Skip to main content

Unusual PHA Biosynthesis

  • Chapter
  • First Online:
Plastics from Bacteria

Part of the book series: Microbiology Monographs ((MICROMONO,volume 14))

Abstract

Unusual polyhydroxyalkanoates (UnPHAs) constitute a particular group of polyoxo(thio)esters belonging to the PHA family, which are tailored with uncommon monomers. Thus, unusual PHAs include (1) polyhydroxyalkanoates (PHAs) of microbial origin that have been synthesized either from natural monomers bearing different chemical functions, or from chemical derivatives of the natural ones and (2) PHAs obtained either by chemical synthesis or by physical modifications of naturally occurring polymers. Regarding their chemical structure, UnPHAs can be grouped in four different classes. Class 1 includes PHAs whose lateral chains contain double or triple bounds or/and different functional groups (methyl, methoxy, ethoxy, acetoxy, hydroxyl, epoxy, carbonyl, cyano, phenyl, nitrophenyl, phenoxy, cyanophenoxy, benzoyl, halogen atoms, etc.). Classes 2 and 3 have been established regarding the nature of the PHA backbone; whereas class 2 includes PHAs in which the length of the monomer participating in the oxoester linkage has been modified (the hydroxyl group to be esterified is not located at C-3), class 3 groups those polymers in which some oxoester linkages have been replaced by thioester functions (thioester-containing PHAs). Finally, class 4 includes those PHAs that have been manipulated chemically or physically. In this chapter we shall describe the chemical structure of unusual PHAs belonging to these four classes; we shall analyse their biosynthetic particularities (if any), and we shall discuss some of their characteristics and biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbate M, Martuscelli E, Ragosta G, Scarinzi G (1991) Tensile properties and impact behaviour of poly(D(−)3-hydroxybutyrate)/rubber blends. J Mater Sci 26:1119–1125

    CAS  Google Scholar 

  • Abe H, Doi Y (2002) Side-chain effect of second monomer units on crystalline morphology, thermal properties, and enzymatic degradability for random copolyesters of (R)-3-hydroxybutyric acid with (R)-3-hydroxyalkanoic acids. Biomacromolecules 3:133–138

    CAS  PubMed  Google Scholar 

  • Abe C, Taima Y, Nakamura Y, Doi Y (1990) New bacterial copolyester of 3-hydroxyalkanoates and 3-hydroxy-ω-fluoroalkanoates produced by Pseudomonas oleovorans. Polym Commun 31:404–406

    CAS  Google Scholar 

  • Abe H, Doi Y, Kumagai Y (1994a) Synthesis and characterization of poly[(R,S)-3-hydroxybutyrate-b-6-hydroxyhexanoate] as a compatibilizer for a biodegradable blend of poly[(R)-
3-hydroxybutyrate] and poly(6-hydroxyhexanoate). Macromolecules 27:6012–6017

    CAS  Google Scholar 

  • Abe H, Doi Y, Satkowski MM, Noda I (1994b) Miscibility and morphology of blends of isotactic and atactic poly(3-hydroxybutyrate). Macromolecules 27:50–54

    CAS  Google Scholar 

  • Abe H, Matsubara I, Doi Y (1995) Physical properties and enzymic degradability of polymer blends of bacterial poly[(R)-3-hydroxybutyrate] and poly[(R,S)-3-hydroxybutyrate] stereoisomers. Macromolecules 28:844–853

    CAS  Google Scholar 

  • Abou-Zeid DM, Müller RJ, Deckwer WD (2004) Biodegradation of aliphatic homopolymers and aliphatic-aromatic copolyesters by anaerobic microorganisms. Biomacrolecules 5:1687–1697

    CAS  Google Scholar 

  • Abraham GA, Gallardo A, San Román J, Olivera ER, Jodrá R, García B, Minambres B, García JL, Luengo JM (2001) Microbial synthesis of poly(β-hydroxyalkanoates) bearing phenyl groups from Pseudomonas putida U: chemical structure and characterization. Biomacromolecules 2:562–567

    CAS  PubMed  Google Scholar 

  • Ahn WS, Park SJ, Lee SY (2000) Production of poly(3-hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solution. Appl Environ Microbiol 66:3624–3627

    CAS  PubMed  Google Scholar 

  • Aldor IS, Keasling JD (2003) Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates. Curr Opin Biotechnol 14:475–483

    CAS  PubMed  Google Scholar 

  • Amirul AA, Yahya ARM, Sudesh K, Azizan MNM, Majid MIA (2008) Biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by a Cupriavidus spp. USMAA1020 isolated from Lake Kulim, Malaysia. Bioresour Technol 99:4903–4909

    CAS  PubMed  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolisms, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  PubMed  Google Scholar 

  • Anderson AJ, Haywood GW, Dawes EA (1990) Biosynthesis and composition of bacterial poly(hydroxyalkanoates). Int J Biol Macromol 12:102–105

    CAS  PubMed  Google Scholar 

  • Andrade AP, Neuenschwander P, Hany R, Egli T, Witholt B, Li Z (2002a) Synthesis and characterization of novel copoly(ester-urethane) containing blocks of poly-[(R)-3-hydroxyoctanoate] and poly-[(R)-3-hydroxybutyrate]. Macromolecules 35:4946–4950

    CAS  Google Scholar 

  • Andrade AP, Witholt B, Hany R, Egli T, Li Z (2002b) Preparation and characterization of enantiomerically pure telechelic diols from mlc-poly[(R)-3-hydroxyalkanoates]. Macromolecules 35:684–689

    CAS  Google Scholar 

  • Andrade AP, Witholt B, Chang DL, Li Z (2003) Synthesis and characterization of novel thermoplastic polyester containing blocks of poly[(R)-3-hydroxyoctanoate] and poly[(R)-3-hydroxybutyrate]. Macromolecules 36:9830–9835

    CAS  Google Scholar 

  • Andujar M, Aponte MA, Díaz E, Schroder E (1997) Polyesters produced by Pseudomonas oleovorans containing cyclohexyl groups. Macromolecules 30:1611–1615

    CAS  Google Scholar 

  • Angelova N, Hunkeler D (1999) Rationalizing the design of polymeric biomaterials. Trends Biotechnol 17:409–421

    CAS  PubMed  Google Scholar 

  • Arias S, Sandoval A, Arcos M, Cañedo LM, Maestro B, Sanz JM, Naharro G, Luengo JM (2008) Poly-3-hydroxyalkanoate synthases from Pseudomonas putida U: substrate specificity and ultrastructural studies. Microb Biotechnol 1:170–176

    CAS  Google Scholar 

  • Arkin AH, Hazer B (2002) Chemical modification of chlorinated microbial polyesters. Biomacromolecules 3:1327–1335

    CAS  PubMed  Google Scholar 

  • Arkin AH, Hazer B, Borcakli M (2000) Chlorination of poly(3-hydroxyalkanoates) containing unsaturated side chains. Macromolecules 33:3219–3223

    CAS  Google Scholar 

  • Arostegui SM, Aponte MA, Diaz E, Schroder E (1999) Bacterial polyesters produced by Pseudomonas oleovorans containing nitrophenyl groups. Macromolecules 32:2889–2895

    CAS  Google Scholar 

  • Arslan H, Adamus G, Hazer B, Kowalczuk M (1999) Electrospray ionisation tandem mass spectrometry of poly[(R,S)-3-hydroxybutanoic acid] telechelics containing primary hydroxy end groups. Rapid Commun Mass Spectrom 13:2433–2438

    CAS  PubMed  Google Scholar 

  • Arslan H, Hazer B, Yoon SC (2007) Grafting of poly(3-hydroxyalkanoate) and linolenic acid onto chitosan. J Appl Polym Sci 103:81–89

    CAS  Google Scholar 

  • Ashby RD, Foglia TA (1998) Poly(hydroxyalkanoate) biosynthesis from triglyceride substrates. Appl Microbiol Biotechnol 49:431–437

    CAS  Google Scholar 

  • Ashby RD, Cromwick AM, Foglia TA (1998) Radiation crosslinking of a bacterial medium-chain-length poly(hydroxyalkanoate) elastomer from tallow. Int J Biol Macromol 23:61–72

    CAS  PubMed  Google Scholar 

  • Ashby RD, Foglia TA, Solaiman DKY, Liu CK, Nunez A, Eggink G (2000) Viscoelastic properties of linseed oil-based medium chain length poly(hydroxyalkanoate) films: effects of epoxidation and curing. Int J Biol Macromol 27:355–361

    CAS  PubMed  Google Scholar 

  • Ashby RD, Solaiman DKY, Foglia TA (2002) Poly(ethylene glycol)-mediated molar mass control of short-chain- and medium-chain-length poly(hydroxyalkanoates) from Pseudomonas oleovorans. Appl Microbiol Biotechnol 60:154–159

    CAS  PubMed  Google Scholar 

  • Avella M, Martuscelli E (1988) Poly-D-(−)(3-hydroxybutyrate)/poly(ethylene oxide) blends: phase diagram, thermal and crystallization behavior. Polymer 29:1731–1737

    CAS  Google Scholar 

  • Avella M, Martuscelli E, Greco P (1991) Crystallization behaviour of poly(ethylene oxide) from poly(3-hydroxybutyrate)/poly(ethylene oxide) blends: phase structuring, morphology and thermal behavior. Polymer 32:1647–1653

    CAS  Google Scholar 

  • Avella M, Martuscelli E, Raimo M (1993) The fractionated crystallization phenomenon in poly(3-hydroxybutyrate)/poly(ethylene oxide) blends. Polymer 34:3234–3240

    CAS  Google Scholar 

  • Avella M, Matruscelli E, Raimo M (2000) Properties of blends and composites based on poly(3-hydroxy)butyrate (PHB) and poly(3-hydroxybutyrate-hydroxyvalerate) (PHBV) copolymers. J Mater Sci 35:523–545

    CAS  Google Scholar 

  • Ayub ND, Tribelli PM, López NI (2009) Polyhydroxyalkanoates are essential for maintenance of redox state in the antartic bacterium Pseudomonas sp 14–3 during low temperature adaptation. Extremophiles 13:59–66

    CAS  PubMed  Google Scholar 

  • Azuma Y, Yoshie N, Sakurai M, Inoue Y, Chujo R (1992) Thermal behaviour and miscibility of poly(3-hydroxybutyrate)/poly(vinyl alcohol) blends. Polymer 33:4763–4767

    CAS  Google Scholar 

  • Babel W, Ackerman JU, Breuer U (2001) Physiology, regulation, and limits of the synthesis of poly(3HB). Adv Biochem Eng Biotechnol 71:125–157

    CAS  PubMed  Google Scholar 

  • Ballistreri A, Giuffrida M, Impallomeni G, Lenz RW, Fuller RC (1999) Characterization by mass spectrometry of poly(3-hydroxyalkanoates) produced by Rhodospirillum rubrum from 3-hydroxyacids. Int J Biol Macromol 26:201–211

    CAS  PubMed  Google Scholar 

  • Ballistreri A, Giuffrida M, Guglielmino SP, Carnazza S, Ferreri A, Impallomeni G (2001) Biosynthesis and structural characterization of medium-chain-length poly(3-hydroxyalkanoates) produced by Pseudomonas aeruginosa from fatty acids. Int J Biol Macromol 29:107–114

    CAS  PubMed  Google Scholar 

  • Barham PJ, Organ SJ (1994) Mechanical properties of polyhydroxybutyrate-hydroxybutyrate-hydroxyvalerate copolymer blends. J Mater Sci 29:1676–1679

    CAS  Google Scholar 

  • Bassas M, Díaz J, Rodríguez E, Espuny MJ, Manresa A (2008) Microscopic examination in vivo and in vitro of natural and cross-linked polyunsaturated mclPHA. Appl Microbiol Biotechnol 78:587–596

    CAS  PubMed  Google Scholar 

  • Bear MM, Leboucher-Durand MA, Langlois V, Lenz RW, Goodwin S, Guerin P (1997) Bacterial poly-3-hydroxyalkenoates with epoxy groups in the side chains. React Funct Polym 34:65–77

    CAS  Google Scholar 

  • Bear MM, Renard E, Randriamahefa S, Langlois V, Guerin P (2001) Preparation of a bacterial polyester with carboxy groups in side chains. C R Acad Sci Paris Chim/Chem 4:289–293

