Skip to main content

Role of Plant: Microbe Interactions in the Sustainable Development of Muga Sericulture

  • Chapter
  • First Online:
Bacteria in Agrobiology: Plant Probiotics

Abstract

In recent decades, increased agricultural production leads to intensive use of agrochemicals. This has affected the ecosystem stability. Biological control is one such alternative which supplements the use of chemical fertilizer, prevents the plant diseases, and promotes the health of the plants. In Muga sericulture, a Som plant (Machilus bombycina) is used as primary host plants of Muga silkworm (Antheraea assama, Helfer). A study has been made to improve the quality and quantity production of silk fiber using bacteria as a biocontrol agent and production of antibacterial peptides using Muga silkworm as a model insect for the control of Pseudomonas aeruginosa, a causative agent of flacherie disease in Muga silkworm. This study could be exploited in improvement of silk production and biocontrol of flacherie disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham EG, Nagaraju J, Salunke D, Gupta HM, Dutta RK (1995) Purification and partial characterization of an induced antibacterial protein in the silkworm, Bombyx mori. J Invertebr Pathol 65:17–24

    Article  PubMed  CAS  Google Scholar 

  • Abu Hakima R, Faye I (1981) An ultrastructural and autoradiographic study of the immune response in Hyalophora cecropia pupae. Cell Tissue Res 217:311–320

    Article  PubMed  CAS  Google Scholar 

  • Adesemoye AO, Obini M, Ugoji EO (2008) Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Braz J Microbiol 39:423–426

    Article  Google Scholar 

  • Amir HG, Shamsuddin ZH, Halimi M, Marziah M, Ramlan MF (2005) Enhancement in nutrient accumulation and growth of oil palm seedlings caused by PGPR under field nursery conditions. Commun Soil Sci Plant Anal 36:2059–2066

    Article  CAS  Google Scholar 

  • Anderson R, Cook ML (1979) Induction of Lysozyme like activity in the hemolymph and hemocytes of an insect Spodoptera eridania. J Invertebr Pathol 33(2):197–203

    Article  CAS  Google Scholar 

  • Ando K, Okada M, Natori S (1987) Purification of Sarcotoxin II, antibacterial proteins of Sarcophaga peregrina (Flesh fly) larvae. Biochemistry 26(1):226–230

    Article  PubMed  CAS  Google Scholar 

  • Andra J, Berninghausen O, Leippe M (2001) Cecropins, antibacterial peptides from insects and mammals are potently fungicidal against Candida albicans. Med Microbiol Immunol 189:169–173

    Article  PubMed  CAS  Google Scholar 

  • Barra D, Simmaco M, Boman H (1998) Gene- encoded peptide antibiotics and innate immunity. FEBS Lett 430:130–134

    Article  PubMed  CAS  Google Scholar 

  • Bechinger B (1999) The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim Biophys Acta 1462:157–183

    Article  PubMed  CAS  Google Scholar 

  • Boman H (1998) Gene-encoded peptide antibiotics and the concept of innate immunity: an update review. Scand J Immunol 48:15–25

    Article  PubMed  CAS  Google Scholar 

  • Boman HG, Steiner H (1981) Humoral immunity in Cecropia pupae. Curr Top Microbiol Immunol 94:75–91

    Article  PubMed  Google Scholar 

  • Boman HG, Faye I, Gudmundsson GH, Lee JY, Lidholm DA (1991) Cell free immunity in Cecropia. A model system for antibacterial proteins. Eur J Biochem 201:23–31

    Article  PubMed  CAS  Google Scholar 

  • Boman HG, Agerberth B, Boman A (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 61(7):2978–2984

    PubMed  CAS  Google Scholar 

  • Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102

    Article  Google Scholar 

  • Bowmen HG, Hultmark D (1987) Cell free immunity in insects. Annu Rev Microbiol 41:103–126

    Article  Google Scholar 

  • Brooks WM (1971) The inflammatory response of the tobacco hornworm, manduca Sexta to infection by the microsporidium, Nosema sphingidis. J Invertebr Pathol 17(1):87–93

    Article  Google Scholar 

  • Bulet P, Hetru C, Dimarcq JL, Hoffmann D (1999) Antimicrobial peptides in insects; structure and function. Dev Comp Immunol 23(4–5):329–344

