Skip to main content

Probiotics for Plants: Importance of Rhizobacteria on Aboveground Fitness in Plants

  • Chapter
  • First Online:
Bacteria in Agrobiology: Plant Probiotics
  • 2332 Accesses

Abstract

Coordinated interactions between plants and microbes are crucial for maximum fitness and survival of both the host and microbial organisms in a given environmental system. Soil microbes are known to play a major role not only in the composition and uptake of nutrients, but also in conferring host plants partial immunity against a wide range of foliar diseases by triggering defense responses. However, the mechanisms involved in inducing resistance against pathogens by soil microbes have not been elucidated, even though the effect of beneficial microbes on plants has been discussed in the literature. Through this chapter, we intend to provide a fundamental insight into the integration of communication mechanisms, not only at the interfaces of plant–microbes interactions, but also at the whole plant level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akram A, Ongena M, Duby F, Sommes J, Thonart P (2008) Systemic resistance and lipoxygenase-related defence response induced in tomato by Pseudomonas putida strain BTPI. BMC Plant Biol 8:113

    Article  PubMed  Google Scholar 

  • An QL, Yang XJ, Dong YM, Feng LJ, Kuang BJ, Li JD (2001) Using confocal laser scanning microscope to visualize the infection of rice roots by GFP-labelled Klebsiella oxytoca SA2, an endophytic diazotroph. Acta Bot Sin 6:558–564

    Google Scholar 

  • Arimura G, Shiojiri K, Karban R (2010) Acquired immunity to herbivory and allelopathy caused by airborne plant emissions. Phytochemistry 71:1642–1649

    Article  PubMed  CAS  Google Scholar 

  • Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740

    Article  CAS  Google Scholar 

  • Bains G, Kumar AS, Rudrappa T, Alff E, Hanson TE, Bais HP (2009) Native plant and microbial contributions to a negative plant-plant interaction. Plant Physiol 151:2145–2151

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Perry LG, Simon G, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  PubMed  CAS  Google Scholar 

  • Baldwin JT, Schultz JC (1983) Rapid changes in tree leaf chemistry induced by damage: evidence for communication beween plants. Science 221:277–279

    Article  PubMed  CAS  Google Scholar 

  • Bar-Ness E, Hadar Y, Chen Y, Romheld V, Marschner H (1992) Short-term effects of rhizosphere microorganisms on FE upake from microbial siderophores by maize and oat. Plant Physiol 100:451–456

    Article  PubMed  CAS  Google Scholar 

  • Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436

    Article  PubMed  CAS  Google Scholar 

  • Bethlenfalvay GJ (1993) Mycorrhizae in the agricultural plant-soil system. Symbiosis 14:413–425

    Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  PubMed  CAS  Google Scholar 

  • Bostock RM (2005) Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol 43:545–580

    Article  PubMed  CAS  Google Scholar 

  • Bothe H, Turnau K, Regvar M (2010) The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza 20:445–457

    Article  PubMed  Google Scholar 

  • Cameron RK, Dixon RA, Lamb CJ (1994) Biologically induced systemic acquired-resistance in Arabidopsis thaliana. Plant J 5:715–725

    Article  Google Scholar 

  • Carvalho FM, Souza R, Barcellos FG, Hungria M, Vasconcelos ATR (2010) Genomic and evolutionary comparisons of diazotrophic and pathogenic bacteria of the order Rhizobiales. BMC Microbiol 10:37

    Article  PubMed  Google Scholar 

  • Chew K (2002) Georgics. Hackett Publishing Company, Indianapolis, p 152

    Google Scholar 

  • Compant S, van der Heijden MGA, Sessitsch A (2010) Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol Ecol 73:197–214

    PubMed  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1997) Oligosaccharins, brassinolides, and jasmonates: nontraditional regulators of plant growth, development, and gene expression. Plant Cell 9:1211–1223

    Article  PubMed  CAS  Google Scholar 

  • Delaney TP, Uknes S, Vernooij B, Freidrich L, Waymann K, Negrotto D, Gaffney T, Gutrella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic-acid in plant-disease resistance. Science 266:1247–1250

    Article  PubMed  CAS  Google Scholar 

  • DeWeert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180

    Article  CAS  Google Scholar 

  • Dicke M, van Loon JJA (2000) Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol Exp Appl 97:237–249

    Article  CAS  Google Scholar 

  • Downie JA (2010) The role of extracellular proteins, polysaccharides, and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 34:150–170

    Article  PubMed  CAS  Google Scholar 

  • Erb M, Lenk C, Degenhardt J, Turlings TCJ (2009) The underestimated role of roots in defense against leaf attackers. Trends Plant Sci 14:1360–1385

    Article  Google Scholar 

  • Gershenzon J (2007) Plant volatiles carry both public and private messages. Proc Natl Acad Sci USA 104:5257–5258

