Skip to main content

Biological Control of Pests

  • Chapter
  • First Online:
Bioaugmentation, Biostimulation and Biocontrol

Part of the book series: Soil Biology ((SOILBIOL,volume 108))

Abstract

Modern era is witnessing versatile application and utilization of prophecies, processes, and products of sustainable agriculture that pose minimum or negligible negative impacts on environment. Use of microorganisms for curbing the attack of plant pathogenic organisms/pests forms the foremost limb of integrated pest management and is responsible for either imparting induced systemic resistance or improving the general health of the inoculated plant due to enhanced nutrient acquisition/nutrient availability, thereby increasing the chances of survival, growth, and development of plant. Biological control utilizes natural enemies such as parasites, predators, pathogens, or competitors, deriving its energy directly from the pests themselves. It would be a useful technology that could suffice the existing arsenal of chemical pesticides or may exclude the latter in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arora R, Dhaliwal GS (2001) Integrated pest management. Concept and approaches. Microbial control. Kalyani, New Delhi, pp 197–233

    Google Scholar 

  • Bale JS, van Lenteren JC, Bigler F (2008) Biological control and sustainable food production. Philos Trans R Soc B 363:761–776

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    Article  CAS  Google Scholar 

  • Bentely JW, O’Neil RJ (1997) On the ethics of biological control of insect pests. Agric Human Values 14:283–289

    Article  Google Scholar 

  • Bishop A (2000) Bioherbicides: new products and new modes of action. Tas Reg 6:41–42

    Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  PubMed  Google Scholar 

  • Bonning BC, Hammock BD (1996) Development of recombinant baculoviruses for insect pest control. Annu Rev Entomol 41:191–210

    Article  CAS  PubMed  Google Scholar 

  • Buysens S, Heungens K, Poppe J, Hofte M (1996) Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865–871

    CAS  PubMed Central  PubMed  Google Scholar 

  • Compant C, Duffy B, Nowak J, Clément C, Barka A (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cory JS, Bishop DHL (1995) Methods in molecular biology (Richardson CD eds), Humana Press, Totowa, NJ. 39: 277–294

    Google Scholar 

  • de Souza JT, de Boer M, de Waard P, van Beek TA, Raaijmakers JM (2003) Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol 69:7161–7172

    Article  PubMed Central  PubMed  Google Scholar 

  • Donegan KK, Palm CJ, Fieland VJ, Porteous LA, Ganio LM, Schaller DL, Bucao LQ, Seidler RJ (1995) Changes in levels, species, and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. kurstaki endotoxin. Appl Soil Ecol 2:111–124

    Article  Google Scholar 

  • Dunfield KE, Germida JJ (2004) Impact of genetically modified crops on soil- and plant-associated microbial communities. J Environ Qual 33:806–815

    Article  CAS  PubMed  Google Scholar 

  • Fouche C, Gaskell M, Koike ST, Mitchell J, Smith R (2000) Insect pest management for organic crops. Publication 7251, Division of Agriculture and Natural Resources, University of California, pp 1–5

    Google Scholar 

  • Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 26:338–343

    Article  Google Scholar 

  • Gnanasambandan S, Balakrishnamurthy P, Pillai KS (2000) Integrated pest management in 21st century. Pestol XX1V:9–11

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Green S (2003) A review of the potential for the use of bioherbicides to control forest weeds in the UK. Forestry 76:285–298

    Article  Google Scholar 

  • Gupta RP, Kalia A, Kapoor S (2007) Biopesticides. In: Bioinoculants: a step towards sustainable agriculture. New India Publishing Agency, New Delhi, pp 223–256

    Google Scholar 

  • Hardin B (2002) Giving baculoviruses a better edge. Agricul Res (January), pp 14–15

    Google Scholar 

  • Harrier LA (2001) The arbuscular mycorrhizal symbiosis: a molecular review of the fungal dimension. J Exp Bot 52:469–478

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi N, Choi DR (1991) Biological control of soil pests by mixed application of entomopathogenic and fungivorous nematodes. J Nematol 23:175–181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaaya GP, Hassan S (2000) Entomogenous fungi as promising biopesticides for tick control. Exp Appl Acarol 24:913–926

    Article  Google Scholar 

  • Kaya HK, Gaugler R (1993) Entompathogenic nematodes. Annu Rev Entomol 38:181–206

    Article  Google Scholar 

  • Khachatourians GG, Velencia EP, Miranpuri GS (2002) Beauveria bassiana and other entomopathogenic fungi in management of insect pests. In: Opender Kaul, Dhaliwal GS (eds) Microbial Biopesticides. Taylor and Francis, New York/London, pp 239–275