    Article  PubMed  CAS  Google Scholar 

  • Bullied WJ, Buss TJ, Vessey JK (2002) Bacillus cereus UW85 inoculation effects on growth, nodulation and N accumulation in grain legumes: Field studies. Can J Plant Sci 82:291–298

    Article  Google Scholar 

  • Carlsson A, Engstrom P, Palva ET, Bennich H (1991) Attacin, an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription. Infect Immun 59(9):3040–3045

    PubMed  CAS  Google Scholar 

  • Chadwick JS (1970) Relation of lysozyme concentration to acquired immunity against Pseudomonas aeruginosa in Galleria mallonella. J Invertebr Pathol 15(3):455–456

    Article  Google Scholar 

  • Chong HK, Joon HL, Iksoo K, Sook JS, Seok MS, Ki YL, In HL (2004) Purification and cDNA cloning of a cecropin like peptide from the great wax moth, Galleria mellonella. Mol Cells 17(2):262–266

    Google Scholar 

  • Choudhury A, Guha A, Yadav A, Kumari J, Unni BG, Roy MK (2004) Induced immunity in Antheraea assama Ww larvae against flacherie causing Pseudomonas aeruginosa AC-3. Exp Parasitol 106:75–84

    Article  PubMed  CAS  Google Scholar 

  • Chung KT, Ourth DD (2000) Virecin, A novel antibacterial protein from immune hemolymph of Heliothis virescens pupae. Eur J Biochem 267(3):677–683

    Article  PubMed  CAS  Google Scholar 

  • Cociancich S, Ghazi A, Hetru C, Hoffman JA, Letellier L (1993) Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J Biol Chem 268(26):19239–19245

    PubMed  CAS  Google Scholar 

  • Cociancich S, Bulet P, Hetru C, Hoffmann JA (1994) The inducible antibacterial peptides of insects. Parasitol Today 10(4):132–139

    Article  PubMed  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clement C, Ait Barka E (2005) Endophytic colonization of Vitis vinifera L. by a plant growthpromoting bacterium, Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Google Scholar 

  • De Freitas JR, Germida JJ (1990) Plant growth promoting rhizobacteria for winter wheat. Can J Microbiol 36(4):265–272

    Article  Google Scholar 

  • De Silva A, Patterson K, Rothrock C, Moore J (2000) Growth promotion of highbush blueberry by fungal and bacterial inoculants. Hort Sci 35:1228–1230

    Google Scholar 

  • De Verno PJ, Chaodwick JS, Aston WP, Dunphy GB (1984) The in vitro generation of an antibacterial activity from the fat body and haemolymph of non-immunized larvae of Galleria mellonella. Dev Comp Immunol 8(3):537–546

    Article  PubMed  Google Scholar 

  • Dimarcq JL, Hoffmann D, Meister M, Bulet P, Lanot R, Reichhart JM, Hoffmann JA (1994) Characterization and transcriptional profile of a Drosophila gene encoding an insect defensin- A study in insect immunity. Eur J Biochem 221:201–209

    Article  PubMed  CAS  Google Scholar 

  • Dularay B, Lackie AM (1985) Haemocytic encapsulation and the prophenoloxidase-activation pathway in the locust Schistocerca gregaria forsk. Insect Biochem 15(6):827–834

    Article  CAS  Google Scholar 

  • Ekengren S, Hultmark D (1999) Drosophila cecropin as an antifungal agent. Insect Biochem Mol Biol 29(11):965–972

    Article  PubMed  CAS  Google Scholar 

  • Engstrom A, Engstrom P, Tao ZJ, Carlsson A, Bennich H (1984a) Insect immunity. The primary structure of the antibacterial protein attacin F and its relation to two native attacins from Hyalophora cecropia. EMBO J 3(9):2065–2070

    PubMed  CAS  Google Scholar 

  • Engstrom P, Carlsson A, Engstrom A, Tao ZJ, Bennich H (1984b) The antibacterial effect of attacins from the silk moth Hyalophora cecropia is directed against the outer membrane of Escherichia coli. EMBO J 3(13):3347–3351