    CAS  Google Scholar 

  • Bengtsson S, Werker A, Welander T (2008) Production of polyhydroxyalkanoates by glycogen accumulating organisms treating a paper mill wastewater. Water Sci Technol 58:323–330

    CAS  PubMed  Google Scholar 

  • Berlanga M, Montero MT, Fernández-Borrel J, Guerrero R (2006) Rapid spectrofluorometric screening of polyhydroxyalkanoate-producing bacteria from microbial mats. Int Microbiol 9:95–102

    CAS  PubMed  Google Scholar 

  • Bhatt R, Shah D, Patel KC, Trivedi U (2008) PHA-rubber blends: synthesis, characterization and biodegradation. Bioresour Technol 99:4615–4620

    CAS  PubMed  Google Scholar 

  • Blumm E, Owen AJ (1995) Miscibility, crystallization and melting of poly(3-hydroxybutyrate)/poly(L-lactide) blends. Polymer 36:4077–4081

    Google Scholar 

  • Boiandin AN, Kalacheva GS, Rodicheva EK, Volova TG (2008) Synthesis of reserve polyhydroxyalkanoates by luminescent bacteria. Mikrobiologiia 77:364–369

    CAS  PubMed  Google Scholar 

  • Borah B, Thakur PS, Nigam JN (2002) The influence of nutritional and environmental conditions on the accumulation of poly-β-hydroxybutyrate in Bacillus mycoides RLJ B-017. J Appl Microbiol 92:776–783

    CAS  PubMed  Google Scholar 

  • Braunegg G, Lefebvre G, Genser KF (1998) Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 65:127–161

    CAS  PubMed  Google Scholar 

  • Breuer U, Terentiev Y, Kunze G, Babel W (2002) Yeast as producers of polyhydroxyalkanoates: genetic engineering of Saccharomyces cerevisiae. Macromol Biosci 2:380–386

    CAS  Google Scholar 

  • Byrom D (1987) Polymer synthesis in microorganisms: technology and economics. Trends Biotechnol 5:246–250

    CAS  Google Scholar 

  • Cao A, Asakawa N, Yoshie N, Inoue Y (1998) Phase structure and biodegradation of the bacterial poly(3-hydroxybutyric acid)/chemosynthetic poly(3-hydroxypropionic acid) blend. Polym J 30:743–752

    CAS  Google Scholar 

  • Castro-Sowinski S, Burdman S, MatanO OY (2009) Natural functions of bacterial polyhydroxyalkanoates. Microbiol Monogr . doi:10.1007/978-3-642-03287-5_3

    Google Scholar 

  • Ceccorulli G, Pizzoli M, Scandola M (1993) Effect of a low-molecular-weight plasticizer on the thermal and viscoelastic properties of miscible blends of bacterial poly(3-hydroxybutyrate) with cellulose acetate butyrate. Macromolecules 26:6722–6726

    CAS  Google Scholar 

  • Chanprateep S, Kikuya K, Shimizu H, Shioya S (2002) Model predictive controller for biodegradable polyhydroxyalkanoate production in fed-batch culture. J Bacteriol 95:157–169

    CAS  Google Scholar 

  • Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578

    CAS  PubMed  Google Scholar 

  • Chen JY, Liu T, Zheng Z, Chen JC, Chen GQ (2004) Polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas stutzeri 1317 had different substrate specificities. FEMS Microbiol Lett 234:231–237

    CAS  PubMed  Google Scholar 

  • Chen JY, Song G, Chen CG (2006) A lower specificity of PhaC2 synthase from Pseudomonas stutzeri catalyses the production of copolyesters consisting of short-chain-length and medium-chain-length 3-hydroxyalkanoates. Antonie Van Leeuwenhoek 89:157–167

    CAS  PubMed  Google Scholar 

  • Choi J, Lee SY (1997) Process analysis and economic evaluation for poly (3-hydroxybutyrate) production by fermentation. Bioprocess Eng 17:335–342

    CAS  Google Scholar 

  • Choi MH, Yoon SC (1994) Polyester biosynthesis characteristics of Pseudomonas citronellolis grown on various carbon sources, including 3-methyl-branched substrates. Appl Environ Microbiol 60:3245–3254

    CAS  PubMed  Google Scholar 

  • Choi MH, Yoon SC, Lenz RW (1999) Production of poly(3-hydroxybutyric acid-co-4-hydroxybutyric acid) and poly(4-hydroxybutyric acid) without subsequent degradation by Hydrogenophaga pseudoflava. Appl Environ Microbiol 65:1570–1577

    CAS  PubMed  Google Scholar 

  • Chung CW, Kim HW, Kim YB, Rhee YH (2003) Poly(ethylene glycol)-grafted poly(3-hydroxyundecenoate) networks for enhanced blood compatibility. Int J Biol Macromol 32:17–22

    CAS  PubMed  Google Scholar 

  • Ciesielski S, Pokoj T, Klimiuk E (2008) Molecular insight into activated sludge producing polyhydroxyalkanoates under aerobic-anaerobic conditions. J Ind Microbiol Biotechnol 35:805–814

    CAS  PubMed  Google Scholar 

  • Coats ER, Loge FJ, Smith WA, Thompson DN, Wolcott MP (2007) Functional stability of mixed microbial consortium producing PHA from waste carbon sources. Appl Biochem Biotechnol 137–140:909–925

    PubMed  Google Scholar 

  • Constantin M, Simionescu CI, Carpov A, Samain E, Driguez H (1999) Chemical modification of poly(hydroxyalkanoates) copolymers bearing pendant sugars. Macromol Rapid Commun 20:91–94

    CAS  Google Scholar 

  • Cowan D, Meyer Q, Stafford W, Muyanga S, Cameron R, Wittwer P (2005) Metagenomic gene discovery: past, present and future. Trends Biotechnol 23:321–329

    CAS  PubMed  Google Scholar 

  • Curley JM, Hazer B, Lenz RW, Fuller RC (1996) Production of poly(3-hydroxyalkanoates) containing aromatic substituents by Pseudomonas oleovorans. Macromolecules 29:1762–1766

    CAS  Google Scholar 

  • Dai Y, Lambert J, Yuan Z, Keller J (2008) Characterization of polyhydroxyalkanoate copolymers with controllable four-monomer composition. J Biotechnol 134:137–145

    CAS  PubMed  Google Scholar 

  • De Andrade Rodrigues MF, Vicente EJ, Steinbüchel A (2000) Studies on polyhydroxyalkanoate (PHA) accumulation in a PHA synthase I-negative mutant of Burkholderia cepacia generated by homogenotization. FEMS Microbiol Lett 193:179–185

    PubMed  Google Scholar 

  • De Eugenio LI, García P, Luengo JM, Sanz J, San Román J, García JL, Prieto MA (2007) Biochemical evidence that phaZ gene encodes a specific intracellular medium chain length polyhydroxyalkanoate depolymerase in Pseudomonas putida KT2442: characterization of a paradigmatic enzyme. J Biol Chem 282:4951–4962

    PubMed  Google Scholar 

  • De Koning GJM (1995) Physical properties of bacterial poly[(R)-3-hydroxyalkanoates]. Can J Microbiol 41(Suppl 1):303–309

    Google Scholar 

  • De Koning GJM, Witholt B (1997) A process for the recovery of poly(hydroxyalkanoates) from Pseudomonads. Part 1: solubilization. Bioprocess Eng 17:7–13

    Google Scholar 

  • De Koning GJM, van Bilsen HMM, Lemstra PJ, Hazemberg W, Witholt B, Preusting H, van der Galien JG, Schimer A, Jendrossek D (1994) A biodegradable rubber by crosslinking poly(hydroxyalkanoate) from Pseudomonas oleovorans. Polymer 35:2090–2097

    Google Scholar 

  • De Koning GJM, Kellerhals M, van Meurs C, Witholt B (1997) A process for the recovery of poly(hydroxyalkanoates) from pseudomonads. Part 2: process development and economic evaluation. Bioprocess Eng 17:15–21

    Google Scholar 

  • De Roo G, Ren Q, Witholt B, Kessler B (2000) Development of an improved in vitro activity assay for medium chain length PHA polymerase based on coenzyme A release measurements. J Microbiol Methods 41:1–8

    PubMed  Google Scholar 

  • De Waard P, van der Wal H, Huijberts GNM, Eggink G (1993) Heteronuclear NMR analysis of unsaturated fatty acids in poly(3-hydroxyalkanoates). Study of β-oxidation in Pseudomonas putida. J Biol Chem 268:315–319

    PubMed  Google Scholar 

  • Di Lorenzo ML, Silvestre C (1999) Non-isothermal crystallization of polymers. Prog Polym Sci 24:917–950

    Google Scholar 

  • Dias JM, Oehmen A, Serafim LS, Lemos PC, Reis MA, Oliveira R (2008) Metabolic modelling of polyhydroxyalkanoate copolymers production by mixed microbial cultures. BMC Syst Biol 8:2–59

    Google Scholar 

  • Doi Y, Abe C (1990) Biosynthesis and characterization of a new bacterial copolyester of 3-hydroxyalkanoates and 3-hydroxy-ω-chloroalkanoates. Macromolecules 23:3705–3707

    CAS  Google Scholar 

  • Doi Y, Tamaki A, Kunioka M, Soga K (1987) Biosynthesis of terpolyesters of 3-hydroxybutyrate, 3-hydroxyvalerate, and 5-hydroxyvalerate in Alcaligenes eutrophus from 5-chloropentanoic and pentanoic acids. Makromol Chem Rapid Commun 8:631–635

    CAS  Google Scholar 

  • Doi Y, Segawa A, Kunioka M (1989) Biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) produced from gammabutyrolactone and butyric acid by Alcaligenes eutrophus. Polym Commun 30:169–171

    CAS  Google Scholar 

  • Doi Y, Segawa A, Kunioka M (1990) Biosynthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Alcaligenes eutrophus. Int J Biol Macromol 12:106–111

    CAS  PubMed  Google Scholar 

  • Dubini PE, Beltrame PL, Canetti M, Seves A, Marcandalli B, Martuscelli E (1993) Crystallization and thermal behaviour of poly(D(−) 3-hydroxybutyrate)/poly(epichlorohydrin) blends. Polymer 34:996–1001

    Google Scholar 

  • Dufresne A, Vincendon M (2000) Poly(3-hydroxybutyrate) and poly(3-hydroxyoctanoate) blends: morphology and mechanical behavior. Macromolecules 33:2998–3008

    CAS  Google Scholar 

  • Dufresne A, Reche L, Marchessault RH, Lacroix M (2001) Gamma-ray crosslinking of poly
(3-hydroxyoctanoate-co-undecenoate). Int J Biol Macromol 29:73–82

    CAS  PubMed  Google Scholar 

  • Durner R, Zinn M, Witholt B, Egli T (2001) Accumulation of poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth in batch cultures with different carbon sources. Biotechnol Bioeng 72:278–288

    CAS  PubMed  Google Scholar 

  • Eggink G, de Waard P, Huijberts GNM (1995) Formation of novel poly(hydroxyalkanoates) from long-chain fatty acids. Can J Microbiol 41:14–21

    CAS  PubMed  Google Scholar 

  • Elbanna K, Lütke-Eversloh T, van Trappen S, Mergaert J, Swings J, Steinbüchel A (2003) Isolation and characterization of Schlegelella thermodepolymerans gen. nov., sp. nov., a new thermophilic bacterium degrading poly(3-hydroxybutyrate-co-3-mercaptopropionate). Int J Syst Evol Microbiol 53:1165–1168

    CAS  PubMed  Google Scholar 

  • Elbanna K, Lütke-Eversloh T, Jendrossek D, Luftmann H, Steinbüchel A (2004) Studies on the biodegradability of polymers of polythioester copolymers and homopolymers by polyhydroxyalkanoate (PHA)-degrading bacteria and PHA depolymerase. Arch Microbiol 182:212–225

    CAS  PubMed  Google Scholar 

  • Erduranli H, Hazer B, Borcakli M (2008) Post polymerization of saturated and unsaturated poly(3-hydroxy alkanoate)s. Macromol Symp 269:161–169

    CAS  Google Scholar 

  • Eroğlu MS, Çaykara T, Hazer B (1998) Gamma rays induced grafting of methyl methacrylate onto poly(β-hydroxynonanoate). Polym Bull 41:53–60