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Gorlach J, Volrath S, Knaufbeiter G, Hengy G, Beckhove U, Kogel KH, Oostendorp M, Staub T, Ward E, Kessmann H, Ryals J (1996) Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8:629–643

    Article  PubMed  CAS  Google Scholar 

  • Gottfert M, Rothlisberger S, Kundig C, Beck C, Marty R, Hennecke H (2001) Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J Bacteriol 183:1405–1412

    Article  PubMed  CAS  Google Scholar 

  • Guiterrez CK, Matsui GY, Lincoln DE, Lovell CR (2009) Production of the phytohormone indole-3-acetic acid by estuarine species of the genus Vibrio. Appl Environ Microbiol 75:2253–2258

    Article  Google Scholar 

  • Hammerschmidt R (2009) Systemic acquired resistance. Plant Innate Immun 51:173–222

    CAS  Google Scholar 

  • Heil M (2001) The ecological concept of costs of induced systemic resistance (ISR). Eur J Plant Pathol 107:137–146

    Article  Google Scholar 

  • Heil M, Baldwin IT (2002) Fitness costs of induced resistance: emerging experimental support for a slipper concept. Trends Plant Sci 7:61–67

    Article  PubMed  CAS  Google Scholar 

  • Heil M, Bostock RM (2002) Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann Bot 89:503–512

    Article  PubMed  CAS  Google Scholar 

  • Heil M, Hilpert A, Kaiser W, Linsenmair KE (2000) Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? J Ecol 88:645–654

    Article  CAS  Google Scholar 

  • Hernandez-Rodriguez A, Heydrich-Perez M, Acebo-Guerrero Y, Velazquez-del Valle MG, Hernandez-Lauzardo AN (2008) Antagonistic activity of Cuban native rhizobacteria against Fusarium verticillioides (Sacc.) Nirenb. in maize (Zea mays L.). Appl Soil Ecol 39:180–186

    Article  Google Scholar 

  • Hwang HH, Wang MH, Lee YL, Tsai YL, Li YH, Yang FJ, Liao YC, Lin SK, Lai EM (2010) Agrobacterium-produced and exogenous cytokinin-modulated Agrobacterium – mediated plant transformation. Mol Plant Pathol 11:677–690

    PubMed  CAS  Google Scholar 

  • Jones AM, Dangl JL (2006) Logjam at the Styx: programmed cell death in plants. Trends Plant Sci 1:114–119

    Article  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Makarova N, Lugtenberg B (2006) Effect of tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and biocontrol bacterium Pseudomonas fluorescens WCS635 on the composition of organic acids and sugars in tomato root exudates. Mol Plant Microbe Interact 19:1121–1126

    Article  PubMed  CAS  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon sources. Soil Biol Biochem 30:995–1003

    Article  CAS  Google Scholar 

  • Kombrink E, Schmelzer E (2001) The hypersensitive response and its role in local and systemic disease resistance. Eur J Plant Pathol 107:69–78

    Article  Google Scholar 

  • Kuc J (1995) Phytoalexins, stress metabolism, and disease resistance in plants. Annu Rev Phytopathol 33:275–297

    Article  PubMed  CAS  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Mol Biol 48:251–275

    Article  CAS  Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115

    Article  CAS  Google Scholar 

  • Larena I, De Cal A, Melgarejo P (2010) Enhancing the adhesion of Epicoccum nigrum conidia to peach surfaces and its relationship to the biocontrol of brown rot caused by Monilinia laxa. J Appl Microbiol 109:583–593

    PubMed  CAS  Google Scholar 

  • Ma W, Zalec K, Glick BR (2001) Biological activity and colonization patten of the bioluminescence-labeled plant growth-promoting bacterium Kluyvera ascorbata SUD165/26. FEMS Microbiol Ecol 35:137–144

    Article  PubMed  CAS  Google Scholar 

  • Manter DK, Delgado JA, Holm DG, Stong RA (2010) Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microb Ecol 60:157–166

    Article  PubMed  Google Scholar 

  • Marques APGC, Pires C, Moreira H, Rangel AO, Castro PML (2010) Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol Biochem 42:1229–1235

    Article  CAS  Google Scholar 

  • Mauch F, Mauch-Mani B, Faille C, Kull B, Haas D, Reimmann C (2001) Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. Plant J 25:67–77

    Article  PubMed  CAS  Google Scholar 

  • Narayana KJ, Prabhakar P, Krishna PSJ, Venketeswarlu Y, Vijayalakshmi M (2009) Indole-3-acetic acid production by Streptomyces albidoflavus. J Biol Res Thessaloniki 11:49–55

    Google Scholar 

  • Pieterse CMJ, van Pelt JA, van Wees SCM, Ton J, Leon-Kloosterziel KM, Keurentjes JJB, Verhagen BMW, Knoester M, Van der Sluis I, Bakker PAHM, van Loon LC (2001) Rhizobacteria-mediated induced systemic resistance: triggering, signaling, and expression. Eur J Plant Pathol 107:51–61