    PubMed  CAS  Google Scholar 

  • Faye I, Wyatt GR (1980) The synthesis of antibacterial proteins in isolated fat body from cecropia silk moth pupae. Experientia 36:1325–1326

    Article  PubMed  CAS  Google Scholar 

  • Gazit E, Lee WJ, Brey PT, Shai Y (1994) Mode of action of the antibacterial cecropin B2: A spectrofluorometric study. Biochemistry 33(35):10681–10692

    Article  PubMed  CAS  Google Scholar 

  • Hara S, Yamakawa M (1995) Moricin, a novel type of antibacterial peptide isolated from the silkworm, Bombyx mori. J Biol Chem 270(50):29923–29927

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann J, Hetru Ch (1992) Insect defensins: inducible antibacterial peptides. Immunol Today 13:411–415

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann D, Hultmark D, Boman HG (1981) Insect immunity: Galleria mellonella and other lepidoptera have cecropin P9 like actors active against gram-negative bacteria. Insect Biochem 11(5):537–548

    Article  CAS  Google Scholar 

  • Hultmark D, Steiner H, Rasmuson T, Boman HG (1980) Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem 106:7–16

    Article  PubMed  CAS  Google Scholar 

  • Hultmark D, Engstrom A, Andersson K, Steiner H, Bennich H, Boman HG (1983) Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J 2(4):571–576

    PubMed  CAS  Google Scholar 

  • Hurlbert RE, Karlinsey JE, Spence KD (1985) Differential synthesis of bacteria induced proteins of Manduca sexta larvae and pupae. J Insect Physiol 31:205–215

    Article  CAS  Google Scholar 

  • Jenni B, Isch C, Aragno M (1989) Nitrogen fixation by new strains of Pseudomonas pseudoflava and related bacteria. J Gen Microbiol 135:461–467

    CAS  Google Scholar 

  • Jyotsana S, Yadav A, Unni BG, Kalita MC (2005) Antibacterial proteins from non-mulberry silkworms against flacherie causing Pseudomonas aeruginosa AC-3. Curr Sci 89(9):1613–1618

    Google Scholar 

  • Kaaya GP, Flyg C, Boman HG (1987) Insect Immunity: Induction of cecropin and attacin like antibacterial factors in the haemolymph of Glossina morsitans. Insect Biochem 17(2):309–315

    Article  CAS  Google Scholar 

  • Kanost MR (1983) The induction of lysozyme and other anti bacterial haemolymph proteins in Tobacco hornworm, Manduca Sexta. Ph.D. Thesis, Purdue University, West Lafayette, Indiana 1–154

    Google Scholar 

  • Kim SH, Park BS, Yun EY, Je YH, Woo SD, Kang SW, Kim KY, Kang SK (1998) Cloning and Expression of a Novel Gene Encoding a New Antibacterial Peptide from Silkworm, Bombyx mori. Biochem Biophys Res Commun 246(2):388–392

    Article  PubMed  CAS  Google Scholar 

  • Kirill AM, Vladimir AS, Olegv K, Anatoly TG, Alexander SS (2001) Cell free production of biologically active polypeptides: application to the synthesis of anti bacterial peptide Cecropin. Protein expression and Purification 21:456–461

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. Pages 879–882 In: Proceeings of the 4th International Conference on Plant Pathogenic Bacteria, vol 2, Station de Pathologie Vegetale et Phytobacteriologie, INRA, Angers, France

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhance plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kockum K, Faye I, Hofsten PV, Lee JY, Xanthopoulos KG, Boman HG (1984) Insect immunity. Isolation and sequence of two cDNA clones corresponding to acidic and basic attacins from Hyalophora cecropia. EMBO J 3(9):2071–2075

    PubMed  CAS  Google Scholar 

  • Komano H, Mizuno D, Natori S (1980) Purification of lectin induced in the haemolymph of Sarcophaga peregrina larvae on injury. J Biol Chem 255(7):2919–2924

    PubMed  CAS  Google Scholar 

  • Lamberty M, Ades S, Joseph SU, Brookhart G, Bushey D, Hoffmann JA, Butlet P (1999) Insect Immunity: isolation from the Lepidopteran Heliothis virescens of a novel insect defensin with potent antifungal activity. J Biol Chem 274(14):9320–9326