    Google Scholar 

  • Eroğlu MS, Hazer B, Ozturk T, Çaykara T (2005) Hydroxylation of pendant vinyl groups of poly(3-hydroxyundec-10-enoate) in high yield. J Appl Polym Sci 97:2132–2139

    Google Scholar 

  • Ewering C, Lütke-Eversloh T, Luftmann H, Steinbüchel A (2002) Identification of novel sulfur-containing bacterial polyesters: biosynthesis of poly(3-hydroxy-S-propyl-ω-thioalkanoates) containing thioether linkages in the side chains. Microbiology 148:1397–1406

    CAS  PubMed  Google Scholar 

  • Findlay RH, White DC (1983) Polymeric beta-hydroxyalkanoates from environmental samples and Bacillus megaterium. Appl Environ Microbiol 45:71–78

    CAS  PubMed  Google Scholar 

  • Foster LJR (2007) Biosynthesis, properties and potential of natural-synthetic hybrids of polyhydroxyalkanoates and polyethylene glycols. Appl Microbiol Biotechnol 75:1241–1247

    CAS  PubMed  Google Scholar 

  • Foster LJR, Lenz RW, Fuller RC (1994) Quantitative determination of intracellular depolymerase activity in Pseudomonas oleovorans inclusions containing poly-3-hydroxyalkanoates with long alkyl substituents. FEMS Microbiol Lett 118:279–282

    CAS  PubMed  Google Scholar 

  • Foster LJR, Zervas SJ, Lenz RW, Fuller RC (1995) The biodegradation of poly-3-hydroxyalkanoates, PHAs, with long alkyl substituents by Pseudomonas maculicola. Biodegradation 6:67–73

    CAS  Google Scholar 

  • Foster LJR, Schwahn D, Pipich V, Holden PJ, Richter D (2008) Small-angle neutron scattering characterization of polyhydroxyalkanoates and their bioPEGylated hybrids in solution. Biomacromolecules 9:314–320

    CAS  PubMed  Google Scholar 

  • Fritzsche K, Lenz RW, Fuller RC (1990a) An unusual bacterial polyester with a phenyl pendant group. Makromol Chem 191:1957–1965

    CAS  Google Scholar 

  • Fritzsche K, Lenz RW, Fuller RC (1990b) Bacterial polyesters containing branched poly(β-hydroxyalkanoate) units. Int J Biol Macromol 12:92–101

    CAS  PubMed  Google Scholar 

  • Fritzsche K, Lenz RW, Fuller RC (1990c) Production of unsaturated polyesters by Pseudomonas oleovorans. Int J Biol Macromol 12:85–91

    CAS  PubMed  Google Scholar 

  • Füchtenbusch B, Fabritius D, Steinbüchel A (1996) Incorporation of 2-methyl-3-hydroxybutyric acid by axenic cultures in defined media. FEMS Microbiol Lett 138:153–160

    Google Scholar 

  • Füchtenbusch B, Fabritius D, Wältermann M, Steinbüchel A (1998) Biosynthesis of novel copolyesters containing 3-hydroxypivalic acid by Rhodococcus ruber NCIMB 40126 and related bacteria. FEMS Microbiol Lett 159:85–92

    Google Scholar 

  • Gagnon KD, Lenz RW, Farris RJ, Fuller RC (1994a) Chemical modification of bacterial elastomers: 1. Peroxide crosslinking. Polymer 35:4358–4367

    CAS  Google Scholar 

  • Gagnon KD, Lenz RW, Farris RJ, Fuller RC (1994b) Chemical modification of bacterial elastomers: 2. Sulfur vulcanization. Polymer 35:4368–4375

    CAS  Google Scholar 

  • García B, Olivera ER, Minambres B, Fernández-Valverde M, Cañedo LM, Prieto MA, García JL, Martínez M, Luengo JM (1999) Novel biodegradable aromatic plastics from a bacterial source. Genetic and biochemical studies on a route of the phenylacetyl-CoA catabolon. J Biol Chem 274:29228–29241

    PubMed  Google Scholar 

  • Godbole S, Gote S, Latkar M, Chakrabarti T (2003) Preparation and characterization of biodegradable poly-3-hydroxybutyrate-starch blend films. Bioresour Technol 86:33–37

    CAS  PubMed  Google Scholar 

  • Goff M, Ward PG, O’Connor KE (2007) Improvement of the conversion of polystyrene to polyhydroxyalkanoate through the manipulation of the microbial aspect of the process: a nitrogen feeding strategy for bacterial cells in a stirred thank reactor. J Biotechnol 132:283–286

    CAS  PubMed  Google Scholar 

  • Gorenflo V, Schmack G, Vogel R, Steinbüchel A (2001) Development of a process for the biotechnological large-scale production of 4-hydroxyvalerate-containing polyesters and characterization of their physical and mechanical properties. Biomacromolecules 2:45–57

    CAS  PubMed  Google Scholar 

  • Gorke JT, Okrasa K, Lowagie A, Kazlauskas RJ, Srienc F (2007) Enzymatic synthesis of poly(hydroxyalkanoates) in ionic liquids. J Biotechnol 132:306–313

    CAS  PubMed  Google Scholar 

  • Greco P, Martuscelli E (1989) Crystallization and thermal behaviour of poly(D(-)-3-hydroxybutyrate)-based blends. Polymer 30:1475–1483

    CAS  Google Scholar 

  • Grondahl L, Chandler-Temple A, Trau M (2005) Polymeric grafting of acrylic acid onto poly(3-hydroxybutyrate-co-valerate): surface functionalization for tissue engineering applications. Biomacromolecules 6:2197–2203

    CAS  PubMed  Google Scholar 

  • Gross RA, DeMello C, Lenz RW, Brandle H, Fuller RC (1989) Biosynthesis and characterization of poly(β-hydroxyalkanoates) produced by Pseudomonas oleovorans. Macromolecules 22:1106–1115

    CAS  Google Scholar 

  • Grubelnik A, Wiesli L, Furrer P, Rentsch D, Hany R, Meyer VR (2008) A simple HPLC-MS method for the quantitative determination of the composition of bacterial medium chain-length polyhydroxyalkanoates. J Sep Sci 31:1739–1744

    CAS  PubMed  Google Scholar 

  • Ha CS, Cho WJ (2002) Miscibility, properties and biodegradability of microbial polyester containing blends. Prog Polym Sci 27:759–809

    CAS  Google Scholar 

  • Hang X, Zhang G, Wang G, Zhao X, Chen GQ (2002) PCR cloning of polyhydroxyalkanoate biosynthesis genes from Burkholderia caryophylli and their functional expression in recombinant Escherichia coli. FEMS Microbiol Lett 210:49–54

    CAS  PubMed  Google Scholar 

  • Hänggi UJ (1990) Pilot scale production of PHB with Alcaligenes latus. In: Dawes EA (ed) Novel biodegradable microbial polymers. Kluwer, Dordrecht, pp 65–70

    Google Scholar 

  • Hänggi UJ (1995) Requirements on bacterial polyesters as future substitute for conventional plastics for consumer goods. FEMS Microbiol Rev 16:213–220

    Google Scholar 

  • Hany R, Böhlen C, Geiger T, Hartmann R, Kawada J, Schimid M, Zinn M, Marchessault RH (2004) Chemical synthesis of crystalline comb polymers from olefinic medium-chain-length poly(3-hydroxyalkanoates). Macromolecules 37:385–389

    CAS  Google Scholar 

  • Haywood GW, Anderson AJ, Williams GA, Dawes EA, Ewing DF (1991) Accumulation of a poly(hydroxyalkanoate) copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126. Int J Biol Macromol 13:83–88

    CAS  PubMed  Google Scholar 

  • Hazer B (1994) Preparation of polystyrene-poly(b-hydroxynonanoate) graft copolymers. Polym Bull 33:431–438

    CAS  Google Scholar 

  • Hazer B (1996) Poly(β-hydroxynonanoate) and polystyrene or poly(methylmethacrylate) graft copolymers: microstructure characteristics and mechanical and thermal behavior. Macromol Chem Phys 197:431–441

    CAS  Google Scholar 

  • Hazer B, Steinbüchel A (2007) Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol 74:1–12

    CAS  PubMed  Google Scholar 

  • Hazer B, Lenz RW, Fuller RC (1994) Biosynthesis of methyl-branched poly(β-hydroxyalkanoate)s by Pseudomonas oleovorans. Macromolecules 27:45–49

    CAS  Google Scholar 

  • Hazer B, Lenz RW, Fuller RC (1996) Bacterial production of poly-3-hydroxyalkanoates containing arylalkyl substituent groups. Polymer 37:5951–5957

    CAS  Google Scholar 

  • Hazer B, Lenz RW, Cakmakli B, Borcakli M, Kocer H (1999) Preparation of poly(ethylene glycol) grafted poly(3-hydroxyalkanoate)s. Macromol Chem Phys 200:1903–1907

    CAS  Google Scholar 

  • Hazer B, Demirel SI, Borcakli M, Eroğlu MS, Cakmak M, Erman B (2001) Free radical crosslinking of unsaturated bacterial polyesters obtained from soybean oily acids. Polym Bull 46:389–394

    CAS  Google Scholar 

  • He W, Tian W, Zhang G, Chen G-Q, Zhang Z (1998) Production of novel polyhydroxyalkanoates by Pseudomonas stutzeri 1317 from glucose and soybean oil. FEMS Microbiol Lett 169:45–49

    CAS  Google Scholar 

  • Hein S, Söhling B, Gottschalk G, Steinbüchel A (1997) Biosynthesis of poly(4-hydroxybutyric acid) by recombinant strains of Escherichia coli. FEMS Microbiol Lett 153:411–418

    CAS  PubMed  Google Scholar 

  • Henneke D, Hagedorn A, Budman HM, Legge RL (2005) Applications of spectrofluorometry to the prediction of PHB concentrations in a fed-batch process. Bioprocess Biosyst Eng 27:359–364

    CAS  PubMed  Google Scholar 

  • Hiramitsu M, Koyama N, Doi Y (1993) Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Alcaligenes latus. Biotechnol Lett 15:461–464

    CAS  Google Scholar 

  • Hirt TD, Neuenschwander P, Suter UW (1996a) Telechelic diols from poly[(R)-3-hydroxy-butyric acid] and poly[(R)-3-hydroxybutyric acid-co-[(R)-3-hydroxyvaleric acid]. Macromol Chem Phys 197:1609–1614

    CAS  Google Scholar 

  • Hirt TD, Neuenschwander P, Suter UW (1996b) Synthesis of degradable, biocompatible, and tough block-copolyesterurethanes. Macromol Chem Phys 197:4253–4268

    CAS  Google Scholar 

  • Hong K, Chen GQ, Yu PH, Zhang G, Liu Y, Chua H (2000) Effect of C:N molar ratio on monomer composition of polyhydroxyalkanoates produced by Pseudomonas mendocina 0806 and Pseudomonas pseudoalkaligenus YS1. Appl Biochem Biotechnol 84:971–980

    PubMed  Google Scholar 

  • Honma T, Inamura T, Kenmoku T, Kobayashi S, Yano T (2004) Biosynthesis of novel poly(3-hydroxyalkanoates) containing benzoyl groups. J Environ Biotechnol 4:49–55

    Google Scholar 

  • Hori K, Soga K, Doi Y (1994) Production of poly(3-hydroxyalkanoates-co-3-hydroxy-ω-fluoroalkanoates) by Pseudomonas oleovorans from 1-fluorononane and gluconate. Biotechnol Lett 16:501–506

    CAS  Google Scholar 

  • Horowitz DM, Sanders JKM (1994) Phase separation within artificial granules from a blend of polyhydroxybutyrate and polyhydroxyoctanoate: biological implications. Polymer 35:5079–5083

    CAS  Google Scholar 

  • Huijberts GN, Eggink G, de Waard P, Huisman GW, Witholt B (1992) Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl Environ Microbiol 58:536–544

    CAS  PubMed  Google Scholar 

  • Huisman GJ, Wonink E, Meima R, Kazemier B, Terpstra P, Witholt B (1991) Metabolism of poly
(3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans. J Biol Chem 266:2191–2198

    CAS  PubMed  Google Scholar 

  • Huisman GW, Wonink E, de Koning G, Preusting H, Witholt B (1992) Synthesis of poly(3-hydroxyalkanoates) by mutant and recombinant Pseudomonas strains. Appl Microbiol Biotechnol 38:1–5

