase K, Kaito A (1996) Oriented films of insoluble polymers by the friction technique. Thin Solid Films 273:263–266

    Article  CAS  Google Scholar 

  • Tohru T, Nobuo O, Koji N, Takashi O (2003) Environmental stress cracking of poly(butylene succinate)/cellulose triacetate blend films. J Appl Polym Sci 87:510–515

    Article  CAS  Google Scholar 

  • Tomita K, Kuraki Y, Nagai K (1999) Isolation of thermophiles degradating poly(L-lactic acid). J Biosci Bioeng 87:752–755

    Article  CAS  PubMed  Google Scholar 

  • Torres A, Li S, Roussos S, Vert M (1996) Screening of microorganisms for biodegradation of poly(lactic acid) and lactic acid-containing polymers. Appl Environ Microbiol 62:2393–2397

    CAS  PubMed  Google Scholar 

  • Urakami T, Imagawa S, Harada M, Iwamoto A, Tokiwa Y (2000) Development of biodegradable plastic-poly-beta-hydroxybutyrate/polycaprolactone blend polymer. Kobunshi Ronbunshu 57:263–270

    CAS  Google Scholar 

  • Velmathi S, Nagahata R, Sugiyama J, Takeuchi K (2005) A rapid eco-friendly synthesis of poly(butylene succinate) by a direct polyesterification under microwave irradiation. Macromol Rapid Commun 26:1163–1167

    Article  CAS  Google Scholar 

  • Vona IA, Costanza JR, Cantor HA, Roberts WJ (1965) Manufacture of plastics, vol 1. Wiley, New York, pp 141–142

    Google Scholar 

  • Wang HH, Li XT, Chen GQ (2009) Production and characterization of homopolymer polyhydroxyheptanoate (P3HHp) by a fadBA knockout mutant Pseudomonas putida KTOY06 derived from P. putida KT2442. Process Biochem 44:106–111

    Article  CAS  Google Scholar 

  • Wei GF, Wang LY, Chen GK, Gu LX (2006) Synthesis and characterization of poly(ethylene-cotrimethylene terephthalate)s. J Appl Polym Sci 100:1511–1521

    Article  CAS  Google Scholar 

  • Williams SF, Peoples OP (1996) Biodegradable plastics from plants. Chem Tech 38:38–44

    Google Scholar 

  • Wilt U, Muller RJ, Augusta J, Widdecke H, Deckwer WD (1994a) Synthesis, properties and biodegradability of polyesters based on 1,3-propanediol. Macromol Chem Phys 195:793–802

    Article  Google Scholar 

  • Wilt U, Muller RJ, Deckwer WD (1994b) Biodegradation of polyester copolymers containing aromatic compounds. J Macromol Sci Pure Appl Chem A32:851–856

    Google Scholar 

  • Wu LP, Chen ST, Li ZB, Xu KT, Chen G-Q (2008) Synthesis, characterization and biocompatibility of novel biodegradable poly[((R)-3-hydroxybutyrate)-block-(D,L-lactide)-block-(ε-caprolactone)] triblock copolymers. Polym Int 57:939–949

    Article  CAS  Google Scholar 

  • Yamada-Onodera K, Mukumoto H, Katsuyaya Y, Saiganji A, Tani Y (2001) Degradation of polyethylene by a fungus Penicillium simplicissimum YK. Polym Degrad Stab 72:323–327

    Article  CAS  Google Scholar 

  • Yang Y, Brown H, Li S (2002) Some sorption characteristics of poly(trimethylene terephthalate) with disperse dyes. J Appl Polym Sci 86:223–229

    Article  CAS  Google Scholar 

  • Yavari A, Asadinezhad A, Jafari SH, Khonakdar HA, Böhme F, Hässler R (2005) Effect of transesterification products on the miscibility and phase behavior of PTT/PC blends. Eur Polym J 41:2880–2886

    Article  CAS  Google Scholar 

  • Yeh JT, Chao CC, Chen CH (2000) Effects of processing conditions on the barrier properties of polyethylene (PE)/modified polyamide (MPA) and modified polyethylene (MPE)/polyamide (PA) blends. J Appl Polym Sci 76:1997–2008

    Article  CAS  Google Scholar 

  • Zenkiewicz M, Richert J, Rytlewski P, Moraczewski K, Stepczynska M, Karasiewicza T (2009) Characterisation of multi-extruded poly(lactic acid). Polym Test. doi:10.1016/j.polymertesting.2009.01.012

    Google Scholar 

  • Zhang JF, Sun XJ (2004) Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride. Biomacromolecules 5:1446–1451

    Article  CAS  PubMed  Google Scholar 

  • Zhao CG, Qin HL, Gong FL, Feng M, Zhang S, Yang MS (2005) Mechanical, thermal and flammability properties of polyethylene/clay nanocomposites. Polym Degrad Stab 87:183–189

    Article  CAS  Google Scholar 

  • Zhong ML, Yang W (2004) Morphology-tensile behavior relationship in injection molded poly(ethylene terephthalate)/polyethylene and polycarbonate/polyethylene blends (I). J Mater Sci 39:413–431

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Qiang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, GQ. (2010). Introduction of Bacterial Plastics PHA, PLA, PBS, PE, PTT, and PPP. In: Chen, GQ. (eds) Plastics from Bacteria. Microbiology Monographs, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03287-5_1

Download citation

Publish with us

Policies and ethics