Skip to main content

Induced Systemic Resistance in Biocontrol of Plant Diseases

  • Chapter
  • First Online:
Bioaugmentation, Biostimulation and Biocontrol

Part of the book series: Soil Biology ((SOILBIOL,volume 108))

Abstract

Induction of resistance to pathogens by some strains of plant growth-promoting rhizobacteria (PGPR) and other microorganisms is termed induced systemic resistance (ISR). In contrast to systemic acquired resistance, ISR develops as a result of the colonization of plant roots by PGPR and other plant-beneficial microorganisms. ISR is mediated predominantly by a jasmonate- or ethylene-sensitive pathway. Some strains of Pseudomonas, Bacillus, Serratia, Trichoderma, etc., elicit ISR in plants against different pathogens. PGPR may activate inducible defense mechanisms in the plant in a way similar to pathogenic microorganisms. The modes of action in ISR may involve, inter alia, a variety of determinants. Though ISR offers a broad-spectrum disease management strategy, much remains to be discovered about how the determinants are perceived and ultimately give rise to ISR. In addition to unraveling the molecular regulation in ISR, deciphering microbial signals that are most effective in eliciting resistance is equally challenging for future research endeavors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alabouvette C, Olivain C, L’Haridon F, Aime S, Steinberg C (2007) Using strains of Fusarium oxysporum to control Fusarium wilts: dream or reality? In: Vurro M, Gressel J (eds) Novel biotechnologies for biocontrol agent enhancement and management, NATO-ASI Series. Springer, Germany, pp 157–177

    Google Scholar 

  • Alström S (1991) Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonads. J Gen Appl Microbiol 37:495–501

    Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol Plant Microbe Interact 15:1147–1156

    PubMed  CAS  Google Scholar 

  • Bakker PAHM, Van Peer R, Schippers B (1991) Suppression of soil-borne plant pathogens by fluorescent pseudomonads: mechanisms and prospects. In: Beemster ABR, Bollen GJ, Gerlagh M, Ruissen MT, Schippers B, Tempel A (eds) Developments in agricultural and managed-forest ecology, vol 23. Elsevier, Amsterdam, pp 217–230

    Google Scholar 

  • Bakker PAHM, Raaijmakers JM, Schippers B (1993) Role of iron in the suppression of bacterial plant pathogens by fluorescent pseudomonads. In: Barton LL, Hemming BC (eds) Iron chelation in plants and soil microorganisms. Academic, San Diego, pp 269–278

    Google Scholar 

  • Bakker PAHM, Ran LX, Pieterse CMJ, Van Loon LC (2003) Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant diseases. Can J Plant Pathol 25:5–9

    Google Scholar 

  • Bakker PAHM, Pieterse CMJ, Van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    PubMed  Google Scholar 

  • Bargabus RL, Zidack NK, Sherwood JW, Jacobsen BJ (2002) Characterization of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol Mol Plant Pathol 61:289–298

    CAS  Google Scholar 

  • Bargabus RL, Zidack NK, Sherwood JW, Jacobsen BJ (2004) Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biol Control 30:342–350

    Google Scholar 

  • Benhamou N, Rey P, Chérif M, Hockenhull J, Tirilly Y (1997) Treatment with the mycoparasite Pythium oligandrum triggers induction of defense-related reactions in tomato roots when challenged with Fusarium oxysporum f. sp. radicis-lycopersici. Phytopathology 87:108–122

    PubMed  CAS  Google Scholar 

  • Benhamou N, Bélanger RR, Rey P, Tirilly Y (2001) Oligandrin, the elicitin-like protein produced by the mycoparasite Pythium oligandrum, induces systemic resistance to Fusarium crown and root rot in tomato plants. Plant Physiol Biochem 39:681–698

    CAS  Google Scholar 

  • Benhamou N, Garand C, Goulet A (2002) Ability of nonpathogenic Fusarium oxysporum strain Fo47 to induce resistance against Pythium ultimum infection in cucumber. Appl Environ Microbiol 68:4044–4060