    CAS  Google Scholar 

  • Ilter S, Hazer B, Borcakli M, Atici M (2001) Graft copolymerization of methyl methacrylate onto bacterial polyester containing unsaturated side chains. Macromol Chem Phys 202:2281–2286

    CAS  Google Scholar 

  • Imamura T, Kenmoku T, Honma T, Kobayashi S, Yano T (2001) Direct biosynthesis of poly(3-hydroxyalkanoates) bearing epoxide groups. Int J Biol Macromol 29:295–301

    CAS  PubMed  Google Scholar 

  • Impallomeni G, Steinbüchel A, Lütke-Eversloh T, Barbuzzi T, Ballistreri A (2007) Sequencing microbial copolymers of 3-hydroxybutyric and 3-mercaptoalkanoic acids by NMR, electrospray ionization mass spectrometry, and size exclusion chromatography NMR. Biomacromolecules 8:985–991

    CAS  PubMed  Google Scholar 

  • Iriondo D, Iruín JJ, Fernández-Berridi MJ (1995) Thermal and infra-red spectroscopic investigations of a miscible blend composed of poly(vinyl phenol) and poly(hydroxybutyrate). Polymer 36:3235–3237

    CAS  Google Scholar 

  • Jedlinski Z, Kurcok P, Lenz RW (1998) First facile synthesis of biomimetic poly-(R)-3-hydroxybutyrate via regioselective anionic polymerization of (S)-β-butyrolactone. Macromolecules 31:
6718–6720

    CAS  Google Scholar 

  • Jendrossek D (2007) Peculiarities of PHA granules preparation and PHA depolymerase activity determination. Appl Microbiol Biotechnol 74:1186–1196

    CAS  PubMed  Google Scholar 

  • Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–432

    CAS  PubMed  Google Scholar 

  • Ji Y, Li XT, Chen GQ (2008) Interactions between a poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) terpolyester and human keratinocytes. Biomaterials 29:3807–3814

    CAS  PubMed  Google Scholar 

  • Jiang T, Hu P (2001) Radiation-induced graft polymerization of isoprene onto polyhydroxybutyrate. Polym J 33:647–653

    CAS  Google Scholar 

  • Jiang Y, Ye J, Wu H, Zhang H (2004) Cloning and expression of the polyhydroxyalkanoate depolymerase gene from Pseudomonas putida, and characterization of the gene product. Biotechnol Lett 26:1585–1588

    CAS  PubMed  Google Scholar 

  • Jung K, Hany R, Rentsch D, Storni T, Egli T, Witholt B (2000) Characterization of new bacterial copolyesters containing 3-hydroxyoxoalkanoates and acetoxy-3-hydroxyalkanoates. Macromolecules 33:8571–8575

    CAS  Google Scholar 

  • Jurasek L, Nobes GAR, Marchessault RH (2001) Computer simulation of in vitro formation of PHB granules: particulate polymerization. Macromol Biosci 1:258–265

    CAS  Google Scholar 

  • Kalia VC, Chauhan A, Bhattacharyya G, Rashmi (2003) Genomic database yield novel bioplastic producers. Nat Biotechnol 21:845–846

    CAS  PubMed  Google Scholar 

  • Kalia VC, Lal S, Cheema S (2007) Insight in to the phylogeny of polyhydroxyalkanoate biosynthesis: horizontal gene transfer. Gene 389:19–26

    CAS  PubMed  Google Scholar 

  • Kalyuzhnaya MG, Lapidus A, Ivanova N, Copeland AC, McHardy AC, Szeto E, Salamov A, Grigoriev IV, Suciu D, Levine SR, Karkowitz VM, Rigoutsos I, Tringe SG, Bruce DC, Richardson PM, Lidstrom ME, Chistoserdova L (2008) High-resolution metagenomics targets specific functional types in complex microbial communities. Nat Biotechnol 26:1029–1034

    CAS  PubMed  Google Scholar 

  • Kang CK, Kusaka S, Doi Y (1995) Structure and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) produced by Alcaligenes latus. Biotechnol Lett 17:583–588

    CAS  Google Scholar 

  • Kang IK, Choi SH, Shin DS, Yoon SC (2001) Surface modification of polyhydroxyalkanoate films and their interactions with human fibroblasts. Int J Biol Macromol 28:205–212

    CAS  PubMed  Google Scholar 

  • Kawada J, Lütke-Eversloh T, Steinbüchel A, Marchessault RH (2003) Physical properties of microbial polythioesters: poly(3-mercaptoalkanoates) synthesized by engineered Escherichia coli. Biomacromolecules 4:1698–1702

    CAS  PubMed  Google Scholar 

  • Kellerhals MB, Kessler B, Witholt B (1999) Closed-loop control of bacterial high-cell-density fed-batch cultures: production of mcl-PHAs by Pseudomonas putida KT2442 under single-substrate and cofeeding conditions. Biotechnol Bioeng 65:306–315

    CAS  PubMed  Google Scholar 

  • Kessler B, Witholt B (2001) Factors involved in the regulatory network of polyhydroxyalkanoate metabolism. J Biotechnol 86:97–104

    CAS  PubMed  Google Scholar 

  • Kim YB, Lenz RW (2001) Polyesters from microorganisms. Adv Biochem Eng Biotechnol 71:51–79

    CAS  PubMed  Google Scholar 

  • Kim DY, Rhee YH (2003) Biodegradation of microbial and synthetic polyesters by fungi. Appl Microbiol Biotechnol 61:300–308

    CAS  PubMed  Google Scholar 

  • Kim YB, Lenz RW, Fuller RC (1992) Poly(β-hydroxyalkanoate) copolymers containing brominated repeating units produced by Pseudomonas oleovorans. Macromolecules 25:1852–1857

    CAS  Google Scholar 

  • Kim OY, Gross RA, Rutherford DR (1995a) Bioengineering of poly(β-hydroxyalkanoates) for advanced material applications: incorporation of cyano and nitrophenoxy side chain substituents. Can J Microbiol 41(Suppl 1):32–43

    CAS  Google Scholar 

  • Kim YB, Lenz RW, Fuller RC (1995b) Poly-3-hydroxyalkanoates containing unsaturated repeating units produced by Pseudomonas oleovorans. J Polym Sci A Polym Chem 33:1367–1374

    CAS  Google Scholar 

  • Kim OY, Gross RA, Hammer WJ, Newmark RA (1996a) Microbial synthesis of poly(β-hydroxyalkanoates) containing fluorinated sichain substituents. Macromolecules 29:4572–4581

    CAS  Google Scholar 

  • Kim YB, Rhee YH, Han SH, Heo GS, Kim JS (1996b) Poly-3-hydroxyalkanoates produced from Pseudomonas oleovorans grown with ω-phenoxyalkanoates. Macromolecules 29:3432–3435

    CAS  Google Scholar 

  • Kim DY, Kim Y, Rhee YH (1998) Bacterial poly(3-hydroxyalkanoates) bearing carbon-carbon triple bonds. Macromolecules 31:4760–4763

    CAS  PubMed  Google Scholar 

  • Kim YB, Kim DY, Rhee YH (1999) PHAs produced by Pseudomonas putida and Pseudomonas oleovorans grown with n-alkanoic acids containing aromatic groups. Macromolecules 32:6058–6064

    CAS  Google Scholar 

  • Kim DY, Kim Y, Rhee YH (2000) Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida. Int J Biol Macromol 28:23–29

    CAS  PubMed  Google Scholar 

  • Kim DY, Jung SB, Choi GG, Kim YB, Rhee YH (2001a) Biosynthesis of polyhydroxyalkanoate copolyester containing cyclohexyl groups by Pseudomonas oleovorans. Int J Biol Macromol 29:145–150

    CAS  PubMed  Google Scholar 

  • Kim SN, Shim SC, Kim DY, Rhee YH, Kim YB (2001b) Photochemical crosslinking and enzymatic degradation of poly(3-hydroxyalkanoate)s for micropatterning in photolithography. Macromol Rapid Commun 22:1066–1071

    CAS  Google Scholar 

  • Kim HW, Chung CW, Kim SS, Kim YB, Rhee YH (2002) Preparation and cell compatibility of acrylamid-grafted poly(3-hydroxyoctanoate). Int J Biol Macromol 30:129–135

    CAS  PubMed  Google Scholar 

  • Kim DY, Nam JS, Rhee YH, Kim YB (2003) Biosynthesis of novel poly(3-hydroxyalkanoates) containing alkoxy groups by Pseudomonas oleovorans. J Microbiol Biotechnol 13:632–635

    CAS  Google Scholar 

  • Kim DY, Lütke-Eversloh T, Elbanna K, Thakor N, Steinbüchel A (2005a) Poly(3-mercaptopropionate): a nonbiodegradable biopolymer? Biomacromolecules 6:897–901

    CAS  PubMed  Google Scholar 

  • Kim JS, Lee BH, Kim BS (2005b) Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha. Biochem Eng J 23:169–174

    CAS  Google Scholar 

  • Kim HW, Chung CW, Rhee YH (2005c) UV-induced graft copolymerization of monoacrylate-poly(ethylene glycol) onto poly(3-hydroxyoctanoate) to reduce protein absortion and platelet adhesion. Int J Biol Macromol 35:47–53

    CAS  PubMed  Google Scholar 

  • Klinke S, de Roo G, Witholt B, Kessler B (2000) Role of phaD in accumulation of medium-chain-length poly(3-hydroxyalkanoates) in Pseudomonas oleovorans. Appl Environ Microbiol 66:3705–3710

    CAS  PubMed  Google Scholar 

  • Kocer H, Borcakli M, Demirel S, Hazer B (2003) Production of bacterial polyesters from some various new substrates by Alcaligenes eutrophus and Pseudomonas oleovorans. Turk J Chem 27:365–373

    CAS  Google Scholar 

  • Koller M, Bona R, Chiellini E, Fernandes EG, Horvat P, Kutschera C, Hesse P, Braunegg G (2008) Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovorans. Bioresour Technol 99:4854–4863

    CAS  PubMed  Google Scholar 

  • Koyama H, Doi Y (1996) Miscibility, thermal properties, and enzymatic degradability of binary blends of poly[(R)-3-hydroxybutyric acid] with poly(ε-caprolactone-co-lactide). Macromolecules 29:5843–5851

    CAS  Google Scholar 

  • Kraak M, Smits THM, Kessler B, Witholt B (1997) Polymerase C1 levels and poly(R-
3-hydroxyalkanoate) synthesis in wild-type and recombinant Pseudomonas strains. J Bacteriol 179:4985–4991

    CAS  PubMed  Google Scholar 

  • Kumagai Y, Doi Y (1992a) Enzymatic degradation and morphologies of binary blends of microbial poly(3-hydroxy butyrate) with poly(ε-caprolactone), poly(1,4-butylene adipate) and poly(vinyl acetate). Polym Degrad Stab 36:241–248

    CAS  Google Scholar 

  • Kumagai Y, Doi Y (1992b) Enzymatic degradation of binary blends of microbial poly(3-
hydroxybutyrate) with enzymatically active polymers. Polym Degrad Stab 37:253–256

    CAS  Google Scholar 

  • Kumagai Y, Doi Y (1993) Synthesis of a block copolymer of poly(3-hydroxybutyrate) and poly(ethylene glycol) and its application to biodegradable polymer blends. J Environ Polym Degrad 1:81–87

    CAS  Google Scholar 

  • Kung SS, Chuang YC, Chen CH, Chien CC (2007) Isolation of polyhydroxyalkanoates-producing bacteria using a combination of phenotype and genotype approach. Lett Appl Microbiol 44:364–371

    CAS  PubMed  Google Scholar 

  • Kunioka M, Kawaguchi Y, Doi Y (1989) Production of biodegradable copolyesters of 3-hydroxybutyrate and 4-hydroxybutyrate by Alcaligenes eutrophus. Appl Microbiol Biotechnol 30:569–573

    CAS  Google Scholar 

  • Kurth N, Renard E, Brachet F, Robic D, Guerin P, Bourbouze R (2002) Poly(3-hydroxyoctanoate) containing pendant carboxylic groups for the preparation of nanoparticles aimed at drug transport and release. Polymer 43:1095–1101

    CAS  Google Scholar 

  • Labuzek S, Radecka I (2001) Biosynthesis of PHB tercopolymer by Bacillus cereus UW85. 
J Appl Microbiol 90:353–357

