Skip to main content

Chemical Equilibrium Detonation

  • Chapter
  • First Online:
Shock Waves Science and Technology Library, Vol. 6

Part of the book series: Shock Wave Science and Technology Reference Library ((SHOCKWAVES,volume 6))

Abstract

Energetic materials are unique for having a strong exothermic reactivity, which has made them desirable for both military and commercial applications. The fundamental principles outlined in this chapter pertain to the study of detonation in both gas-phase and condensed-phase energetic materials, but our main focus will be on the condensed ones, particularly on high explosives (HEs). They share many properties with other classes of condensed energetic compounds such as propellants and pyrotechnics, but a detailed understanding of detonation is especially important for numerous HE applications. The usage and study of HE materials goes back more than a century, but many questions remain to be answered, e.g., on their reaction pathways at high pressures and temperatures, chemical properties, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bastea, S.: Transport properties of fluid mixtures at high pressures and temperatures. Application to the detonation products of HMX: In: Proceedings of the 12th International Detonation Symposium, San Diego, CA (2002)

    Google Scholar 

  2. Bastea, S.: Transport properties of dense fluid argon. Phys. Rev. E 68, 031204 (2003)

    Google Scholar 

  3. Bastea, S.: Transport in a highly asymmetric binary fluid mixture. Phys. Rev. E 75, 031201 (2007)

    Google Scholar 

  4. Bastea, S., Fried, L.E.: Exp-6 polar thermodynamics of dense supercritical water. J. Chem. Phys. 128, 174502 (2008)

    Google Scholar 

  5. Bastea, S., Fried, L.E.: Major effects in the thermodynamics of detonation products: Phase segregation versus ionic dissociation. In: Proceedings of the 14th Symposium (International) on Detonation. Office of Naval Research, Coeur d’Alene, ID (2010)

    Google Scholar 

  6. Bastea, S., Glaesemann, K., Fried, L.E.: Equation of state for high explosives detonation products with explicit polar and ionic species. In: Proceedings of the 13th Symposium (International) on Detonation. Office of Naval Research, Norfolk, VA (2006)

    Google Scholar 

  7. Benedetti, L.R., Nguyen, J.H., Caldwell, W.A., Liu, H., Kruger, M., Jeanloz, R.: Dissociation of CH4 at high pressures and temperatures: Diamond formation in giant planet interiors? Science 286, 100–102 (1999)

    Google Scholar 

  8. Blais, N.C., Engelke, R., Sheffield, S.A.: Mass spectroscopic study of the chemical reaction zone in detonating liquid nitromethane. J. Phys. Chem. A 101, 8285–8295 (1997)

    Google Scholar 

  9. Brennan, J.K., Rice, B.M.: Molecular simulation of shocked materials using the reactive Monte Carlo method. Phys. Rev. E 66, 021105 (2002)

    Google Scholar 

  10. Brennan, J.K., Lisal, M., Gubbins, K.E., Rice, B.M.: Reaction ensemble molecular dynamics: Direct simulation of the dynamic equilibrium properties of chemically reacting mixtures. Phys. Rev. E 70, 061103 (2004)

    Google Scholar 

  11. Byers Brown, W.: Analytical representation of the excess thermodynamic equation of state for classical fluid mixtures of molecules interacting with alpha-exponential-six pair potentials up to high densities. J. Chem. Phys. 87, 566 (1987)

    Google Scholar 

  12. Chakraborty, D., Muller, R.P., Dasgupta, S., Goddard III, W.A.: Mechanism for unimolecular decomposition of HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocine), an ab initio study. J. Phys. Chem. A 105, 1302 (2001)

    Google Scholar 

  13. Charlet, F., Turkel, M.L., Danel, J.F., Kazandjian, L.: Evaluation of various theoretical equations of state used in calculation of detonation properties. J. Appl. Phys. 84, 4227–4238 (1998)