    Article  PubMed  CAS  Google Scholar 

  • Lamberty M, Caille A, Landon C, Tassin-Moindrot S, Hetru C, Bulet P, Vovelle F (2001a) Solution structures of the antifungal heliomicin and a selected variant with both antibacterial and antifungal activities. Biochemistry 40:11995–12003

    Article  PubMed  CAS  Google Scholar 

  • Lamberty M, Zachary D, Lanot R, Bordereau C, Robert A, Hoffmann JA, Bulet P (2001b) Insect immunity. Constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect. J Biol Chem 276:4085–4092

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Edlund T, Ny T, Faye I, Boman HG (1983) Microbiology, 2nd edn. WMC Brown Publishers, Oxford, pp 96–548

    Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Application of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg BJ, Chin-A-Woeng TF, Bloemberg GV (2002) Microbe-plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek 81:373–383

    Article  PubMed  CAS  Google Scholar 

  • Mak P, Chmiel D, Gacek GJ (2001) Antibacterial peptides of the moth Galleria mellonella. Acta Biochem Pol 48(4):1191–1195

    CAS  Google Scholar 

  • Matsuura K, Tamura T, Kobayashi N, Yashiro T, Tatsumi S (2007) The antibacterial protein lysozyme identified as the termite egg recognition pheromone. PLoS One 2(8):813

    Article  Google Scholar 

  • Mia MAB, Shamsuddin ZH, Wahab Z, Marziah M (2005) High-yielding and quality banana production through plant growth-promoting rhizobacterial inoculation. Fruits 60:179–185

    Article  Google Scholar 

  • Mohring W, Messner B (1968) Immunreaktionen bei insekten I Lysozymals grundlegender antibakterieller factor im humoralen abwehrmechanismus der Insekten. Biol Zentralbl 87:439–470

    Google Scholar 

  • Morishima I, Suginaka S, Bougaki T, Inoue M, Ueno T (1988) Induction and partial characterization of antibacterial proteins in the hemolymph of the silkworm, Bombyx mori. Agric Biol Chem 52(4):929–934

    Article  CAS  Google Scholar 

  • Morishima I, Suginaka S, Ueno T, Hirano H (1990) Isolation and structure of cecropins, inducible antibacterial peptides from the silkworm, Bombyx mori. Comp Biochem Physiol B 3:551–554

    Google Scholar 

  • Okada M, Natori S (1983) Purification and characterization of an antibacterial protein from haemolymph of Sarcophaga peregrina (Flesh fly) larvae. Biochem J 211:727–734

    PubMed  CAS  Google Scholar 

  • Otvos L Jr (2000) Antibacterial peptides isolated from insects. J Pept Sci 6:497–511

    Article  PubMed  CAS  Google Scholar 

  • Pant R, Unni BG (1980) Free amino acids of haemolymph and silk gland in the developing fifth instar and spinning larva of Philosamia ricini. Curr Sci 49:538–541

    CAS  Google Scholar 

  • Park Y, Lee DG, Jang SH, Woo ER, Jeong HG, Choi CH, Hahm KS (2003) A Leu-Lys-rich anti microbial peptide: activity and mechanism. Biochim Biophys Acta 1645(2):172–182

    PubMed  CAS  Google Scholar 

  • Pye AE, Boman HG (1977) Insect immunity. III. Purification and partial characterization of immune protein P5 from haemolymph of Hyalophora cecropia pupae. Infect Immunol 17(2):408–414

    CAS  Google Scholar 

  • Qi G, Zhou Q, Qu X, Huang Z (1984) Some inducible antibacterial substances developed from the haemolymph of Oak silkworm, Antheraea pernyi by ultrasonic treatment. Kexue Tongbao 29:670–674

    Google Scholar 

  • Qu X, Steiner H, Engstrom A, Bennich H, Boman HG (1982) Insect immunity: Isolation and structure of cecropins B and D from pupae of the Chinese Oak Silk moth, Antheraea pernyi. Eur J Biochem 127:219–224

    Article  PubMed  CAS  Google Scholar 

  • Quadt-Hallmann A, Hallmann J, Kloepper JW (1997) Bacterial endophytes in cotton: location and interaction with other plant associated bacteria. Can J Microbiol 43:254–259