    CAS  PubMed  Google Scholar 

  • Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932

    CAS  PubMed  Google Scholar 

  • Langenbach S, Rehm BHA, Steinbüchel A (1997) Functional expression of the PHA synthase gene phaC1 from Pseudomonas aeruginosa in Escherichia coli results in poly(3-hydroxyalkanoate) synthesis. FEMS Microbiol Lett 150:303–309

    CAS  PubMed  Google Scholar 

  • Lawrence AG, Schoenheit J, He A, Tian J, Liu P, Sttube JA, Sinskey AJ (2005) Transcriptional analysis of Ralstonia eutropha genes related to poly-(R)-3-hydroxybutyrate homeostasis during batch fermentation. Appl Microbiol Biotechnol 68:663–672

    CAS  PubMed  Google Scholar 

  • Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14

    CAS  PubMed  Google Scholar 

  • Lee SY, Choi JI (2001) Production of microbial polyester by fermentation of recombinant microorganisms. Adv Biochem Eng Biotechnol 71:183–207

    CAS  PubMed  Google Scholar 

  • Lee MY, Park WH (1999) Epoxidation of bacterial polyesters with unsaturated side chains V. Effect of crosslinking on thermal degradation of epoxidized polymers. Polym Degrad Stab 65:137–142

    CAS  Google Scholar 

  • Lee MY, Park WH (2000) Preparation of bacterial copolyesters with improved hydrophylicity by carboxylation. Macromol Chem Phys 201:2771–2774

    CAS  Google Scholar 

  • Lee B, Pometto AL III, Fratzke A, Bailey TB (1991) Biodegradation of degradable plastic polyethylene by Phanerochaete and Streptomyces species. Appl Environ Microbiol 57:678–685

    CAS  PubMed  Google Scholar 

  • Lee MY, Cha SY, Park WH (1999a) Crosslinking of microbial copolyester with pendant epoxyde groups by diamine. Polymer 40:3787–3793

    CAS  Google Scholar 

  • Lee SY, Choi JI, Wong HH (1999b) Recent advances in polyhydroxyalkanoate production by bacterial fermentation: mini-review. Int J Biol Macromol 25:31–36

    CAS  PubMed  Google Scholar 

  • Lee MY, Park WH, Lenz RW (2000a) Hydrophylic bacterial polyesters modified with pendant hydroxyl groups. Polymer 41:1703–1709

    CAS  Google Scholar 

  • Lee SH, Oh DH, Ahn WS, Choi J, Lee SY (2000b) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by high-cell-density cultivation of Aeromonas hydrophila. Biotechnol Bioeng 20:240–244

    Google Scholar 

  • Lee HJ, Choi MH, Kim TU, Yoon SC (2001) Accumulation of polyhydroxyalkanoic acid containing large amounts of unsaturated monomers in Pseudomonas fluorescens BM07 utilizing saccharides and its inhibition by 2-bromooctanoic acid. Appl Environ Microbiol 67:4963–4974

    CAS  PubMed  Google Scholar 

  • Lee WH, Azizan MNM, Sudesh K (2004) Effects of culture conditions on the composition of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) synthesized by Comamonas acidovorans. Polym Degrad Stab 84:129–134

    CAS  Google Scholar 

  • Lemoigne M (1926) Produits de déshydration and polymerisation de l´acide β-oxobutyrique. Bull Chem Soc Biol 8:770–782

    CAS  Google Scholar 

  • Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6:1–7

    CAS  PubMed  Google Scholar 

  • Lenz RW, Kim YB, Fuller RC (1992) Production of unusual bacterial polyesters by Pseudomonas oleovorans through cometabolism. FEMS Microbiol Lett 103:207–214

    CAS  Google Scholar 

  • Li J, Li X, Ni X, Leong KW (2003) Synthesis and characterization of new biodegradable amphiphilic poly(ethylene oxide)-b-poly[(R)-3-hydroxy butyrate]-b-poly(ethylene oxide) triblock copolymers. Macromolecules 36:2661–2667

    CAS  Google Scholar 

  • Li J, Ni X, Li X, Tan NK, Lim CT, Ramakrishna S, Leong KW (2005a) Micellization phenomena of biodegradable amphiphilic triblock copolymers consisting of poly(β-hydroxyalkanoic acid) and poly(ethylene oxide). Langmuir 21:8681–8685

    CAS  PubMed  Google Scholar 

  • Li X, Loh XJ, Wang K, He C, Li J (2005b) Poly(ester urethane)s consisting of poly[(R)-3-hydroxy butyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study. Biomacromolecules 6:2740–2747

    CAS  PubMed  Google Scholar 

  • Li R, Chen Q, Wang PG, Qi Q (2007) A novel-designed Escherichia coli for the production of various polyhydroxyalkanoates from inexpensive substrate mixture. Appl Microbiol Biotechnol 75:1103–1109

    CAS  PubMed  Google Scholar 

  • Li XT, Zhang Y, Chen GQ (2008) Nanofibrous polyhydroxyalkanoate matrices as cell growth supporting materials. Biomaterials 29:3720–3728

    CAS  PubMed  Google Scholar 

  • Lisuardi A, Schoenberg A, Gada M, Gross RA, McCarthy S (1992) Biodegradation of blends of poly(β-hydroxybutyrate) and poly(ε-caprolactone). Polym Mater Sci Eng 67:298–300

    CAS  Google Scholar 

  • Liu J, Qiu Z, Jungnickel B-J (2005) Crystallization and morphology of poly(vinylidene fluoride)/poly(3-hydroxybutyrate) blends. III. Crystallization and phase diagram by differential scanning calorimetry. J Polym Sci B Polym Phys 43:287–295

    Google Scholar 

  • Lorenzo De (2008) Systems biology approaches to bioremediation. Curr Opin Biotechnol 19:1–11

    Google Scholar 

  • Lotti H, Pizzoli M, Ceccorulli G, Scandola M (1993) Binary blends of microbial poly(3-hydroxybutyrate) with polymethacrylates. Polymer 34:4935–4940

    CAS  Google Scholar 

  • Lu XY, Wu Q, Chen GQ (2004) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with flexible 3-hydroxyhexanoate content in Aeromonas hydrophila CGMCC 0911. Appl Microbiol Biotechnol 64:41–45

    CAS  PubMed  Google Scholar 

  • Luengo JM, García JL, Olivera ER (2001) The phenylacetyl-CoA catabolon: a complex catabolic unit with broad biotechnological applications. Mol Microbiol 39:1434–1442

    CAS  PubMed  Google Scholar 

  • Luengo JM, García B, Sandoval A, Naharro G, Olivera ER (2003) Bioplastics from microorganisms. Curr Opin Biotechnol 6:251–260

    CAS  Google Scholar 

  • Luengo JM, Arias S, Sandoval A, Arias-Barrau E, Arcos M, Naharro G, Olivera ER (2004) From aromatic to bioplastic: the phenylacetyl-CoA catabolon as a model of catabolic convergence. In: Pandalai SG (ed) Recent research developments in biophysic and biochemistry, vol 4. Research Signpost, Kerala, pp 257–292

    Google Scholar 

  • Lütke-Eversloh T, Steinbüchel A (2003) Novel precursor substrates for polythioesters (PTEs) and limits of PTE biosynthesis in Ralstonia eutropha. FEMS Microbiol Lett 221:191–196

    PubMed  Google Scholar 

  • Lütke-Eversloh T, Steinbüchel A (2004) Microbial polythioesters. Macromol Biosci 4:165–174

    Google Scholar 

  • Lütke-Eversloh T, Bergander K, Luftmann H, Steinbüchel A (2001a) Identification of a new class of biopolymer: bacterial synthesis of a sulfur containing polymer with thioester linkages. Microbiology 147:11–19

    PubMed  Google Scholar 

  • Lütke-Eversloh T, Bergander K, Luftmann H, Steinbüchel A (2001b) Biosynthesis of poly(3-hydroxybutyrate-co-3-mercaptobutyrate) as a sulfur analogue to poly(3-hydroxybutyrate) (PHB). Biomacromolecules 2:1061–1065

    PubMed  Google Scholar 

  • Lütke-Eversloh T, Fischer A, Remminghorst U, Kawada J, Marchessault RH, Bogershausen A, Kalwei M, Eckert H, Reichelt R, Liu SJ, Steinbüchel A (2002a) Biosynthesis of novel thermoplastic polythioesters by engineered Escherichia coli. Nat Mater 1:236–240

    PubMed  Google Scholar 

  • Lütke-Eversloh T, Kawada J, Marchessault RH, Steinbüchel A (2002b) Characterization of biological polythioesters: physical properties of novel copolymers synthesized by Ralstonia eutropha. Biomacromolecules 3:159–166

    PubMed  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    CAS  PubMed  Google Scholar 

  • Matavulj M, Molitoris HP (1992) Fungal degradation of polyhydroxyalkanoates and a semiquantitative assay for screening their degradation by terrestrial fungi. FEMS Microbiol Rev 9:323–331

    CAS  PubMed  Google Scholar 

  • Matsusaki H, Abe H, Doi Y (2000) Biosynthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant strains of Pseudomonas sp. 6 1–3. Biomacromolecules 1:17–22

    CAS  PubMed  Google Scholar 

  • Mengmeng C, Hong C, Qingliang Z, Shirley SN, Jie R (2008) Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acid (VFAs) generated from alkaline excess sludge fermentation. Bioresour Technol 100:1399–1405

    PubMed  Google Scholar 

  • Misra SK, Valappil SP, Rou I, Boccaccini AR (2006) Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications. Biomacromolecules 7:2249–2258

    CAS  PubMed  Google Scholar 

  • Mittendorf V, Robertson E, Leech RM, Krüger N, Steinbüchel A, Poirier Y (1998) Synthesis of medium-chain-length polyhydroxyalkanoates in Arabidopsis thaliana using intermediates of peroxisomal fatty acid oxidation. Proc Natl Acad Sci U S A 95:13397–13402

    CAS  PubMed  Google Scholar 

  • Moldes C, García P, García JL, Prieto MA (2004) In vivo immobilization of fusion proteins on bioplastics by the novel tag BioF. Appl Environ Microbiol 70:3205–3212

    CAS  PubMed  Google Scholar 

  • Monteil-Rivera F, Betancourt A, Van Tra H, Yezza A, Hawari J (2007) Use of headspace solid-phase microextraction for the quantification of poly(3-hydroxybutyrate) in microbial cells. 
J Chromatogr 1154:34–41

    CAS  Google Scholar 

  • Mooibroek H, Cornish K (2000) Alternative sources of natural rubber. Appl Microbiol Biotechnol 53:355–365

    CAS  PubMed  Google Scholar 

  • Nakamura S, Kunioka M, Doi Y (1991) Biosynthesis and characterization of bacterial poly(3-hydroxybutyrate-co-3-hydroxypropionate). J Macromol Sci 28:15–24

    Google Scholar 

  • Nikel PI, de Almeida A, Melillo EC, Galvagno MA, Pettinari MJ (2006) New recombinant Escherichia coli strain tailored for the production of poly(3-hydroxybutyrate) from agroindustrial by-products. Appl Environ Microbiol 72:3949–3954

    CAS  PubMed  Google Scholar 

  • Nikodinovic J, Kenny ST, Babu RP, Woods T, Blau WJ, O’Connor KE (2008) The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoates. Appl Microbiol Biotechnol 80:665–673

    CAS  PubMed  Google Scholar 

  • Nomura CT, Taguchi K, Ganz Z, Kuwabara K, Tanaka T, Takase K, Doy Y (2005) Expression of 3-ketoacyl-acyl carrier protein reductase (fabG) genes enhances production of polyhydroxyalkanoate copolymer from glucose in recombinant Escherichia coli JM109. Appl Environ Microbiol 71:4297–4306

    CAS  PubMed  Google Scholar 

  • Ohura T, Kasuya KI, Doi Y (1999) Cloning and characterization of the polyhydroxybutyrate depolymerase gene of Pseudomonas stutzeri and analysis of the function of substrate-binding domains. Appl Environ Microbiol 65:189–197

    CAS  PubMed  Google Scholar 

  • Oliveira FC, Freire DM, Castilho LR (2004) Production of poly(3-hydroxybutyrate) by solid-state fermentation with Ralstonia eutropha. Biotechnol Lett 26:1851–1855