    Google Scholar 

  14. Chirat, R., Pittion-Rossillon, G.: A new equation of state for detonation products. J. Chem. Phys. 74, 4634 (1981)

    Google Scholar 

  15. Churakov, S.V., Gottschalk, M.: Perturbation theory based equation of state for polar molecular fluids: II. Fluid mixtures. Geochem. Cosmochim. Acta 67, 2415 (2003)

    Google Scholar 

  16. Costantino, M.S., Rice, S.F.R.: Supercritical phase separation in water-nitrogen mixtures. J. Phys. Chem. 95, 9034 (1991)

    Google Scholar 

  17. Cowperthwaite, M.: In: Short, J.M. (ed.) Tenth International Detonation Symposium, pp. 656–664. Office of Naval Research, Boston (1993)

    Google Scholar 

  18. Cowperthwaite, M., Zwisler, W.H.: The JCZ equations of state for detonation products and their incorporation into the TIGER code. In: Sixth Detonation Symposium, p. 162 (1976)

    Google Scholar 

  19. Cowperthwaite, M., Zwisler, W.H.: Thermodynamics of nonideal heterogeneous systems and detonation products containing condensed Al2O3, Al, and C. J. Phys. Chem. 86, 813–817 (1982)

    Google Scholar 

  20. Davis, W.C., Fauquignon, C.: Classical theory of detonation. J. De Physique IV 5, 3–21 (1995)

    Google Scholar 

  21. Eyring, H., Powell, R.E., Duffey, G.H., Parlin, R.B.: The stability of detonation. Chem. Rev. 45, 69 (1948)

    Google Scholar 

  22. Fickett, W., Davis, W.C.: Detonation. University of California Press, Berkeley (1979)

    Google Scholar 

  23. Finger, M., Lee, E.L., Helm, F.H., Hayes, B., Hornig, H.C., McGuire, R.R., Kahara, M., Guidry, M.: The effect of elemental composition on the detonation behavior of explosives. In: Sixth Symposium (International) on Detonation, pp. 710–722. Office of Naval Research, Coronado (1976)

    Google Scholar 

  24. Fried, L.E., Howard, W.M.: An accurate equation of state for the exponential-6 fluid applied to dense supercritical nitrogen. J. Chem. Phys. 109, 7338–7348 (1998)

    Google Scholar 

  25. Fried, L.E., Souers, P.C.: BKWC: An empirical BKW parametrization based on cylinder test data. Propellants Explos. Pyrotech. 21, 215–223 (1996)

    Google Scholar 

  26. Fried, L.E., Manaa, M.R., Pagoria, P.F., Simpson, R.L.: Design and synthesis of energetic materials. Annu. Rev. Mater. Res. 31, 291 (2001)

    Google Scholar 

  27. Fried, L.E., Howard, W.M., Souers, P.C.: Exp6: A new equation of state library for high pressure thermochemistry. In: Twelfth Symposium (International) on Detonation, pp. 567–575. Office of Naval Research, San Diego (2002)

    Google Scholar 

  28. Glaesemann, K.R., Fried, L.E.: Improved Wood-Kirkwood detonation kinetics. Theor. Chem. Acc. 120, 37–43 (2008)

    Google Scholar 

  29. Goldman, N., Fried, L.E., Kuo, I.F.W., Mundy, C.J.: Bonding in the superionic phase of water. Phys. Rev. Lett. 94, 217801 (2005)

    Google Scholar 

  30. Goldman, N., Reed, E.J., Kuo, I.-F. W., Fried, L.E., Mundy, C.J., Curioni, A.: Ab initio simulation of the equation of state and kinetics of shocked water. J. Chem. Phys. 130, 124517 (2009)

    Google Scholar 

  31. Goncharov, A.F., Goldman, N., Fried, L.E., Crowhurst, J.C., Kuo, I.-F. W., Mundy, C.J., Zaug J.M.: Dynamic ionization of water under extreme conditions. Phys. Rev. Lett. 94, 125508 (2005)

