Skip to main content

Signals in the Rhizosphere and Their Effects on the Interactions Between Microorganisms and Plants

  • Chapter
  • First Online:
Bacteria in Agrobiology: Plant Probiotics

Abstract

Plants exude a variety of organic compounds and inorganic ions into the rhizosphere, which change the chemistry and biology of the root microenvironment. The rhizosphere is the zone of soil surrounding a plant root, where the biology and chemistry of the soil are influenced by the root. All chemical compounds secreted by plants into the rhizosphere are collectively named rhizodepositions. Microorganisms modify the biochemical and physical properties of the rhizosphere and contribute to root growth and plant survival. However, the fate of root exudates in the rhizosphere and the nature of their reactions in the soil remain poorly understood. In this chapter, we analyze different types of molecules produced by roots and their interaction with the rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama K, Matsuzaki K, Hayashi Y (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  PubMed  CAS  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agriculture importance. Biotechnol Lett 32:1559–1570

    Article  PubMed  CAS  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20:1–9

    Article  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  PubMed  CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  PubMed  CAS  Google Scholar 

  • Barriuso J, Ramos Solano B, Lucas JA, Probanza Lobo A, García-Villaraco A, Gutiérrez Mañero FJ (2008) Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interactions. Strategies and techniques to promote plant growth. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–17

    Google Scholar 

  • Baudoin E, Benizri E, Guckert AV (2002) Impact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting. Appl Soil Ecol 19:135–145

    Article  Google Scholar 

  • Bauer WD, Robinson JB (2002) Disruption of bacterial quorum sensing by other organisms. Curr Opin Biotechnol 13:234–237

    Article  PubMed  CAS  Google Scholar 

  • Bauer WD, Teplitski M (2001) Can plants manipulate bacterial quorum sensing? Aust J Plant Physiol 28:913–921

    CAS  Google Scholar 

  • Beattie GA (2006) Plant-associated bacteria survey, molecular phylogeny, genomics and recent advances. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, The Netherlands, pp 1–56

    Chapter  Google Scholar 

  • Belnap J, Hawkes CV, Firestone MK (2003) Boundaries in miniature: two examples from soil. Bioscience 53:739–749

    Article  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  PubMed  CAS  Google Scholar 

  • Bergman K, Gulash-Hoffee M, Hovestadt RE, Larosiliere RC, Ronco PG, Su L (1988) Physiology of behavioral mutants of Rhizobium meliloti: evidence for a dual chemotaxis pathway. J Bacteriol 170:3249–3254

    PubMed  CAS  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Bonkowski M, Villenave C, Bryan Griffiths B (2009) Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321:213–233

    Article  CAS  Google Scholar 

  • Brechenmacher L, Lei Z, Libault M, Findley S, Sugawara M, Sadowsky MJ, Sumner LW, Stacey G (2010) Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. Plant Physiol 153:1808–1822

    Article  PubMed  CAS  Google Scholar 

  • Burdman S, Okon Y, Jurkevitch E (2000) Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots. Crit Rev Microbiol 26:91–110

    Article  PubMed  CAS  Google Scholar 

  • Caetano-Anolles G, Crist-Estes DK, Bauer WD (1988) Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes. J Bacteriol 170:3164–3169

    PubMed  CAS  Google Scholar 

  • Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L (2010) Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329:1–25

    Article  CAS  Google Scholar 

  • Chabot R, Antoun H, Kloepper JW, Beauchamp CJ (1996) Root colonization of maize and lettuce by bioluminescent Rhizobium leguminosarum biovar phaseoli. Appl Environ Microbiol 62:2767–2772

    PubMed  CAS  Google Scholar 

  • Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365

    Article  PubMed  CAS  Google Scholar 

  • Daniels R, De Vos DE, Desair J, Raedschelders G, Luyten E, Rosemeyer V, Verreth C, Schoeters E, Vanderleyden J, Michiels J (2002) The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J Biol Chem 277:462–468