    CAS  PubMed  Google Scholar 

  • Olivera ER, Carnicero D, Jodrá R, Minambres B, García B, Abraham GA, Gallardo A, San Román J, García JL, Naharro G, Luengo JM (2001a) Genetically engineered Pseudomonas: a factory of new bioplastics with broad applications. Environ Microbiol 3:612–618

    CAS  PubMed  Google Scholar 

  • Olivera ER, Carnicero D, García B, Minambres B, Moreno MA, Cañedo L, DiRusso CC, Naharro G, Luengo JM (2001b) Two different pathways are involved in the β-oxidation of n-alkanoic and n-phenylalkanoic acids in Pseudomonas putida U: genetic studies and biotechnological applications. Mol Microbiol 39:863–874

    CAS  PubMed  Google Scholar 

  • Organ SJ (1994) Phase separation in blends of poly(hydroxybutyrate) with poly(hydroxybutyrate-co-hydroxyvalerate): variation with blend components. Polymer 35:86–92

    CAS  Google Scholar 

  • Organ SJ, Barham PJ (1993) Phase separation in a blend of poly(hydroxybutyrate) with poly(hydroxybutyrate-co-hydroxyvalerate). Polymer 34:459–467

    CAS  Google Scholar 

  • Ouyang SP, Liu Q, Fang L, Chen GQ (2007) Construction of a pha-operon-defined knockout mutants of Pseudomonas putida KT2442 and their applications in poly(hydroxyalkanoate) production. Macromol Biosci 7:227–233

    CAS  PubMed  Google Scholar 

  • Owen AJ, Heizzel J, Škrbić Z, Divjaković V (1992) Crystallization and melting behaviour of PHB and PHB/HV copolymer. Polymer 33:1563–1567

    CAS  Google Scholar 

  • Page WJ, Knosp O (1989) Hyperproduction of poly-β-hydroxybutyrate during exponential growth of Azotobacter vinelandii UWD. Appl Environ Microbiol 55:1334–1339

    CAS  PubMed  Google Scholar 

  • Park WH, Lenz RW, Goodwin S (1998a) Epoxidation of bacterial polyesters with unsaturated side chains. I. Production and epoxidation of polyesters from 10-undecenoic acid. Macromolecules 31:1480–1486

    CAS  Google Scholar 

  • Park WH, Lenz RW, Goodwin S (1998b) Epoxidation of bacterial polyesters with unsaturated side chains. II. Rate of epoxidation and polymer properties. J Polym Sci A Polym Chem 36:2381–2387

    CAS  Google Scholar 

  • Park SJ, Ahn WS, Green PR, Lee SY (2001) Biosynthesis of poly(3-hydroxybutyrate-
co-3-hydroxyvalerate-co-3-hydroxyhexanoate) by metabolically engineered Escherichia coli strains. Biotechnol Bioeng 74:81–86

    CAS  PubMed  Google Scholar 

  • Park SJ, Park JP, Lee SG (2002) Production of poly(3-hydroxybutyrate) from whey by fed-batch culture of recombinant Escherichia coli in a pilot-scale fermenter. Biotechnol Lett 24:185–189

    CAS  Google Scholar 

  • Pearce R, Marchessault RH (1994) Multiple melting in blends of isotactic and atactic poly(β-hydroxybutyrate). Polymer 35:3990–3997

    CAS  Google Scholar 

  • Pearce R, Jesudason J, Orts W, Marchessault RH, Bloembergen S (1992) Blends of bacterial and synthetic poly(β-hydroxybutyrate): effect of tacticity on melting behaviour. Polymer 33:4647–4649

    CAS  Google Scholar 

  • Pearce R, Brown GR, Marchessault RH (1994) Crystallization kinetics in blends of isotactic and atactic poly(β-hydroxybutyrate). Polymer 35:3984–3989

    CAS  Google Scholar 

  • Peters V, Rehm BHA (2005) In vivo monitoring of PHA granule formation using GFP-labeled PHA synthesis. FEMS Microbiol Lett 248:93–100

    CAS  PubMed  Google Scholar 

  • Peters V, Becher D, Rehm BHA (2007) The inherent property of polyhydroxyalkanoate synthase to form spherical PHA granules at the cell poles: the core region is required for polar localization. J Biotechnol 132:238–245

    CAS  PubMed  Google Scholar 

  • Pettinari MJ, Vázquez GJ, Silberschmidt D, Rehm B, Steinbüchel A (2001) Poly(3-hydroxybutyrate) genes in Azotobacter sp. strain FA8. Appl Environ Microbiol 67:5331–5334

    CAS  PubMed  Google Scholar 

  • Pham TH, Webb JS, Rehm BH (2004) The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology 150:3405–3413

    CAS  PubMed  Google Scholar 

  • Pizzoli M, Scandola M, Ceccorulli G (1994) Crystallization kinetics and morphology of poly(3-hydroxybutyrate)/cellulose ester blends. Macromolecules 27:4755–4761

    CAS  Google Scholar 

  • Poirier Y (1999) Production of new polymeric compounds in plants. Curr Opin Biotechnol 10:181–185

    CAS  PubMed  Google Scholar 

  • Poirier Y (2002) Polyhydroxyalkanoate synthesis in plants as a tool for biotechnology and basic studies of lipid metabolism. Prog Lipid Res 41:131–155

    CAS  PubMed  Google Scholar 

  • Poirier Y, Nawrath C, Somerville C (1995) Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Biotechnology 13:142–150

    CAS  PubMed  Google Scholar 

  • Poirier Y, Erard N, MacDonald-Comber Petétot J (2002) Synthesis of polyhydroxyalkanoates in the peroxisomes of Pichia pastoris. FEMS Microbiol Lett 22:97–102

    Google Scholar 

  • Pötter M, Müller H, Reinecke F, Wieczorek R, Fricke F, Bowien B, Friedrich B, Steinbüchel A (2004) The complex structure of polyhydroxybutyrate (PHB) granules: four orthologous and paralogous phasins occur in Ralstonia eutropha. Microbiology 150:2301–2311

    PubMed  Google Scholar 

  • Prieto MA, Bühler B, Jung K, Witholt B, Kessler B (1999) PhaF, a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes. J Bacteriol 181:858–868

    CAS  PubMed  Google Scholar 

  • Prieto MA, de Eugenio LI, Galán B, Luengo JM, Witholt B (2007) Síntesis and degradation of polyhydroxyalkanoates. In: Ramos JL, Filloux A (eds) Pseudomonas, vol 5. Springer, Amsterdam, pp 397–428

    Google Scholar 

  • Qi Q, Rehm BHA, Steinbüchel A (1997) Synthesis of poly(3-hydroxyalkanoates) in Escherichia coli expressing the PHA synthase gene phaC2 from Pseudomonas aeruginosa: comparison of PhaC1 and PhaC2. FEMS Microbiol Lett 157:155–162

    CAS  PubMed  Google Scholar 

  • Qi Q, Steinbüchel A, Rehm BH (2000) In vitro synthesis of poly(3-hydroxydecanoate): purification and enzymatic characterization of type II polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa. Appl Microbiol Biotechnol 54:37–43

    CAS  PubMed  Google Scholar 

  • Ramsay BA, Lomaliza K, Chavarie C, Dube B, Bataille P, Ramsay JA (1990) Production of poly(β-hydroxybutyric-co-β-hydroxyvaleric) acids. Appl Environ Microbiol 56:2093–2098

    CAS  PubMed  Google Scholar 

  • Ravenelle F, Marchessault RH (2002) One-step synthesis of amphiphilic diblock copolymers from bacterial poly([R]-3-hydroxybutyric acid). Biomacromolecules 3:1057–1064

    CAS  PubMed  Google Scholar 

  • Reeve MS, McCarthy SP, Gross RA (1993) Preparation and characterization of (R)-poly(β-hydroxybutyrate)-poly(ε-caprolactone) and (R)-poly(β-hydroxybutyrate)-poly(lactide) degradable diblock copolymers. Macromolecules 26:888–894

    CAS  Google Scholar 

  • Rehm BHA (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33

    CAS  PubMed  Google Scholar 

  • Rehm BHA (2007) Biogenesis of microbial polyhydroxyalkanoate granules: a platform technology for the production of tailor-made bioparticle. Curr Issues Mol Biol 9:41–62

    CAS  PubMed  Google Scholar 

  • Rehm BHA, Krüger N, Steinbüchel A (1998) A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. J Biol Chem 273:24044–24051

    CAS  PubMed  Google Scholar 

  • Ren Q, Beilen JB, Sierro N, Zinn M, Kessler B, Witholt B (2005a) Expression of PHA polymerase genes of Pseudomonas putida in Escherichia coli and its effect on PHA formation. Antonie Van Leeuwenhoek 87:91–100

    CAS  PubMed  Google Scholar 

  • Ren Q, de Roo G, Beilen JB, Zinn M, Kessler B, Witholt B (2005b) Poly(3-hydroxyalkanoate) polymerase synthesis and in vitro activity in recombinant Escherichia coli and Pseudomonas putida. Appl Microbiol Biotechnol 286:286–292

    Google Scholar 

  • Ren Q, Grubelnik A, Hoerler M, Ruth K, Hartmann R, Felber H, Zinn M (2005c) Bacterial poly(hydroxyalkanoates) as a source of chiral hydroxyalkanoic acids. Biomacromolecules 6:2290–2298

    CAS  PubMed  Google Scholar 

  • Renard E, Walls M, Guerin P, Langlois V (2004) Hydrolytic degradation of blends of polyhydroxyalkanoates and functionalized polyhydroxyalkanoates. Polym Degrad Stab 85:779–787

    CAS  Google Scholar 

  • Renner G, Pongratz K, Braunegg G (1996) Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Comamonas testosteronii A3. Food Technol Biotechnol 34:91–95

    CAS  Google Scholar 

  • Reusch RN (2000) Transmembrane ion transport by polyphosphate-poly-(R)-3-hydroxybutyrate complexes. Biochem 65:280–295 English Translation

    CAS  Google Scholar 

  • Ritter H, von Spee AG (1994) Bacterial production of polyesters bearing phenoxy groups in the side chains, 1. Poly(3-hydroxy-5-phenoxypentanoate-co-3-hydroxy-9-phenoxynonanoate) from Pseudomonas oleovorans. Macromol Chem Phys 195:1665–1672

    CAS  Google Scholar 

  • Rodrigues MF, Valentin HE, Berger PA, Tran M, Asrar J, Gruys KJ, Steinbüchel A (2000) Polyhydroxyalkanoate accumulation in Burkholderia sp.: a molecular approach to elucidate the genes involved in the formation of two homopolymers consisting of short-chain-length 3-hydroxyalkanoic acids. Appl Microbiol Biotechnol 53:453–460

    CAS  PubMed  Google Scholar 

  • Rothermich MM, Guerrero R, Lenz RW, Goodwin S (2000) Characterization, seasonal occurrence, and diel fluctuation of poly(hydroxyalkanoate) in photosynthetic microbial mats. Appl Environ Microbiol 66:4279–4291

    CAS  PubMed  Google Scholar 

  • Russell RA, Holden PJ, Wilde KL, Hammerton KM, Foster LJ (2007) Production and use of deuterated polyhydroxyoctanoate in structural studies of PHO inclusions. J Biotechnol 132:
303–305

    CAS  PubMed  Google Scholar 

  • Ruth K, de Roo G, Egli T, Ren Q (2008) Identification of two acyl-CoA synthetases from Pseudomonas putida GPo1: one is located at the surface of polyhydroxyalkanoate granules. Biomacromolecules 9:1652–1659

    CAS  PubMed  Google Scholar 

  • Saad GR (2002) Blends of bacterial poly[(R)-3-hydroxybutyrate] with oligo[(R,S)-3-hydroxybutyrate]-diol. Polym Int 51:338–348

    CAS  Google Scholar 

  • Sadocco D, Cautetti M, Seves A, Martuscelli E (1993) Small-angle X-ray scattering study of the phase structure of poly(D-(−)-3-hydroxybutyrate) and atactic poly(epichlorohydrin) blends. Polymer 34:3368–3375

    CAS  Google Scholar 

  • Saito Y, Doi Y (1994) Microbial synthesis and properties of poly(3-hydroxybutyrate-
co-4-hydroxybutyrate) in Comamonas acidovorans. Int J Biol Macromol 16:99–104