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bigirimana J, Höfte M (2002) Induction of systemic resistance to Colletotrichum lindemuthianum in bean by a benzothiadiazole derivative and rhizobacteria. Phytoparasitica 30:159–168

    Google Scholar 

  • Bigirimana J, De Meyer G, Poppe J, Elad Y, Höfte M (1997) Induction of systemic resistance on bean (Phaseolus vulgaris) by Trichoderma harzianum. Med Fac Landbouww Univ Gent 62:1001–1007

    Google Scholar 

  • Buysens S, Huengens K, Poppe J, Höfte M (1996) Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865–871

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cartieaux F, Thibaud MC, Zimmerli L, Lessard P, Sarrobert C, David P, Gerbaud A, Robaglia C, Somerville S, Nussaume L (2003) Transcriptome analysis of Arabidopsis colonized by a plant-growth promoting rhizobacterium reveals a general effect on disease resistance. Plant J 36:177–188

    PubMed  CAS  Google Scholar 

  • Cartieaux F, Contesto C, Gallou A, Desbrosses G, Kopka J, Taconnat L, Renou JP, Touraine B (2008) Simultaneous interaction of Arabidopsis thaliana with Bradyrhizobium sp strain ORS278 and Pseudomonas syringae pv. tomato DC3000 leads to complex transcriptome changes. Mol Plant Microbe Interact 21:244–259

    PubMed  CAS  Google Scholar 

  • Chester KS (1933) The problem of acquired physiological immunity in plants. Q Rev Biol 8:275–324

    Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants: with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    PubMed  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    PubMed Central  PubMed  CAS  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Garcıa-Agustın P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    PubMed  CAS  Google Scholar 

  • De Cal A, Pascual S, Melgarejo P (1997) Involvement of resistance induction by Penicillium oxalicum in the biocontrol of tomato wilt. Plant Pathol 46:72–79

    Google Scholar 

  • De Meyer G, Höfte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593

    PubMed  Google Scholar 

  • De Meyer G, Bigirimana J, Elad Y, Höfte M (1998) Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur J Plant Pathol 104:279–286

    Google Scholar 

  • De Meyer G, Audenaert K, Höfte M (1999) Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1a expression. Eur J Plant Pathol 105:513–517

    Google Scholar 

  • De Vleesschauwer D, Cornelis P, Höfte M (2006) Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. Mol Plant Microbe Interact 19:1406–1419

    PubMed  Google Scholar 

  • De Vleesschauwer D, Djavaheri M, Bakker PAHM, Höfte M (2008) Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on Pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol 148:1996–2012

    PubMed Central  PubMed  Google Scholar 

  • De Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N et al (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180

    PubMed  Google Scholar 

  • Dekkers LC, Mulders CHM, Phoelich CC, Chin-A-Woeng TFC, Wijfjes AHM, Lugtenberg BJJ (2000) The sss colonization gene of the tomato-Fusarium f.sp. radicis-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild type Pseudomonas spp. bacteria. Mol Plant Microbe Interact 13:1177–1183

    PubMed  CAS  Google Scholar 

  • Deshmukh S, Hückelhoven R, Schäfer P, Imani J, Sharma M, Weiss M, Waller F, Kogel K-H (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci U S A 103:18450–18457

    PubMed Central  PubMed  CAS  Google Scholar 

  • Duijff BJ, Meijer JW, Bakker PAHM, Schippers B (1993) Siderophore-mediated competition for iron and induced resistance in the suppression of fusarium wilt of carnation by fluorescent Pseudomonas spp. Neth J Plant Pathol 99:277–289

    CAS  Google Scholar 

  • Duijff BJ, Gianinazzi-Pearson V, Lemanceau P (1997) Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r. New Phytol 135:325–334

    CAS  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    PubMed  CAS  Google Scholar 

  • Dutta S, Mishra AK, Dileep Kumar BS (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rbizobia. Soil Biol Biochem 40:452–461