    Article  CAS  Google Scholar 

  • Ratcliffe NA, Rowley AF, Fitzgerald SW, Rhodes CP (1985) Invertebrate immunity: basic concepts and recent advances. Int Rev Cytol 97:183–350

    Article  CAS  Google Scholar 

  • Reichhart JM, Essrich M, Dimarcq JL, Hoffmann D, Hoffmann JA, Lagueux M (1989) Insect immunity. Isolation of cDNA clones corresponding to diptericin, an inducible antibacterial peptide from Phormia terranovae (Diptera). Transcriptional profiles during immunization. Eur J Biochem 182(2):423–427

    Article  PubMed  CAS  Google Scholar 

  • Rizki TM, Rizki RM (1984) The cellular defense system of Drosophila melanogaster. In: King RC, Akai R (eds) Insect ultrastructure, vol 2. Plenum, New York

    Google Scholar 

  • Salt G (1970) The cellular defense reactions of insects. Monogr Exp Biol 46:10–118 Cambridge University Press, London

    Google Scholar 

  • Sarmasik A, Chen TT (2003) Bactericidal activity of cecropin B and cecropin P1 expressed in fish cells (CHSE-214): application in controlling fish bacterial pathogen. Aquaculture 220:183–194

    Article  CAS  Google Scholar 

  • Saubidet MI, Fatta N, Barneix AJ (2002) The effect of inoculation with Azospirillum brasilense on growth and nitrogen utilization by wheat plants. Plant Soil 245:215–222

    Article  CAS  Google Scholar 

  • Sharma A, Sharma R, Imamura M, Yamakawa M, Machii H (2000) Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice. FEBS Lett 484(1):7–11

    Article  PubMed  CAS  Google Scholar 

  • Spies AG, Karlinsey JE, Spence KD (1986) Antibacterial haemolymph proteins of Manduca sexta. Comp Biochem Physiol B 83(1):125–133

    PubMed  CAS  Google Scholar 

  • Stephens JM, Marshall JH (1962) Some Properties of an immune factor isolated from the blood of actively immunized wax moth larvae. Can J Microbiol 8(5):719–725

    Article  CAS  Google Scholar 

  • Sun D, Fallon AM (2002) Characterization of genomic DNA encoding cecropins from an Aedes albopictus mosquito cell line. Insect Mol Biol 11(1):21–30

    Article  PubMed  CAS  Google Scholar 

  • Sun SC, Lindstrom I, Lee JY, Faye I (1991) Structure and expression of the attacin genes in Hyalophora cecropia. Eur J Biochem 196(1):247–254

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Komano H, Kawaguchi N, Kitamura N, Nakanishi S, Natori S (1985) Cloning and sequencing of cDNA of Sarcophaga peregrina humoral lectin induced on injury of the body wall. J Biol Chem 260:12228–12233

    PubMed  CAS  Google Scholar 

  • Teshima T, Ueki Y, Nakai T, Shiba T (1986) Structure determination of Lepidopteran c, self defense substance produced by silkworm (Bombyx mori). Tetrahedron Lett 42(3):829–834

    CAS  Google Scholar 

  • Unni BG, Bora U, Singh HR, Kumar BSDileep, Devi B, Wann SB, Bora A, Bhau BS, Neog K, Chakravorty R (2008) High yield and quality silk fibre production by muga silkworm, Antheraea assama through application of plant growth promoting rhizobacteria. Curr Sci 94(6):768–774

    CAS  Google Scholar 

  • Unni BG, Goswami M, Kakoty Y, Bhattacarjee M, Wann SB, Rajkhowa G, Das S, Devi BR, Chutia AD (2009) Indigenous knowledge of silkworm cultivation and its utilization in North Eastern region of India. Indian J Tradit Knowl 8(1):70–74

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. P. G. Rao, Director, North-East Institute of Science & Technology (CSIR), Jorhat, Assam (India), for the support and encouragements and the Department of Science & Technology, Government of India for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bala Gopalan Unni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Unni, B.G., Devi, B., Kakoty, Y., Wann, S.B., Borah, A., Dowarah, P. (2012). Role of Plant: Microbe Interactions in the Sustainable Development of Muga Sericulture. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Plant Probiotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27515-9_12

Download citation

Publish with us

Policies and ethics