    Google Scholar 

  32. Greiner, N.R., Phillips, D.S., Johnson, J.D., Volk, F.: Diamonds in detonation soot. Nature 333, 440 (1988)

    Google Scholar 

  33. Gubbins, K.E., Twu, C.H.: Thermodynamics of polyatomic fluid mixtures – I. Chem. Eng. Sci. 33, 863 (1977)

    Google Scholar 

  34. Gubin, S.A., Odintsov, V.V., Pepekin, V.I.: BKW-RR EOS. Sov. J. Chem. Phys. 3, 1152 (1985)

    Google Scholar 

  35. Guillot, B.: A reappraisal of what we have learned during three decades of computer simulation. J. Mol. Liq. 101, 219–260 (2002)

    Google Scholar 

  36. Hayes, B.: On electrical conductivity in detonation products. In: Fourth Detonation Symposium (International) pp. 595 (1965)

    Google Scholar 

  37. Hobbs, M.L., Baer, M.R.: Calibrating the BKW-EOS with a large product species data base and measured C-J properties. In: Tenth International Detonation Symposium, pp. 409–418. Boston (1993)

    Google Scholar 

  38. Hobbs, M.L., Baer, M.R., McGee, B.C.: JCZS: An intermolecular potential database for performing accurate detonation and expansion calculations. Propellants Explos. Pyrotech. 24, 269–279 (1999)

    Google Scholar 

  39. Hornig, H.C., Lee, E.L., Finger, M., Kurrle, J.E.: Equation of state of detonation products. In: Proceedings of the 5th Symposium (International) on Detonation. Office of Naval Research, Boston (1970)

    Google Scholar 

  40. Howard, W.M., Fried, L.E., Souers, P.C.: Kinetic modeling of non-ideal explosives with CHEETAH. In: Eleventh International Symposium on Detonation, pp. 998–1006. Snowmass, CO (1998)

    Google Scholar 

  41. Jones, H.D.: Theoretical equation of state for water at high pressures. In: Furnish, M.D., Thadhani, N.N., Horie, Y. (eds.) Shock Compression of Condensed Matter, 2001, pp. 103–106. AIP, Atlanta (2001)

    Google Scholar 

  42. Kistiakowski, G.B., Wilson, E.B.: Report on the prediction of the detonation velocities of solid explosives. Office of Scientific Research and Development, Report OSRD-69 (1941)

    Google Scholar 

  43. Leland, T.W., Rowlinson, J.S., Sather, G.A.: Statistical thermodynamics of mixtures of molecules of different sizes. Trans. Faraday Soc., 64, 1447–1460 (1968)

    Google Scholar 

  44. Mader, C.L.: Numerical Modeling of Detonations. University of California Press, Berkeley (1979)

    Google Scholar 

  45. Maillet, J.B., Bourasseau, E.: Ab initio simulations of thermodynamic and chemical properties of detonation product mixtures. J. Chem. Phys. 131, 084107 (2009)

    Google Scholar 

  46. Maiti, A., Gee, R.H., Bastea, S., Fried, L.E.: Phase separation in N2 − H2O mixture: Molecular dynamics simulations using atomistic force fields. J. Chem. Phys. 126, 044510 (2007)

    Google Scholar 

  47. Manaa, M.R., Fried, L.E., Melius, C.F., Elstner, M., Frauenheim, T.: Decomposition of HMX at extreme conditions: A molecular dynamics simulation. J. Phys. Chem. A 106, 9024 (2002)

    Google Scholar 

  48. Marsh, S.P.: LASL Shock Hugoniot Data. University of California Press, Berkeley (1980)

    Google Scholar 

  49. Nomura, K., Kalia, R.K., Nakano, A., Vashishta, P., van Duin, A.C.T., Goddard, W.A.: Dynamic transition in the structure of an energetic crystal during chemical reactions at shock front prior to detonation. Phys. Rev. Lett. 99, 148303 (2007)

    Google Scholar 

  50. Ree, F.H.: Simple mixing rule for mixtures with exp-6 interactions. J. Chem. Phys. 78, 409 (1983)

    Google Scholar 

  51. Ree, F.H.: Systematics of high-pressure and high-temperature behavior of hydrocarbons. J. Chem. Phys. 70, 974–983 (1979)