    CAS  Google Scholar 

  • Edgar CI, McGrath KC, Dombrecht B, Manners JM, Maclean DC, Schenk PM, Kazan K (2006) Salicylic acid mediates resistance to the vascular wilt pathogen Fusarium oxysporum in the model host Arabidopsis thaliana. Australas Plant Pathol 35:581–591

    CAS  Google Scholar 

  • Fravel D, Olivain C, Alabouvette C (2003) Fusarium oxysporum and its biocontrol. New Phytol 157:493–502

    Google Scholar 

  • Freeman S, Rodriguez RJ (1993) Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. Science 260:75–78

    PubMed  CAS  Google Scholar 

  • Freeman S, Zveibil A, Vintal H, Maymon M (2002) Isolation of nonpathogenic mutants of Fusarium oxysporum f. sp. melonis for biological control of Fusarium wilt in cucurbits. Phytopathology 92:164–168

    PubMed  Google Scholar 

  • Fuchs JG, Moënne-Loccoz Y, Défago G (1997) Nonpathogenic Fusarium oxysporum strain Fo47 induces resistance to Fusarium wilt in tomato. Plant Dis 81:492–496

    Google Scholar 

  • Fuchs JG, Moënne-Loccoz Y, De´fago G (1999) Ability of nonpathogenic Fusarium oxysporum Fo47 to protect tomato against Fusarium wilt. Biol Control 14:105–110

    Google Scholar 

  • Gessler C, Kuć J (1982) Induction of resistance to Fusarium wilt in cucumber by root and foliar pathogens. Phytopathology 72:1439–1441

    Google Scholar 

  • Guenoune D, Galili S, Phillips DA, Volpin H, Chet I, Okon Y, Kapulnik Y (2001) The defense response elicited by Rhizoctonia solani is suppressed by colonization of the AM fungus Glomus intraradices. Plant Sci 160:925–932

    PubMed  CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    PubMed  CAS  Google Scholar 

  • Hammerschmidt R, Métraux JP, van Loon LC (2001) Inducing resistance: a summary of papers presented at the first international symposium on induced resistance to plant diseases, Corfu, May 2000. Eur J Plant Pathol 107:1–6

    Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791

    PubMed Central  PubMed  CAS  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma spp.: opportunistic avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    PubMed  CAS  Google Scholar 

  • He CY, Hsiang T, Wolyn DJ (2002) Induction of systemic disease resistance and pathogen defense responses in Asparagus officinalis by nonpathogenic strains of Fusarium oxysporum. Plant Pathol 51:225–230

    Google Scholar 

  • Hervás A, Trapero-Casas JL, Jiménez-Díz RM (1995) Induced resistance against Fusarium wilt of chickpea by nonpathogenic races of Fusarium oxysporum f. sp. ciceris and nonpathogenic isolates of F. oxysporum. Plant Dis 79:1110–1116

    Google Scholar 

  • Hoffland E, Pieterse CMJ, Bik L, Van Pelt JA (1995) Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins. Physiol Mol Plant Pathol 46:309–320

    CAS  Google Scholar 

  • Hoffland E, Hakulinen J, van Pelt JA (1996) Comparison of systemic resistance induced by avirulent and nonpathogenic Pseudomonas species. Phytopathology 86:757–762

    Google Scholar 

  • Höfte M, Bakker PAHM (2007) Competition for iron and induced systemic resistance by siderophores of plant growth promoting rhizobacteria. In: Varma A, Chincholkar SB (eds) Soil biology: microbial siderophores, vol 12. Springer, Berlin, pp 121–133

    Google Scholar 

  • Hwang J, Benson DM (2003) Expression of induced resistance in poinsietta cuttings against Rhizoctonia stem rot by treatment of stock plants with binucleate Rhizoctonia. Biol Control 27:73–80

    Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Métraux J-P (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact 16:851–858

    PubMed  CAS  Google Scholar 

  • Jourdan E, Henry G, Duby F, Dommes J, BarthélemyJP TP, Ongena M (2009) Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant Microbe Interact 22:456–468

    PubMed  CAS  Google Scholar 

  • Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    PubMed  CAS  Google Scholar 

  • Kaur R, Singh RS (2007) Study of induced systemic resistance in Cicer arietinum L. due to nonpathogenic Fusarium oxysporum using a modified split root technique. J Phytopathol 155:694–698

    Google Scholar 

  • Kilic-Ekici O, Yuen GY (2003) Induced resistance as a mechanism of biological control by Lysobacter enzymogenes strain C3. Phytopathology 93:1103–1110

    PubMed  Google Scholar 

  • Kim MS, Kim YC, Cho BH (2004) Gene expression analysis in cucumber leaves primed by root colonization with Pseudomonas chlororaphis O6 upon challenge inoculation with Corynespora cassiicola. Plant Biol 6:105–108

    PubMed  CAS  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    PubMed  CAS  Google Scholar 

  • Kroon BAM, Scheffer RJ, Elgersma DM (1991) Induced resistance in tomato plants against Fusarium wilt invoked by Fusarium oxysporum f. sp. dianthi. Neth J Plant Pathol 97:401–408

    Google Scholar 

  • L’Haridon F, AiméS AC, Olivain C (2007) Lack of biocontrol capacity in a non-pathogenic mutant of Fusarium oxysporum f. sp. melonis. Eur J Plant Pathol 118:239–246

    Google Scholar 

  • Lawton KA, Friedrich L, Hunt M, Weymann K, Delaney T, Kessmann H, Staub T, Ryals J (1996) Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J 10:71–82

    PubMed  CAS  Google Scholar 

  • Leeman M, van Pelt JA, den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995) Induction of systemic resistance against fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85:1021–1027

    CAS  Google Scholar 

  • Leeman M, Den Ouden FM, Van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149–155

    CAS  Google Scholar 

  • Linthorst HJM (1991) Pathogenesis-related proteins of plants. Crit Rev Plant Sci 10:123–150

    CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    PubMed  CAS  Google Scholar 

  • Malamy J, Carr JP, Klessig DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002–1004

    PubMed  CAS  Google Scholar 

  • Mandal S, Mallick N, Mitra A (2009) Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiol Biochem 47:642–649

    PubMed  CAS  Google Scholar 

  • Mandeel Q, Baker R (1991) Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of nonpathogenic Fusarium oxysporum. Phytopathology 81:462–469

    Google Scholar 

  • Maor R, Sirashu K (2005) The arms race continues: battle strategies between plants and fungal pathogens. Curr Opin Microbiol 43:399–404

    Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Métraux JP, Défago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: influence of the gacA gene and of pyoverdine production. Phytopathology 84:139–146

    CAS  Google Scholar 

  • Maurhofer M, Reimmann C, Schmidli-Sacherer P, Heeb S, Haas D, Défago G (1998) Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88:678–684

    PubMed  CAS  Google Scholar 

  • Métraux J-P, Ahl-Goy P, Staub T, Speich J, Steinemann A, Ryals J, Ward E (1991) Induced resistance in cucumber in response to 2,6-dichloroisonicotinic acid and pathogens. In: Hennecke H, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions, vol 1. Kluwer, Dordrecht, The Netherlands, pp 432–439

    Google Scholar 

  • Meziane H, Van der Sluis I, Van Loon LC, Höfte M, Bakker PAHM (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185

    PubMed  Google Scholar 

  • Molitor A, Kogel K-H (2009) Induced resistance triggered by Piriformospora indica. Plant Signal Behav 4:215–216

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nel B, Steinberg C, Labuschagne N, Viljoen A (2006) The potential of nonpathogenic Fusarium oxysporum and other biological control organisms for suppressing Fusarium wilt of banana. Plant Pathol 55:217–223

    Google Scholar 

  • Nürnberger T, Lipka V (2005) Non-host resistance in plants: new insights into an old phenomenon. Mol Plant Pathol 6:335–345

    PubMed  Google Scholar 

  • Olson HA, Benson DM (2007) Induced systemic resistance and the role of binucleate Rhizoctonia and Trichoderma hamatum 382 in biocontrol of Botrytis blight in geranium. Biol Control 42:233–241

    Google Scholar 

  • Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P (2005a) Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol 69:29–38

    PubMed  CAS  Google Scholar 

  • Ongena M, Jourdan E, Schäfer M, Kech C, Budzikiewicz H, Luxen A, Thonart P (2005b) Isolation of an N-alkylated benzylamine derivative from Pseudomonas putida BTP1 as elicitor of induced systemic resistance in bean. Mol Plant Microbe Interact 18:562–569

    PubMed  CAS  Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    PubMed  CAS  Google Scholar 

  • Park K, Paul D, Ryu KR, Kim EY, Kim YK (2006) Bacillus vallismortis Strain EXTN-1 mediated systemic resistance against Potato virus Y and X in the field. Plant Pathol J 22:360–363

    Google Scholar 

  • Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou L, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, PiersonEA PIIILS, Thomashow LS, Loper JE (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878

    PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Hoffland E, Van Pelt JA, Van Loon LC (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeck PJ, Van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9:263–269

    PubMed  CAS  Google Scholar 

  • Pozo MJ et al (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses of Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    PubMed  CAS  Google Scholar 

  • Press CM, Wilson M, Tuzun S, Kloepper JW (1997) Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol Plant Microbe Interact 10:761–768

    CAS  Google Scholar 

  • Press CM, Loper JE, Kloepper JW (2001) Role of iron in rhizobacteria-mediated induced systemic resistance of cucumber. Phytopathology 91:593–598

    PubMed  CAS  Google Scholar 

  • Ran LX, Li ZN, Wu GJ, Van Loon LC, Bakker PAHM (2005a) Induction of systemic resistance against bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. Eur J Plant Pathol 113:59–70

    CAS  Google Scholar 

  • Ran LX, Van Loon LC, Bakker PAHM (2005b) No role for bacterially produced salicylic acid in rhizobacterial induction of systemic resistance in Arabidopsis. Phytopathology 95:1349–1355

    PubMed  CAS  Google Scholar 

  • Redman RS, Freeman S, Clifton DR, Morrel J, Brown G, Rodriguez RJ (1999) Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna. Plant Physiol 119:795–804

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rudrappa T, Czymmek KJ, PaÅ•e PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wie H-X, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth of Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sailaja PR, Podile AR, Reddanna P (1997) Biocontrol strain Bacillus subtilis AF1 rapidly induces lipoxygenase in groundnut (Arachis hypogaea L.) compared to crown rot pathogen Aspergillus niger. Eur J Plant Pathol 104:125–132

    Google Scholar 

  • Sanchez L, Weidmann S, Arnould C, Bernard AR, Gianinazzi S, Gianinazzi-Pearson V (2005) Pseudomonas fluorescens and Glomus mosseae trigger DMI3-dependent activation of genes related to a signal transduction pathway in roots of Medicago trunculata. Plant Physiol 139:1065–1077

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schippers B (1992) Prospects for management of natural suppressiveness to control soilborne pathogens. In: Tjamos EC, Papavizas GC, Cook RJ (eds) Biological control of plant diseases, progress and challenges for the future. Plenum, New York, USA, pp 21–34

    Google Scholar 

  • Shoresh M, Yedidia I, Chet I (2005) Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95:76–84

    PubMed  CAS  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48 http://www.annualreviews.org/catalog/pubdates.aspx

  • Shuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Van Breusegem F, Eberl L, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    Google Scholar 

  • Stein E, Molitor A, Kogel K-H, Waller F (2008) Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol 49:1747–1751

    PubMed  CAS  Google Scholar 

  • Sticher L, Mauch-Mani B, Métraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270

    PubMed  CAS  Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116

    PubMed  CAS  Google Scholar 

  • Takenaka S, Nishio Z, Nakamura Y (2003) Induction of defense reactions in sugar beet and wheat by treatment with cell wall protein fractions from the mycoparasite Pythium oligandrum. Phytopathology 93:1228–1232