    CAS  PubMed  Google Scholar 

  • Saito Y, Nakamura S, Hiramitsu M, Doi Y (1996) Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polymer Int 39:167–174

    Google Scholar 

  • Salehizadeh H, Van Loosdrecht MCM (2004) Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol Adv 22:261–279

    CAS  PubMed  Google Scholar 

  • Sandoval A, Arias-Barrau E, Arcos M, Bermejo F, Cañedo L, Naharro G, Olivera ER, Luengo JM (2005) Production of 3-hydroxy-n-phenylalkanoic acids by a genetically engineered strain of Pseudomonas putida. Appl Microbiol Biotechnol 67:97–105

    CAS  PubMed  Google Scholar 

  • Sandoval A, Arias-Barrau E, Arcos M, Naharro G, Olivera ER, Luengo JM (2007) Genetic and ultrastructural analysis of different mutants of Pseudomonas putida affected in the poly-3-hydroxy-n-alkanoate gene cluster. Environ Microbiol 9:737–751

    CAS  PubMed  Google Scholar 

  • Satoh H, Yoshie H, Inoue Y (1994) Hydrolytic degradation of blends of poly(3-hydroxybutyrate) with poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polymer 35:286–290

    CAS  Google Scholar 

  • Scandola M, Ceccorulli G, Pizzoli M (1992) Miscibility of bacterial poly(3-hydroxybutyrate) with cellulose esters. Macromolecules 25:6441–6446

    CAS  Google Scholar 

  • Schlegel H, Gottschalk G, von Bartha R (1961) Formation and utilization of poly-beta-hydroxybutyric acid by knallgas bacteria (Hydrogenomonas). Nature 191:463–465

    CAS  PubMed  Google Scholar 

  • Schmack G, Gorenflo V, Steinbüchel A (1998) Biotechnological production and characterization of polyesters containing 4-hydroxyvaleric acid and medium-chain-length hydroxyalkanoic acids. Macromolecules 31:644–649

    CAS  Google Scholar 

  • Scholz C, Fuller RC, Lenz RW (1994) Growth and polymer incorporation of Pseudomonas oleovorans on alkyl esters of heptanoic acid. Macromolecules 27:2886–2889

    CAS  Google Scholar 

  • Scott G (1994) Environmental biodegradation of hydrocarbon polymers. In: Doi Y, Fukuda K (eds) Biodegradable plastics and polymers. Elsevier, Amsterdam, pp 79–91

    Google Scholar 

  • Scott G (1997) Abiotic control of polymer biodegradation. Trends Polym Sci 5:361–368

    CAS  Google Scholar 

  • Scott G (1999) Biodegradable polymers. In: Scott G (ed) Polymers and the environment. Royal Society of Chemistry, London, pp. 93–125

    Google Scholar 

  • Scott G (2000) Green polymers. Polym Degrad Stab 68:1–7

    CAS  Google Scholar 

  • Serafim LS, Lemos PC, Torres C, Reis MA, Ramos AM (2008) The influence of process parameters on the characteristics of polyhydroxyalkanoates produced by mixed cultures. Macromol Biosci 8:355–366

    CAS  PubMed  Google Scholar 

  • Sevastianov VI, Perova NV, Shishatskaya EI, Kalacheva GS, Velova TG (2003) Production of purified polyhydroxyalkanoates (PHAs) for applications in contact with blood. J Biomater Sci Polym Ed 14:1029–1042

    CAS  PubMed  Google Scholar 

  • Shuai X-T, Jedlinski Z, Luo Q, Farhod N (2000) Synthesis of novel block copolymers of poly(3-hydroxybutyric acid) with poly(ethylene glycol) through anionic polymerization. Chin J Polym Sci 18:19–23

    CAS  Google Scholar 

  • Simon-Colin C, Alain K, Collin S, Cozien J, Costa B, Guezennec JG, Raguénés GH (2008a) A novel PHA-producing bacterium, Pseudomonas guezennei sp. nov., isolated from a ‘kopara’ mat located in Rangiroa an atoll of French Polynesia. J Appl Microbiol 104:581–586

    CAS  PubMed  Google Scholar 

  • Simon-Colin C, Raguénés GH, Cozien J, Guezennec JG (2008b) Halomonas profundus sp. nov., a new PHA-producing bacterium isolated from a deep-sea hydrothermal event shrimp. J Appl Microbiol 104:1425–1432

    CAS  PubMed  Google Scholar 

  • Singh AK, Mallick N (2008) Enhanced production of SCL-LCL-PHA co-polymer by sludge-isolated Pseudomonas aeruginosa MTCC 7925. Lett Appl Microbiol 46:350–357

    CAS  PubMed  Google Scholar 

  • Snell KD, Peoples OP (2002) Polyhydroxyalkanoate polymers and their production in transgenic plants. Metab Eng 4:29–40

    CAS  PubMed  Google Scholar 

  • Solaiman DK, Ashby RD (2005) Rapid genetic characterization of poly(hydroxyalkanoate) synthase and its applications. Biomacromolecules 6:532–537

    CAS  PubMed  Google Scholar 

  • Song JJ, Yoon SC (1996) Biosynthesis of novel aromatic copolyesters from insoluble 11-phenoxyundecanoic acid by Pseudomonas putida BM01. Appl Environ Microbiol 62:536–544

    CAS  PubMed  Google Scholar 

  • Steinbüchel A (2001) Perspectives for biotechnological production and utilisation of biopolymers: metabolic engineering of poly-hydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1:1–24

    Google Scholar 

  • Steinbüchel A, Füchstenbusch B (1998) Bacterial and other biological systems for polyesters production. Trends Biotechnol 16:419–427

    PubMed  Google Scholar 

  • Steinbüchel A, Hein S (2001) Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. Adv Biochem Eng Biotechnol 71:81–123

    PubMed  Google Scholar 

  • Steinbüchel A, Valentin ME (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Google Scholar 

  • Stigers DJ, Tew GN (2003) Poly(3-hydroxyalkanoate)s functionalized with carboxylic acid groups in the side chain. Biomacromolecules 4:193–195

    CAS  PubMed  Google Scholar 

  • Stockdale H, Ribbons DW, Dawes EA (1968) Occurrence of poly-beta-hydroxybutyrate in the Azotobacteriaceae. J Bacteriol 95:1798–1803

    CAS  PubMed  Google Scholar 

  • Stubbe J, Tian J, He A, Sinskey AJ, Lawrence AG, Liu P (2005) Nontemplate-dependent polymerization processes: polyhydroxyalkanoate synthases as a paradigm. Annu Rev Biochem 74:433–480

    CAS  PubMed  Google Scholar 

  • Su L, Lenz RW, Takagi Y, Zhang S, Goodwin S, Zhong L, Martin DP (2000) Enzymatic polymerization of (R)-3-hydroxyalkanoates by a bacterial polymerase. Macromolecules 33:229

    CAS  Google Scholar 

  • Sudesh K (2004) Microbial polyhydroxyalkanoates (PHAs): an emerging biomaterial for tissue engineering and therapeutic applications. Med J Malaysia 59:55–56

    PubMed  Google Scholar 

  • Sudesh K, Taguchi K, Doi Y (2002) Effect of increased PHA synthase activity on polyhydroxyalkanoates biosynthesis in Synechocystis sp. PCC6803. Int J Biol Mol 30:97–104

    CAS  Google Scholar 

  • Sudesh K, Loo CY, Goh LK, Iwata T, Maeda M (2007) The oil-absorbing property of polyhydroxyalkanoate films and its practical applications: a refreshing new outlook for an old degrading material. Macromol Biosci 12:1199–1205

    Google Scholar 

  • Sujatha K, Shenbagarathai R (2006) A study on medium chain length-polyhydroxyalkanoate accumulation in Escherichia coli harbouring phaC1 gene of indigenous Pseudomonas sp. LDC-5. Lett Appl Microbiol 43:607–614

    CAS  PubMed  Google Scholar 

  • Sun Z, Ramsay JA, Guay M, Ramsay BA (2007) Fermentation process development for the production of medium-chain-length poly-3-hydroxyalkanoates. Appl Microbiol Biotechnol 75:475–485

    CAS  PubMed  Google Scholar 

  • Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants – a review. Biotechnol Adv 25:148–175

    CAS  PubMed  Google Scholar 

  • Swift G (1993) Directions for environmentally biodegradable polymer research. Acc Chem Res 26:105–110

    CAS  Google Scholar 

  • Taguchi K, Aoyagi Y, Matsusaki H, Fukui T, Doi Y (2003) Co-expression of 3-ketoacyl-ACP reductase and polyhydroxyalkanoate synthase genes induces PHA production in Escherichia coli HB101 strain. FEMS Microbiol Lett 176:183–190

    Google Scholar 

  • Tajima K, Igari T, Nishimura D, Nakamura M, Satoh Y, Munekata M (2003) Isolation and characterization of Bacillus sp. INT005 accumulating polyhydroxyalkanoate (PHA) from gas field soil. J Biosci Bioeng 95:77–81

    CAS  PubMed  Google Scholar 

  • Takagi Y, Hashii M, Maehara A, Yamane T (1999) Biosynthesis of polyhydroxyalkanoate with a thiophenoxy side group obtained from Pseudomonas putida. Macromolecules 32:8315–8318

    CAS  Google Scholar 

  • Takagi Y, Yasuda R, Maehara A, Yamane T (2004) Microbial synthesis and characterization of polyhydroxyalkanoates with fluorinated phenoxy side groups from Pseudomonas putida. Eur Polym J 40:1551–1557

    CAS  Google Scholar 

  • Takeda M, Matsuoka M, Hamana H, Hikuma M (1995) Biosynthesis of poly-3-hydroxybutyrate by Sphaerotilus natans. Appl Microbiol Biotechnol 43:31–34

    CAS  Google Scholar 

  • Tanaka S, Feng LD, Inoue Y (2004) Comparative study of effects of thio/oxo ester linkages on thermal properties of bacterial poly[3-hydroxybutyrate-co-3-(mercapto/hydroxyl)propionate]. Polym J 36:570–573

    CAS  Google Scholar 

  • Terentiev Y, Breuer U, Babel W, Kunze G (2004) Non-conventional yeasts as producers of polyhydroxyalkanoates: genetic engineering of Arxula adeninivorans. Appl Microbiol Biotechnol 64:376–381

    CAS  PubMed  Google Scholar 

  • Tessmer N, Konig S, Malkus U, Reichelt R, Potter M, Steinbüchel A (2007) Heat-shock protein HspA mimics the function of phasins sensu stricto in recombinant strains of Escherichia coli accumulating polythioesters or polyhydroxyalkanoates. Microbiology 153:366–374

    CAS  PubMed  Google Scholar 

  • Thakor N, Lütke-Eversloh T, Steinbüchel A (2005) Application of the BPEC pathway for large scale biotechnological production of poly(3-mercaptopropionate) by recombinant Escherichia coli including a novel in situ isolation method. Appl Environ Microbiol 71:835–841

    CAS  PubMed  Google Scholar 

  • Timbart L, Renard E, Langlois V, Guerin P (2004) Novel biodegradable copolyesters containing blocks of poly(3-hydroxyoctanoate) and poly(ε-caprolactone): synthesis and characterization. Macromol Biosci 4:1014–1020

    CAS  PubMed  Google Scholar 

  • Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56:3360–3367

    CAS  PubMed  Google Scholar 

  • Timm A, Steinbuchel A (1992) Cloning and molecular analysis of the poly(3-hydroxyalkanoic acid) gene locus of Pseudomonas aeruginosa PAO1. Eur J Biochem 209:15–30

    Google Scholar 

  • Tokiwa Y, Calabia BP (2004) Degradation of microbial polyesters. Biotechnol Lett 26:1181–1189

    CAS  PubMed  Google Scholar 

  • Trainer MA, Charles TC (2006) The role of PHB metabolism in the symbiosis of rhizobia with legumes. Appl Microbiol Biotechnol 71:377–386

    CAS  PubMed  Google Scholar 

  • Tsuge T, Taguchi K, Seiichi T, Doi Y (2003) Molecular characterization and properties of (R)-specific enoyl-CoA hydratases from Pseudomonas aeruginosa: metabolic tools for synthesis of polyhydroxyalkanoates via fatty acid β-oxidation. Int J Biol Macromol 31:195–205