    Google Scholar 

  52. Ree, F.H.: A statistical mechanical theory of chemically reacting multiple phase mixtures: Application to the detonation properties of PETN. J. Chem. Phys. 81, 1251 (1984)

    Google Scholar 

  53. Ree, F.H.: Supercritical fluid phase separations – implications for detonation properties of condensed explosives. J. Chem. Phys. 84, 5845–5856 (1986)

    Google Scholar 

  54. Reed, T.M., Gubbins, K.E.: Statistical Mechanics. McGraw-Hill, New York (1973)

    Google Scholar 

  55. Rice, B.M., Byrd, E.F.C.: Ab initio study of compressed 1,3,5,7-tetranitro-1,3,5,7-tetraazacylooctane (HMX), cyclotrimethylenetrinitramine (RDX), 2,4,6,8,10,12-hexanitrohexaazaisowurzitane (CL-20), 2,4,6-trinitro-1,3,5-benzenetriamine (TATB) and pentaerythritol tetanitrate (PETN). J. Phys. Chem. C 111, 2787–2796 (2007)

    Google Scholar 

  56. Rice, B.M., Byrd, E.F.C.: A comparison of methods to predict solid phase heats of formation of molecular energetic salts. J. Phys. Chem. A 113, 345–352 (2009)

    Google Scholar 

  57. Rice, B.M., Hare, J.J., Byrd, E.F.C.: Accurate predictions of crystal densities using quantum mechanical molecular volumes. J. Phys. Chem. A 111, 10874–10879 (2007)

    Google Scholar 

  58. Ross, M.: A high density fluid-perturbation theory based on an inverse 12th power hard-sphere reference system. J. Chem. Phys. 71, 1567 (1979)

    Google Scholar 

  59. Ross, M., Ree, F.H.: Repulsive forces of simple molecules and mixtures at high density and temperature. J. Chem. Phys. 73, 6146–6152 (1980)

    Google Scholar 

  60. Rushbrooke, G.S., Stell, G., Hoye, J.S.: Theory of polar liquids I. Dipolar hard spheres. Mol. Phys. 26, 1199 (1973)

    Google Scholar 

  61. Schouten, J.A.: What is different in mixtures? From critical point to high pressures. Int. J. Thermophys. 22, 23 (2000)

    Google Scholar 

  62. Shaw, M.S.: Monte Carlo simulation of equilibrium chemical-composition of molecular fluid mixtures in the Natoms PT ensemble. J. Chem. Phys. 94, 7550–7553 (1991)

    Google Scholar 

  63. Shaw, M.S., Johnson, J.D.: Carbon clustering in detonations. J. Appl. Phys. 62, 2080–2085 (1987)

    Google Scholar 

  64. Smith, W.R., Missen, R.W.: Chemical Reaction Equilibrium Analysis: Theory and Algorithms. Wiley, New York (1982)

    Google Scholar 

  65. Sofyan, Y., Ghajar, A.J., Gasem, K.A.M.: Multiphase equilibrium calculations using Gibbs minimization techniques. Ind. Eng. Chem. Res. 42, 3786–3801 (2003)

    Google Scholar 

  66. Souers, P.C., Kury, J.W.: Comparison of cylinder data and code calculations for homogeneous explosives. Propellants Explos. Pyrotech. 18, 175 (1993)

    Google Scholar 

  67. Stell, G., Rasaiah, J.C., Narang, H.: Thermodynamic perturbation theory for simple polar fluids, 1. Mol. Phys. 23, 393 (1972)

    Google Scholar 

  68. Swan, G.W., Fowles, G.R.: Shock wave stability. Phys. Fluids 18, 28–35 (1975)

    Google Scholar 

  69. Talbot, J., Lebowitz, J.L., Waisman, E.M., Levesques, D., Weis, J.J.: A comparison of perturbative schemes and integral equation theories with computer simulations at high pressures. J. Chem. Phys. 85, 2187 (1986)