    PubMed  CAS  Google Scholar 

  • Thomashaw LS, Weller DM (1995) Current concepts in the use of introduced bacteria for biological control: mechanisms and antifungal metabolites. In: Stacey G, Keen N (eds) Plant-microbe interactions, vol 1. Chapman and Hall, New York, USA, pp 187–235

    Google Scholar 

  • Thuerig B, Felix G, Binder A, Boller T, Tamm L (2006) An extract of Penicillium chrysogenum elicits early defense-related responses and induces resistance in Arabidopsis thaliana independently of known signaling pathways. Physiol Mol Plant Pathol 67:180–193

    Google Scholar 

  • Valenzuela-Soto JH, Estrada-Hernández MG, Ibarra-Laclette E, Délano-Frier JP (2010) Inoculation of tomato plants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards whitefly Bemisia tabaci development. Planta 231:397–410

    PubMed  CAS  Google Scholar 

  • Van der Ent SV, Verhagen BWM, Doorn RV, Bakker D, Verlaan MG, Pel MJC, Joosten RG, Proveniers MCG, Van Loon LC, Ton J, Pieterse CMJ (2008) MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol 146:1293–1304

    PubMed Central  PubMed  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting bacteria. Eur J Plant Pathol 119:243–254

    Google Scholar 

  • Van Loon LC, Bakker PAHM (2005) Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer Science, Dordrecht, The Netherlands, pp 39–66

    Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    PubMed  Google Scholar 

  • Van Peer R, Schippers B (1992) Lipopolysaccharides of plant growth-promoting Pseudomonas spp. strain WCS417r induce resistance in carnation to Fusarium wilt. Neth J Plant Pathol 98:129–139

    Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734

    Google Scholar 

  • Van Wees SCM, Pieterse CMJ, Trijssenaar A, VaÅ„t Westende Y, Hartog F, Van Loon LC (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant Microbe Interact 10:716–724

    PubMed  Google Scholar 

  • Verhagen BWM, Glazebrook J, Zhu T, Chang HS, Van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant Microbe Interact 17:895–908

    PubMed  CAS  Google Scholar 

  • Verhagen BWM, Trotel-Aziz P, Couderchet M, Höfte M, Aziz A (2010) Pseudomonas spp.- induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine. J Exp Bot 61:249–260

    PubMed  CAS  Google Scholar 

  • Viterbo A, Harel M, Horwitz BA, Chet I, Mukherjee PK (2005) Trichoderma MAP-kinase signaling is involved in induction of plant systemic resistance. Appl Environ Microbiol 71:6241–6246

    PubMed Central  PubMed  CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wang Y, Ohara Y, Nakayashiki H, Tosa Y, Mayama S (2005) Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol Plant Microbe Interact 18:385–396

    PubMed  CAS  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512

    Google Scholar 

  • Yan Z, Reddy MS, Kloepper JW (2003) Survival and colonization of rhizobacteria in a tomato transplant system. Can J Microbiol 49:383–389

    PubMed  CAS  Google Scholar 

  • Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and the accumulation of phytoalexins. Appl Environ Microbiol 69:7343–7353

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yu GY, Sinclair B, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliqefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963

    CAS  Google Scholar 

  • Zehnder GW, Murphy EJ, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50

    Google Scholar 

  • Zhang S, Reddy MS, Kloepper JW (2004) Tobacco growth enhancement and blue mold disease protection by rhizobacteria: relationship between plant growth promotion and systemic disease protection by PGPR strain 90-166. Plant Soil 262:277–288

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhamoy Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mandal, S., Ray, R.C. (2011). Induced Systemic Resistance in Biocontrol of Plant Diseases. In: Singh, A., Parmar, N., Kuhad, R. (eds) Bioaugmentation, Biostimulation and Biocontrol. Soil Biology, vol 108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19769-7_11

Download citation

Publish with us

Policies and ethics