    CAS  PubMed  Google Scholar 

  • Tsuge T, Watanabe S, Sato S, Hiraishi T, Abe H, Doi Y, Taguchi S (2007) Variation in copolymer composition and molecular weight of polyhydroxyalkanoate generated by satutation mutagenesis of Aeromonas caviae PHA synthase. Macromol Biosci 7:846–854

    CAS  PubMed  Google Scholar 

  • Valappil SP, Misra SK, Boccaccini AR, Roy I (2006) Biomedical applications of polyhydroxyalkanoates: an overview of animal testing and in vivo responses. Expert Rev Med Devices 3:
853–868

    CAS  PubMed  Google Scholar 

  • Valappil SP, Boccacini AR, Bucke C, Roy I (2007) Polyhydroxyalkanoates in Gram-positive bacteria: insights from the genera Bacillus and Streptomyces. Antonie Van Leeuwenhoek 91:1–17

    CAS  PubMed  Google Scholar 

  • Valentin HE, Dennis D (1997) Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. J Biotechnol 58:33–38

    CAS  PubMed  Google Scholar 

  • Valentin HE, Steinbüchel A (1995) Accumulation of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid-co-4-hydroxyvaleric acid) by mutants and recombinant strains of Alcaligenes eutrophus. J Environ Polym Degrad 3:169–175

    CAS  Google Scholar 

  • Valentin HE, Lee EY, Choi CY, Steinbüchel A (1994) Identification of 4-hydroxyhexanoic acid as a new constituent of biosynthetic polyhydroxyalkanoic acids from bacteria. Appl Microbiol Biotechnol 40:710–716

    CAS  Google Scholar 

  • Valentin HE, Schonebaum A, Steinbüchel A (1996) Identification of 5-hydroxyhexanoic acid, 4-hydroxyheptanoic acid and 4-hydroxyoctanoic acid as new constituents of bacterial polyhydroxyalkanoic acids. Appl Microbiol Biotechnol 46:261–267

    CAS  Google Scholar 

  • Valentin HE, Berger PA, Gruys KJ, Rodrigues MFD, Steinbüchel A, Tran R, Asrar J (1999) Biosynthesis and characterization of poly(3-hydroxy-4-pentenoic acid). Macromolecules 32:7389–7395

    CAS  Google Scholar 

  • van Beilen JB, Poirier Y (2008) Production of renewable polymers from crop plants. Plant J 54:684–701

    PubMed  Google Scholar 

  • van der Leij FR, Witholt B (1995) Strategies for the sustainable production of new biodegradable polyesters in plants: a review. Can J Microbiol 41(Suppl 1):222–238

    Google Scholar 

  • Van der Walle GAM, Buisman GJH, Weusthuis RA, Eggink G (1999) Development of environmentally friendly coatings and paints using medium-chain-length poly(3-hydroxyalkanoates) as the polymer binder. Int J Biol Macromol 25:123–128

    PubMed  Google Scholar 

  • van der Walle GA, De Koning GJM, Weusthuis RA, Eggink G (2001) Properties, modifications and applications of biopolyesters. Adv Biochem Eng Biotechnol 71:263–291

    PubMed  Google Scholar 

  • van Wegen RJ, Lee SY, Middelberg AP (2001) Metabolic and kinetic analysis of poly(3-hydroxybutyrate) production by recombinant Escherichia coli. Biotechnol Bioeng 74:70–80

    PubMed  Google Scholar 

  • Velázquez F, Pflüger K, Cases I, de Eugenio LI, de Lorenzo V (2007) The phosphotransferase system formed by PtsP, PtsO, and PtsN proteins controls production of polyhydroxyalkanoates in Pseudomonas putida. J Bacteriol 189:4529–4533

    PubMed  Google Scholar 

  • Verhoogt H, Ramsay BA, Favis BD (1994) Polymer blends containing poly(3-hydroxyalkanoate)s. Polymer 35:5155–5169

    CAS  Google Scholar 

  • Verlinden RAJ, Hill DJ, Kenward MA, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449

    CAS  PubMed  Google Scholar 

  • Wahab H, Bahiyah N, Khairudin A, Samian MR, Najimudin N (2006) Sequence analysis and structure prediction of type II Pseudomonas sp. USM 4–55 PHA synthase and an insight into its catalytic mechanism. BMC Struct Biol 6:1–14

    Google Scholar 

  • Wang F, Lee SY (1997) Poly(3-hydroxybutyrate) production with high polymer content by fed-batch culture of Alcaligenes latus under nitrogen limitation. Appl Environ Microbiol 63:3703–3706

    CAS  PubMed  Google Scholar 

  • Wang J, Yu HQ (2007) Biosynthesis of polyhydroxybutyrate (PHB) and extracellular polymeric substances (EPS) by Ralstonia eutropha ATCC 17699 in batch cultures. Appl Microbiol Biotechnol 75:871–878

    CAS  PubMed  Google Scholar 

  • Wang L, Ambruster W, Jendrossek D (2007) Production of medium-chain-length hydroxyalkanoic acids from Pseudomonas putida in pH stat. Appl Microbiol Biotechnol 75:1047–1053

    CAS  PubMed  Google Scholar 

  • Ward PG, O’Connor KE (2005) Bacterial synthesis of polyhydroxyalkanoates containing aromatic and aliphatic monomers by Pseudomonas putida CA-3. Int J Biol Macromol 35:127–133

    CAS  PubMed  Google Scholar 

  • Wei X, Hu YJ, Xie WP, Lin RL, Chen GQ (2009) Influence of poly(3-hydroxybutyrate-
co-4-hydroxybutyrate-co-3-hydroxyhexanoate) on growth and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. J Biomed Mater Res A 90:894–905

    PubMed  Google Scholar 

  • Werker A, Lind P, Bengtsson S, Nordström F (2008) Chlorinated-solvent-free gas chromatographic analysis of biomass containing polyhydroxyalkanoates. Water Res 42:2517–2526

    CAS  PubMed  Google Scholar 

  • Wiggam MI, O’Kane MJ, Harper R, Atkinson AB, Hadden DR, Trimble ER, Bell PM (1997) Treatment of diabetic ketoacidosis using normalization of blood 3-hydroxybutyrate concentration as the endpoint of emergency management. Diabetes Care 20:1347–1352

    CAS  PubMed  Google Scholar 

  • Willet JL, Shogren RL (2002) Processing and properties of extruded starch/polymer foams. Polymer 43:5935–5947

    Google Scholar 

  • Williams SF, Martin D (2002) Application of PHAs in medicine and pharmacy. In: Doi Y, Steinbüchel A (eds) Biopolymers–polyesters III – applications and commercial products, vol 4. Wiley, Weinheim, pp 91–128

    Google Scholar 

  • Williams SF, Peoples OP (1996) Biodegradable plastics from plants. Chemtech 26:38–44

    CAS  Google Scholar 

  • Witholt B, Kessler B (1999) Perspectives of medium chain length poly (hydroxyalkanoates), a versatile set of bacterial bioplastics. Curr Opin Biotechnol 10:279–285

    CAS  PubMed  Google Scholar 

  • Witt U, Eining T, Yamamoto M, Kleeberg I, Deckwer WD, Müller RJ (2001) Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 44:289–299

    CAS  PubMed  Google Scholar 

  • Xing P, Dong L, An Y, Fenf Z, Avella M, Martuscelli E (1997) Miscibility and crystallization of poly(β-hydroxybutyrate) and poly(p-vinylphenol) blends. Macromolecules 30:2726–2733

    CAS  Google Scholar 

  • Yalpani M, Marchessault RH, Morin FG, Monasterios CJ (1991) Synthesis of poly(3-hydroxyalkanoate) (PHA) conjugates: PHA-carbohydrate and PHA-synthetic polymer conjugates. Macromolecules 24:6046–6049

    CAS  Google Scholar 

  • Yan S, Subramanian SB, Tyagi RD, Surampalli RY (2008) Polymer production by bacterial strains isolated from activated sludge trating municipal wastewater. Water Sci Technol 57:533–539

    CAS  PubMed  Google Scholar 

  • Yao YC, Zhan XY, Zhang J, Zou XH, Wang ZH, Xiong YC, Chen J, Chen GQ (2008) A specific drug targeting system based on polyhydroxyalkanoate granule binding protein PhaP fused with targeted cell ligands. Biomaterials 29:4823–4830

    CAS  PubMed  Google Scholar 

  • Yoon SC, Choi MH (1999) Local sequence dependence of polyhydroxyalkanoic acid degradation in Hydrogenophaga pseudoflava. J Biol Chem 274:800–808

    Google Scholar 

  • Yoshie N, Azuma Y, Sakurai M, Inoue Y (1995) Crystallization and compatibility of poly(vinyl alcohol)/poly(3-hydroxybutyrate) blends: Influence of blend composition and tacticity of poly(vinyl alcohol). J Appl Polym Sci 56:17–24

    CAS  Google Scholar 

  • Yoshie N, Saito M, Inouye Y (2004) Effect of chemical compositional distribution on solid-state structure and properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polymer 45:1903–1911

    CAS  Google Scholar 

  • Yu J, Chen LX (2008) The greenhouse gas emissions and fossil energy requirements of bioplastics from cradle to gate a biomass refinery. Environ Sci Tecnol 42:6961–6966

    CAS  Google Scholar 

  • Yu J, Stahl H (2008) Microbial utilization and biopolyester synthesis of bagasse hydrolysates. Bioresour Technol 99:8042–8048

    CAS  PubMed  Google Scholar 

  • Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602

    CAS  Google Scholar 

  • Yuan MQ, Shi ZY, Wei XX, Wu Q, Chen SF, Chen GQ (2008) Microbial production of medium-chain-length 3-hydroxyalkanoic acid by recombinant Pseudomonas putida KT2442 harboring genes fadL, fadD and phaZ. FEMS Microbiol Lett 283:167–175

    CAS  PubMed  Google Scholar 

  • Zhang L, Deng X, Zhao S, Huang Z (1997a) Biodegradable polymer blends of poly(3-hydroxybutyrate) and starch acetate. Polym Int 44:104–110

    CAS  Google Scholar 

  • Zhang LL, Xiong CD, Deng XM (1997b) Miscibility, crystallization and morphology of poly(β-hydroxybutyrate)/poly(D,L-lactide) blends. Polymer 37:235–241

    Google Scholar 

  • Zhang S, Kolvek S, Goodwin S, Lenz RW (2004) Poly(hydroxyalkanoic acid) biosynthesis in Ectothiorhodospira shaposhnikovii: characterization and reactivity of the type III Pha synthase. Biomacromolecules 5:40–48

    PubMed  Google Scholar 

  • Zhang B, Carlson R, Srienc F (2006) Engineering the monomer composition of polyhydroxyalkanoates synthesized in Saccharomyces cerevisiae. Appl Environ Microbiol 72:536–543

    CAS  PubMed  Google Scholar 

  • Zhao Q, Cheng GX (2004) Preparation of biodegradable poly(3-hydroxybutyrate) and poly(ethylene glycol) multiblock copolymers. J Mater Sci 39:3829–3831

    CAS  Google Scholar 

  • Zhao K, Deng Y, Chen JC, Chen GQ (2003) Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biodegradability. Biomaterials 24:1041–1045

    CAS  PubMed  Google Scholar 

  • Zheng Z, Deng Y, Lin XS, Zhang LX, Chen GQ (2003) Induced protection of rabbit articular cartilage-derived chondrocyte collagen II on polyhydroxyalkanoate blends. J Biomater Sci Polym Ed 14:615–624

    CAS  PubMed  Google Scholar 

  • Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical applications of bacterial polyhydroxyalkanoate. Adv Drug Rev 53:5–21

    CAS  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge support from the Ministerio de Educación y Ciencia (Madrid, Spain; grant BFU2006-15214-C03-03) and the Junta de Castilla y León (Valladolid, Spain; grant LE40A06 2006). M.A. is the recipient of a fellowship from the Comision Interministerial de Ciencia y Tecnología. Although many other excellent reports have been published on the topic addressed in this chapter, here we have only included some of them. Our sincere excuses to all those scientists whose publications have not been included in the list of references owing to space limitations. Special thanks are also given to Neuron BPh (Granada, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Luengo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Olivera, E.R., Arcos, M., Naharro, G., Luengo, J.M. (2010). Unusual PHA Biosynthesis. In: Chen, GQ. (eds) Plastics from Bacteria. Microbiology Monographs, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03287-5_7

Download citation

Publish with us

Policies and ethics