    Google Scholar 

  70. Twu, C.H., Gubbins, K.E.: Thermodynamics of polyatomic fluid-mixtures -II. Chem. Eng. Sci. 33, 879 (1978)

    Google Scholar 

  71. van Thiel, M., Ree, F.H.: Properties of carbon clusters in TNT detonation products: Graphite-diamond transition. J. Appl. Phys. 62, 1761–1767 (1987)

    Google Scholar 

  72. van Thiel, M., Ree, F.H.: Accurate high-pressure and high-temperature effective pair potentials for the system N2-N and O2-O. J. Chem. Phys. 104, 5019–5025 (1996)

    Google Scholar 

  73. Viecelli, J.A., Ree, F.H.: Carbon clustering kinetics in detonation wave propagation. J. Appl. Phys. 86, 237–248 (1999)

    Google Scholar 

  74. Viecelli, J.A., Bastea, S., Glosli, J.N., Ree, F.H.: Phase transformations of nanometer size carbon particles in shocked hydrocarbons and explosives. J. Chem. Phys. 115, 2730 (2001)

    Google Scholar 

  75. Vitello, P., Fried, L.E., Glaesemann, K.R., Souers, C.: Kinetic modeling of slow energy release in non-ideal carbon rich explosives. In: Thirteenth Symposium (International) on Detonation, pp. 465–475, Norfolk (2006)

    Google Scholar 

  76. Wagner, W., Pruss, A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387 (2002)

    Google Scholar 

  77. White, W.B., Johnson, S.M., Dantzig, G.B.: Chemical equilibrium in complex mixtures. J. Chem. Phys. 28, 751 (1958)

    Google Scholar 

  78. Williams, G.O., Lebowitz, J.L., Percus, J.K.: Equivalent potentials for equations of state of fluids of nonspherical molecules. J. Chem. Phys. 81, 2070 (1984)

    Google Scholar 

  79. Wu, C.J., Fried, L.E., Yang, L.N., Goldman, N., Bastea, S.: Catalytic behavior of dense hot water. Nat. Chem. 1, 57 (2009)

    Google Scholar 

  80. Zaug, J.M., Fried, L.E., Abramson, E.H., Hansen, D.W., Crowhurst, J.C., Howard, W.M.: Measured sound velocities of H2O and CH3OH. High-Pressure Res. 23, 229–233 (2003)

    Google Scholar 

  81. Zaug, J.M., Bastea, S., Crowhurst, J.C., Armstrong, M.R.: Photoacoustically measured speeds of sound of liquid HBO2: Semi-empirical modeling of boron-containing explosives. J. Phys. Chem. Lett. 1, 2982–2988 (2010)

    Google Scholar 

  82. Zeldovich, I.B.: On the question of energy use of detonation combustion. J. Tech. Phys. 10, 1453 (1940)

    Google Scholar 

  83. Zeldovich, I.B., Kompaneets, A.S.: Theory of Detonation. Academic, New York (1960)

    Google Scholar 

  84. Zel’dovich, Y.B., Raizer, Y.P.: Physics of Shock Waves and High Temperature Hydrodynamics Phenomena. Academic, New York (1966)

    Google Scholar 

  85. Zhang, F.: Detonation of gas-particle flow. In: Zhang, F. (ed.) Heterogeneous Detonation, Chap. 2, p. 91. Springer, Heidelberg (2009)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the contributions of many collaborators to the work described here. Nir Goldman, Evan Reed, M. Riad Manaa, and Christine Wu played a central role in the QMD simulations. Fan Zhang provided helpful comments and additions to this chapter. I.-F. Will Kuo, W. Michael Howard, Kurt R. Glaesemann, P. Clark Souers, and Peter Vitello contributed to many of the thermochemical simulation techniques discussed here. J. Zaug performed relevant high-pressure experimental work. S.B. would like to thank Francis Ree for introducing him to the subject of detonation modeling using chemical equilibrium. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorin Bastea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bastea, S., Fried, L.E. (2012). Chemical Equilibrium Detonation. In: Zhang, F. (eds) Shock Waves Science and Technology Library, Vol. 6. Shock Wave Science and Technology Reference Library, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22967-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22967-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22966-4

  • Online ISBN: 978-3-642-22967-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics