Skip to main content

Nodax™ Class PHA Copolymers: Their Properties and Applications

  • Chapter
  • First Online:
Plastics from Bacteria

Part of the book series: Microbiology Monographs ((MICROMONO,volume 14))

Abstract

A family of promising polyhydroxyalkanoate(PHA) polyesters called Nodax™ class PHA copolymers, consisting of (R)-3-hydroxyalkanoate comonomer units with medium-size-chain side groups and (R)-3-hydroxybutyrate, are described. The bio-based biodegradable plastics made from renewable resources will be commercially available from Meredian. Because of the unique design of the molecular structure, the Nodax™ class PHA copolymers have a set of useful attributes, including polyolefin-like thermomechanical properties, polyester-like physicochemical properties, and interesting biological properties. Therefore, broad ranges of industrial and consumer product applications are anticipated. The structure and properties of the new PHA copolymers, as well as processing and conversion to various products are reviewed with some historical background of the development and future commercialization plans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abe H, Doi Y, Fukushima T, Eya H (1994) Biosynthesis from gluconate of a random copolyester consisting of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates by Psedomonas sp. 61–3. Int J Biol Macromol 16:115–119

    Article  CAS  PubMed  Google Scholar 

  • Brandl H, Knee EJ, Fuller RC, Gross RA, Lenz RW (1989) Ability of the phototrophic bacterium Rhodosprillum rubrum to produce various poly(β-hydroxyalkanoates): potential sources for biodegradable polyesters. Int J Biol Macromol 11:49–55

    Article  CAS  PubMed  Google Scholar 

  • Caballero KP, Karel SF, Register RA (1995) Biosynthesis and characterization of hydroxybutyrate-hydroxycaproate copolymers. Int J Biol Macromol 17:86–92

    Article  CAS  PubMed  Google Scholar 

  • Chen GQ, Zhang G, Park SJ, Lee SY (2001) Industrial scale production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Appl Microbiol Biotechnol 57:50–55

    Article  CAS  PubMed  Google Scholar 

  • Doi Y (1990) Microbial polyesters. VCH, New York

    Google Scholar 

  • Federle TW, Barlaz MA, Pettigrew CA, Kerr KM, Kemper JJ, Nuck BA, Schechtman LA (2002) Anaerobic biodegradation of aliphatic polyesters: poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) and poly(ε-caprolactone). Biomacromolecules 3:813–822

    Article  CAS  PubMed  Google Scholar 

  • Huisman G, Leeuw O, Eggink G, Witholt B (1989) Synthesis of poly-3-hydroxyalkanoate is a common feature of fluorescent Pseudomonads. Appl Environ Microbiol 55:1949–1954

    CAS  PubMed  Google Scholar 

  • Kato M, Bao HJ, Kang CK, Fukui T, Doi Y (1996) Production of a novel copolyester of 3-hydroxybutyric acid and medium-chain-length 3-alkanoic acids by Psedomonas sp. 61–3 from sugars. Appl Microbiol Biotechnol 45:363–370

    Article  CAS  Google Scholar 

  • Lee SH, Oh DH, Ahn WS, Lee Y, Choi J, Lee SY (2000) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanaote) by high-cell-density cultivation of Aeromonas hydrophila. Biotechnol Bioeng 67:240–244

    Article  CAS  PubMed  Google Scholar 

  • Marchessault RH, Monasterios CJ, Morin FG, Sundarajan PR (1990) Chiral poly(b-hydroxyalkanoates): an adaptable helix influenced by the alkane side-chain. Int J Biol Macromol 12:158–165

    Article  CAS  PubMed  Google Scholar 

  • Melik DH, Noda I (2004) polymer products comprising soft and elastic biodegradable polyhydroxyalkanoate copolymer compositions and methods of preparing such polymer products. US Patent 6,794,023 B1

    Google Scholar 

  • Noda (1996) Biodegradable copolymers and plastic articles comprising biodegradable copolymers. US Patent 5,498,692

    Google Scholar 

  • Noda (1999) Films and absorbent articles comprising a biodegradable polyhydroxyalkanoate comprising 3-hydroxybutyrate and 3-hydroxyhexanoate comonomer units. US Patent 5,990,271

    Google Scholar 

  • Noda I (2005) Plastic articles digestible by hot alkaline treatment. US Patent 6,872,802 B2

    Google Scholar 

  • Noda I, Schechtman LA (1999) Solvent extraction of polyhydroxyalkanoates from biomass. US Patent 5,942,597

    Google Scholar 

  • Noda I, Satkowski MM, Dowrey AE, Marcott C (2004) Polymer alloy of Nodax copolymers and poly(lactic acid). Macromol Biosci 4:269–275

    Article  CAS  PubMed  Google Scholar 

  • Noda I, Bond EB, Green PR, Melik DH, Narasimhan K, Schechtman LA, Satkowski MM (2005a) Preparation, properties, and utilization of biobased biodegradable Nodax™ copolymers. In: Cheng HN, Gross RA (eds) Polymer biocatalysis and biomaterials. American Chemical Society, Washington, pp 280–291

    Chapter  Google Scholar 

  • Noda I, Green PR, Satkowski MM, Schechtman LA (2005b) Preparation and properties of a novel class of polyhydroxyalkanoate copolymers. Biomacromolecules 6:580–586

    Article  CAS  PubMed  Google Scholar 

  • Poirier Y, Schechtman SC, LA SMM, Noda I (1995) Synthesis of high-molecular-weight poly([R]-(–)-3-hydroxybutyrate) in transgenic Arabidopsis thaliana plant cells. Int J Biol Macromol 17:7–12

    Article  CAS  PubMed  Google Scholar 

  • Poliakoff M, Noda I (2004) Plastic bags, sugar cane and advanced vibrational spectroscopy: taking green chemistry to the third world. Green Chem 6:G37–G38

    Article  Google Scholar 

  • Satkowski MM, Melik DH, Autran J-P, Green PR, Noda I, Schechtman LA (2001) Physical and processing properties of polyhydroxyalkanoate copolymers. In: Doi Y, Steinbüchel A (eds) Polyesters II – properties and chemical synthesis, vol 3b, Biopolymers. Wiley, Weinheim, pp 231–263

    Google Scholar 

  • Schechtman LA, Kemper JJ (1997) Polymerization of beta-substituted beta-propiolactones initiated by alkylzinc alkoxide. US Patent 5,648,452

    Google Scholar 

  • Shiotani T, Kobayashi G (1994) Copolymer and method for producing thereof. US Patent 5,292,860

    Google Scholar 

  • Steinbüchel A (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Article  Google Scholar 

  • Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudonomas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56:3360–3367

    CAS  PubMed  Google Scholar 

  • Timm A, Byrom D, Steinbüchel A (1990) Formation of blends of various poly(3-hydroxyalkanoic acids) by a recombinant strain of Pseudomonas oleovorans. Appl Microbiol Biotechnol 33:296–301

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isao Noda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Noda, I., Lindsey, S.B., Caraway, D. (2010). Nodax™ Class PHA Copolymers: Their Properties and Applications. In: Chen, GQ. (eds) Plastics from Bacteria. Microbiology Monographs, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03287-5_10

Download citation

Publish with us

Policies and ethics