    Article  Google Scholar 

  • Rainey PB (1999) Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Micrbiol 1:243–257

    Article  CAS  Google Scholar 

  • Ran LX, Li ZN, Wu GJ, van Loon LC, Bakker PAHM (2005) Induction of systemic resistance against bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. Eur J Plant Pathol 113:59–70

    Article  CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  CAS  Google Scholar 

  • Rudrappa T, Biedrzycki ML, Bais HP (2008a) Causes and consequences of plant-associated biofilms. FEMS Microbiol Ecol 64:153–166

    Article  PubMed  CAS  Google Scholar 

  • Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008b) Root-secreted malic acid recruits beneficial soil bacteria. Plant Phys 148:1547–1556

    Article  CAS  Google Scholar 

  • Saravanakumar D, Vijayakumar C, Kumar N, Samiyappan R (2007) PGPR-induced defense responses in the tea plant against blister blight disease. Crop Protect 26:556–565

    Article  Google Scholar 

  • Schloss PD, Handelsman J (2006) Toward a census of bacteria in soil. PLoS Comput Biol 2:0786–0793

    Article  CAS  Google Scholar 

  • Silverman P, Seskar M, Kanter D, Schweizer P, Metrauz JP, Raskin I (1995) Salicylic-acid in rice – biosynthesis, conjugation and possible role. Plant Physiol 108:633–639

    PubMed  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Okon Y (2009) Plant growth-promoting actions of rhizobacteria. Plant Innate Immun 51:283–320

    CAS  Google Scholar 

  • Steenhagen DA, Zimdahl RL (1979) Allelopathy of leafy spurge (Eurphorbia esula). Weed Sci 27:1–3

    Google Scholar 

  • Sticher L, Mauch-mani B, Metrauz JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–279

    Article  PubMed  CAS  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13:637–648

    Article  PubMed  CAS  Google Scholar 

  • Tisdale SL, Nelson W (1975) Soil fertility and fetilizers. Macmillan, New York, p 694

    Google Scholar 

  • Ton J, De Vos M, Robben C, Buchala A, Metraux JP, Van Loon LC, Pieterse CMJ (2002a) Characterization of Arabidopsis enhanced disease susceptibility mutants that are affected in systemically induced resistance. Plant J 29:11–21

    Article  PubMed  CAS  Google Scholar 

  • Ton J, Van Pelt JA, Van Loon LC, Pieterse CMJ (2002b) Differential effectiveness of salicylate-dependent and jasmonate/ethylene-depenedent induced resistance in Arabidopsis. Mol Plant Microbe Interact 15:27–34

    Article  PubMed  CAS  Google Scholar 

  • Van der Ent S, Van Wees SCM, Pieterse CMJ (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588

    Article  PubMed  Google Scholar 

  • Van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Eur J Plant Pathol 103:753–765

    Article  Google Scholar 

  • Van Loon LC, Van Kammen A (1970) Polyacrylaminde disk electrophoresis of soluble leaf proteins from Nicotionan tabacum var samsun and samsun-NN: II. Changes in protein constitution after infection with tobacco mosaic virus. Virology 40:199–211

    Article  Google Scholar 

  • Van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Van Wees SCM, de Swart EAM, van Pelt JA, van Loon LC, Pieterse CMJ (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate- dependent defense pathways. Proc Natl Acad Sci USA 97:8711–8716

    Article  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth pomoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Walters D, Heil M (2007) Costs and trade-offs associated with induced resistance. Physiol Mol Plant Pathol 71:3–17

    Article  CAS  Google Scholar 

  • Wang Y, Ohara Y, Nakayashiki H, Tosa Y, Mayama S (2005) Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol Plant Microbe Interact 18:385–396

    Article  PubMed  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  PubMed  CAS  Google Scholar 

  • Wickson M, Thimann KV (1960) The antagonism of auxin and kinetin in apical dominance. Physiol Plant 13:539–554

    Article  CAS  Google Scholar 

  • Yang JW, Yu SH, Ryu CM (2009) Priming of defense-related genes confers root-colonizing bacilli-elicited induced systemic resistance in pepper. Plant Pathol J 25:389–399

    Article  Google Scholar 

  • Yasuda M, Isawa T, Shinozaki S, Minamisawa K, Nakashita H (2009) Effects of coloniation of a bacterial endophyte, Azosprillum sp B510, on disease resistance in rice. Biosci Biotechnol Biochem 73:2595–2599

    Article  PubMed  CAS  Google Scholar 

  • Zhang SA, Moyne AL, Reddy MS, Kloepper JW (2002) The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol Control 25:288–296

    Article  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Feliz G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsh Bais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spence, C., Alff, E., Shantharaj, D., Bais, H. (2012). Probiotics for Plants: Importance of Rhizobacteria on Aboveground Fitness in Plants. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Plant Probiotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27515-9_1

Download citation

Publish with us

Policies and ethics