    Chapter  Google Scholar 

  • Kilic-Ekici O, Yuen GY (2004) Comparison of strains of Lysobacter enzymogenes and PGPR for induction of resistance against Bipolaris sorokiniana in tall fescue. Biol Control 30:446–455

    Article  CAS  Google Scholar 

  • Kim BS, Lee JY, Hwang BK (2000) In vivo control and in vitro antifungal activity of rhamnolipid B, a glycilipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Manage Sci 56:1029–1035

    Article  CAS  Google Scholar 

  • Lacey LA, Frutos R, Kaya HK, Vails P (2001) Insect pathogens as biological control agents: do they have a future? Biol Control 21:230–248

    Article  Google Scholar 

  • Lahdenpera ML (2003) Streptomyces biofungicides in seed application. Veradera Infoletter 12:1–3

    Google Scholar 

  • Lasa R, Williams T, Caballero P (2008) Insecticidal properties and microbial contaminants in a Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV, Baculoviridae) formulation stored at different temperatures. J Econ Entomol 101:42–49

    Article  CAS  PubMed  Google Scholar 

  • Lasa R, Moreno I, Caballero P, Williams T (2009) Application of juvenile hormone analogue and optical brightener technologies to the production of Spodoptera frugiperda multiple nucleopolyhedrovirus. IOBC Wprs Bull 45:153–156

    Google Scholar 

  • Looper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65:5357–5363

    Google Scholar 

  • Marrone PG (2002) An effective biofungicide with novel modes of action. Pesticide Outlook (October):193–194

    Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Metraux JP, Defago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: influence of the gacA gene and of pyoverdine production. Phytopathology 84:139–146

    Article  CAS  Google Scholar 

  • Milner JL, Stohl EA, Handelsman J (1996) Zwittermicin A resistance gene from Bacillus cereus. J Bacteriol 178:4266–4272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Montesinos E (2000) Pathogenic plant-microbe interactions. What we know and how we benefit. Int Microbiol 3:69–70

    CAS  PubMed  Google Scholar 

  • Moscardi F (1999) Assessment of the application of baculoviruses for control of Lepidoptera. Annu Rev Entomol 44:257–289

    Article  CAS  PubMed  Google Scholar 

  • Narayanan K (2002) Microbial control of insect pests. Role of genetic engineering and tissue culture. In: Dhaliwal GS, Koul O (eds) Microbial biopesticides. Taylor and Francis, New York/London, pp 117–180

    Chapter  Google Scholar 

  • Neale MR (1997) Biopesticides-harmonisation of regulation requirements within EU Directive 91/414: an industry view. Bull OEPP 27:89–93

    Article  Google Scholar 

  • Nielsen TH, Christopheresen C, Anthoni U, Sorensen J (1999) Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J Appl Microbiol 87:80–90

    Article  CAS  PubMed  Google Scholar 

  • Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sorensen J (2000) Structure, production characteristics and fungal antagonism of tensin-a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol 89:992–1001

    Article  CAS  PubMed  Google Scholar 

  • Nielsen TH, Sorensen D, Tobiasen C, Andersen JB, Christophersen C, Givskov M, Sorensen J (2002) Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl Environ Microbiol 68:3416–3423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nowak J, Shulaev V (2003) Priming for transplant stress resistance in in vitro propagation. In Vitro Cell Dev Biol Plant 39:107–124

    Article  Google Scholar 

  • O’Callaghan M, Glare TR (2001) Impacts of transgenic plants and microorganisms on soil biota. N Z Plant Protec 54:105–110, cited online www.hortnet.co.nz/publications/nzpps

    Google Scholar 

  • Ortiz Ribbing LM, Williams M (2006) Potential of Phomopsis amaranthicola and Microsphaeropsis amaranthi, as bioherbicides for several weedy Amaranthus species. Crop Prot 25:39–46

    Article  Google Scholar 

  • Pell JK, Eilenberg J, Hajek AE, Steinkraus DC (2001) Biology, ecology and pest management potential of entomophthorales. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CAB International, Wallingford, pp 71–153

    Chapter  Google Scholar 

  • Postma J, Montanari M, van den Boogert PHJF (2003) Microbial enrichment to enhance the disease suppressive activity of compost. Eur J Soil Biol 39:157–163

    Article  Google Scholar 

  • Rodas VL, Marques FH, Honda MT, Soares DM, Jorge SAC, Antoniazzi MM, Medugno C, Castro MEB, Ribeiro BM, Souza ML, Tonso A, Pereira CA (2005) Cell culture derived AgMNPV bioinsecticide: biological constraints and bioprocess issues. Cytotechnology 48:27–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  • Sankarama A (1999) Integrated pest management: looking back and forward. Curr Sci 77

    Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249

    Article  CAS  PubMed  Google Scholar 

  • Shah PA, Pell JK (2003) Entomopathogenic fungi as biological control agents. Appl Microbiol Biotechnol 61:413–423

    Article  CAS  PubMed  Google Scholar 

  • Sheeba G, Seshadri S, Raja N, Janarthanan S, Ignacimuthm S (2001) Efficacy of Beauveria bassiana for the control of rice weevil Sitophilus oryzae (L) (Coleoptera:Cuculionidae). Appl Ent Zool 36:117–120

    Article  Google Scholar 

  • Sigsgaard L (2002) Early season natural biological control of insect pests in rice by spiders – and some factors in the management of the cropping system that may affect this control. In:European Arachnology 2000 (eds. S. Toft and N. Scharff), Aarhus University Press, Aarhus, pp 57–64

    Google Scholar 

  • Simon O, Williams T, Lopez-Ferber M, Taulemesse JM, Caballero P (2008) Population genetic structure determines the speed of kill and occlusion body production in Spodoptera frugiperda multiple nucleopolyhedrovirus. Biol Control 44:321–330

    Article  Google Scholar 

  • Smart GC Jr (1995) Entomopathogenic nematodes for the biological control of insects. J Nematol 27:529–534

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun XL, Peng HY (2007) Recent advances in biological control of pest insects by using viruses in China. Virol Sin 22:158–162

    Article  CAS  Google Scholar 

  • Tanada Y, Kaya HK (1993) Insect pathology. Academic/Javanovich, Narcourt Brace/San Diego

    Google Scholar 

  • Timms-Wilson TM, Ellis RJ, Renwick A, Rhodes DJ, Mavrodi D, Weller DM, Thomashow LS, Bailey MJ (2000) Chromosomal insertion of phenazine-1-carboxylic-acid biosynthetic pathway enhances efficacy of damping-off disease control by Pseudomonas fluorescens. Mol Plant Microbe Interact 13:1293–1300

    Article  CAS  PubMed  Google Scholar 

  • Tiourebaev KS, Nelson S, Zidack NK, Kaleyva T, Pilge AL, Anderson TW, Sands DC (2000) Amino acid excretion enhances virulence of bioherbicides. In: Neal R. Spencer (ed) Proceedings of the 10th international symposium on biological control of weeds, 4–14 July 1999, Montana State University, Bozeman, Montana, USA, pp 295–299

    Google Scholar 

  • Vail PV, Hostetter DL, Hoffmann DF (1999) Development of the multi-nucleocapsid nucleopolyhedro viruses (MNPVs) infectious to loopers (Lepidopetra, Noctuidae: Plusiinae) as microbial controls agents. Int Pest Manage Revs 4:231–257

    Article  Google Scholar 

  • Van Driesche R, Hoddle M, Center TD (2008) Control of pests and weeds by natural enemies: an introduction to biological control. Blackwell, Oxford, p 473

    Google Scholar 

  • van Lenteren JC (2005) Early entomology and the discovery of insect parasitoids. Biol Control 32:2–7

    Article  Google Scholar 

  • van Lenteren JC (2006) Ecosystem services to biological control of pests: why are they ignored? Proc Neth Entomol Soc Meet 17:103–111

    Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Ann Rev Phytopathol 36:453–483

    Article  Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734

    Article  Google Scholar 

  • Vandermeer J (1995) The ecological basis of alternative agriculture. Ann Rev Ecol Syst 26:201–224

    Article  Google Scholar 

  • Verma J, Dubey NK (1999) Prospective of botanical and microbial products as pesticides of tomorrow. Curr Sci 76:172–178

    Google Scholar 

  • Walker DR, Narvel JM, Boerma HR, All JN, Parrott WA (2004) A QLT that enhances and broadens Bt insect resistance in soybean. Theor Appl Genet 109:1051–1057

    Article  PubMed  Google Scholar 

  • Whalon ME, McGaughey WH (1998) Bacillus thuringiensis: use and resistance management. In: Ishaaya I, Degheele D (eds) Insecticides with novel modes of action: mechanism and application. Springer, Berlin, pp 106–137

    Chapter  Google Scholar 

  • Wilson D (1995) Fungal endophytes which invade insect galls: insect pathogens, benign saprophytes, or fungal inquilines? Oecologia 103:255–260

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anu Kalia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kalia, A., Mudhar, R.K. (2011). Biological Control of Pests. In: Singh, A., Parmar, N., Kuhad, R. (eds) Bioaugmentation, Biostimulation and Biocontrol. Soil Biology, vol 108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19769-7_10

Download citation

Publish with us

Policies and ethics