    Article  PubMed  CAS  Google Scholar 

  • Dardanelli MS, Fernández FJ, Espuny MR, Rodríguez MA, Soria ME, Gil Serrano AM, Okon Y, Megías M (2008a) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721

    Article  CAS  Google Scholar 

  • Dardanelli MS, Rodríguez Navarro DN, Megías M, Okon Y (2008b) Influence of co-inoculation Azospirillum-rhizobia to growth and nitrogen fixation of agronomic legume. In: Cassán FD, García de Salamone I (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentine. Argentine Society for Microbiology, Buenos Aires, pp 141–151

    Google Scholar 

  • Dardanelli MS, Manyani H, González-Barroso S, Rodríguez-Carvajal MA, Gil-Serrano AM, Espuny MR, López-Baena FJ, Bellogín RA, Megías M, Ollero FJ (2010) Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328:483–493

    Article  CAS  Google Scholar 

  • De Hoff PL, Brill LM, Hirsch AM (2009) Plant lectins: the ties that bind in root symbiosis and plant defense. Mol Genet Genomics 282:1–15

    Article  PubMed  CAS  Google Scholar 

  • de Rijke E, Out P, Niessen WMA, Ariese F, Gooijer C, Brinkman UA (2006) Analytical separation and detection methods for flavonoids. J Chromatogr A 1112:31–63

    Article  PubMed  Google Scholar 

  • Dobbelaere S, Okon Y (2007) The plant growth-promoting effect and plant responses. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Dordrecht, pp 145–170

    Chapter  Google Scholar 

  • Emmert EAB, Milner JL, Lee JC, Pulvermacher KL, Olivares HA, Clardy J, Handelsman J (1998) Effect of canavanine from alfalfa seeds on the population biology of Bacillus cereus. Appl Environ Microbiol 64:4683–4688

    PubMed  CAS  Google Scholar 

  • Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant-Microbe Interact 16:827–834

    Article  PubMed  CAS  Google Scholar 

  • Geurts R, Fedorova E, Bisseling T (2005) Nod factor signaling genes and their function in the early stages of Rhizobium infection. Curr Opin Plant Biol 8:346–352

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Handelsman J, Raffel S, Mester EH, Wunderlich L, Grau CR (1990) Biological control of damping-off of alfalfa seedlings with Bacillus cereus UW85. Appl Environ Microbiol 56:713–718

    PubMed  CAS  Google Scholar 

  • Hawes MC, Brigham LA, Wen F, Woo HH, Zhu Y (1998) Function of root border cells in plant health: pioneers in the rhizosphere. Annu Rev Phytopathol 36:311–327

    Article  PubMed  CAS  Google Scholar 

  • Hiltner L (1904) Über neuere erfahrungen und probleme auf dem gebiete der bodenbakteriologie unter besonderer Beru¨cksichtigung der Gründüngung und Brache. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft 98:59–78

    Google Scholar 

  • Lodeiro AR, López-García SL, Vázquez TEE, Favalukes G (2000) Stimulation of adhesiveness, infectivity, and competitiveness for nodulation of Bradyrhizobium japonicum by its pretreatment with soybean seed lectin. FEMS Microbiol Lett 188:177–184

    Article  PubMed  CAS  Google Scholar 

  • Long SR (1989) Rhizobium-legume nodulation: life together in the underground. Cell 56:203–214

    Article  PubMed  CAS  Google Scholar 

  • Maloney PE, van Bruggen AHC, Hu S (1997) Bacterial community structure in relation to the carbon environments in lettuce and tomato rhizospheres and a bulk soil. Microb Ecol 34:109–117

    Article  PubMed  CAS  Google Scholar 

  • Mandal SM, Chakraborty J, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behavior 5:359–368

    Article  CAS  Google Scholar 

  • Maxwell CA, Hartwig UA, Joseph CM, Phillips DA (1989) A chalcone and two related flavonoids released from alfalfa roots induce nod genes of Rhizobium meliloti. Plant Physiol 91:842–847

    Article  PubMed  CAS  Google Scholar 

  • Medeot DB, Paulucci NS, Albornoz AI, Fumero MV, Bueno MA, Garcia MB, Woelke MR, Okon Y, Dardanelli MS (2010) Plant growth promoting rhizobacteria improving the legume–rhizobia symbiosis. In: Khan M, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer, Germany, pp 473–494

    Chapter  Google Scholar 

  • Mel’nikova NN, Omel’chuk SV (2009) Effect of legume seed exudates on the formation of Rhizobium–legume symbiosis. Appl Biochem Microbiol 45:297–302

    Article  Google Scholar 

  • Neumann G, Romheld V (2000) The release of root exudates as affected by the plant’s physiological status. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere, biochemistry and organic substances at the soil–plant interface. Marcel Dekker, New York, NY, pp 41–93

    Google Scholar 

  • Pérez-Giménez J, Althabegoiti MJ, Covelli J, Mongiardini EJ, Quelas JI, López-García SL, Lodeiro AR (2009) Soybean lectin enhances biofilm formation by Bradyrhizobium japonicum in the absence of plants. Int J Microbiol 9:1–9

    Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant–rhizobacteria interactions. Plant Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  • Raynaud X (2010) Soil properties are key determinants for the development of exudate gradients in a rhizosphere simulation model. Soil Biol Biochem 42:210–219

    Article  CAS  Google Scholar 

  • Rinaudi L, Giordano W (2010) An integrated view of biofilm formation in Rhizobia. FEMS Microbiol Lett 304:1–11

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal GA (2001) L-Canavanine: A higher plant insecticidal allelochemical. Amino Acids 21:319–330

    Article  PubMed  CAS  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassels R, Vierheilig H, Ocampo JA, Godeas A (2006) Glycosidation of apigenin results in a loss of activity on different growth parameters of arbuscular mycorrhizal fungi from the genus Glomus and Gigaspora. Soil Biol Biochem 38:2919–2922

    Article  CAS  Google Scholar 

  • Simms EL, Taylor DL (2002) Partner choice in nitrogen-fixing mutualisms of legumes and rhizobia. Integr Comp Biol 42:369–380

    Article  PubMed  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  PubMed  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Okon Y (2009) Plant growth-promoting actions of rhizobacteria. In: van Loon LC (ed) Advances in botanical research, vol 51. Academic, Burlington, pp 283–320

    Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint J-P, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant–fungus interactions. Molecules 12:1290–1306

    Article  PubMed  CAS  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant-Microbe Interact 13:637–648

    Article  PubMed  CAS  Google Scholar 

  • Wall LG, Favelukes G (1991) Early recognition in the Rhizobium meliloti-alfalfa symbiosis: root exudate factor stimulates root adsorption of homologous rhizobia. J Bacteriol 173:3492–3499

    PubMed  CAS  Google Scholar 

  • Weaks TE (1977) Differences between strains of Rhizobium in sensitivity to canavanine. Plant Soil 48:387–395

    Article  CAS  Google Scholar 

  • Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8:301–307

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Secretaría de Ciencia y Técnica de la Universidad Nacional de Río Cuarto (SECyT-UNRC) and CONICET PIP 112-200801-00537. NP is a doctoral fellow of CONICET; JV is a doctoral fellow of Agencia Nacional de Investigaciones Científicas (ANPCyT). MSD and WG are members of the research career of CONICET, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Dardanelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paulucci, N.S., Vicario, J.C., Cesari, A.B., García, M.B., Dardanelli, M.S., Giordano, W.F. (2012). Signals in the Rhizosphere and Their Effects on the Interactions Between Microorganisms and Plants. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Plant Probiotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27515-9_11

Download citation

Publish with us

Policies and ethics