Skip to main content

Plant Probiotics in Phosphorus Nutrition in Crops, with Special Reference to Rice

  • Chapter
  • First Online:
Bacteria in Agrobiology: Plant Probiotics

Abstract

Low level of soluble soil phosphorus (P) is a serious constraint in crop production in tropical and subtropical soils. Many plant-associated bacteria or plant probiotics can solubilize P from either organic- or inorganic-bound phosphates thereby facilitating plant growth. Understanding the bacterial contribution to plant P nutrition and opportunities for manipulating specific bacterial strain to enhance P availability in soil has, therefore, been of considerable interest over many decades. This interest is accentuated by rising costs of P fertilizer and because of low efficiency of P use by plants from soil and fertilizer sources. Bacteria from diverse taxonomic genera such as Pseudomonas, Bacillus, Klebsiella, Streptomyces, Burkholderia, Pantoea, Enterobacter, etc., can solubilize soil insoluble P and increase growth and yield of crops. The widely recognized mechanisms of phosphate solubilization mediated by these plant-associated bacteria are production of organic acids (such as gluconic, citric, and oxalic) and/or secretion of hydrolytic enzymes (such as phytases, phosphatase, etc.). Despite their potential as low-input practical agents for plant P nutrition, application of phosphate solubilizing bacteria (PSB) has been hampered by their inconsistent performance in the field. Hence, the full potentials of PSB have not yet been achieved for P nutrition in major crop production. Therefore, better understanding on how they interact with roots and other organisms in the rhizosphere is needed. This chapter reviews advances on PSB research and their potential for phosphorus nutrition in crop plants, with special reference to rice. Mode of action of phosphate solubilization by bacteria and their uses as biofertilizer for eco-friendly low-input sustainable crop production are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH (1994) Phosphatases and the utilization of organic phosphorus by Rhizobium leguminosarum biovar viceae. Lett Appl Microbiol 18:294–296

    CAS  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2010) Increased plant uptake of nitrogen from 15N-depleted fertilizer using plant growth-promoting rhizobacteria. Appl Soil Ecol 46:54–58

    Google Scholar 

  • Afzal A, Bano A (2008) Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). Int J Agric Biol 10:85–88

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2010) Plant growth promoting activities of phosphate-solubilizing Enterobacter asburiae as influenced by fungicides. EurAsia J BioSci 4:88–95

    Google Scholar 

  • Alagawadi AR, Gaur AC (1992) Inoculation of Azospirillum brasiliense and phosphate solubilizing bacteria on yield of sorghum (Sorghum bicolor L Moench) in dry land. Tropic Agric 69:347–350

    Google Scholar 

  • Alam S, Khalil S, Ayub N, Rashid M (2002) In vitro solubilization of inorganic phosphate by phosphate solubilizing microorganisms (PSM) from maize rhizosphere. Int J Agric Biol 4:454–458

    CAS  Google Scholar 

  • Alam MS, Talukder NM, Islam MT, Rahman A (2008a) Rhizoplane bacteria as phosphate solubilizing agent on phosphorus nutrition of rice. Bangladesh J Agric Sci 35:181–188

    Google Scholar 

  • Alam MS, Talukder NM, Islam MT, Sarkar A, Hossain MM (2008b) Phosphate solubilizing rhizoplane bacteria on growth and yield of transplant aman rice. J Agrofor Environ 2:19–22

    Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on nonlegumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67

    CAS  Google Scholar 

  • Arora NK, Khare E, Naraian R, Maheshwari DK (2008) Sawdust as a superior carrier for production of multipurpose bioinoculant using plant growth promoting rhizobial and pseudomonad strains and their impact on productivity of Trifolium repense. Curr Sci 95(1):90–94

    Google Scholar 

  • Attia M, Ahmed MA, El-Sonbaty MR (2009) Use of biotechnologies to increase growth, productivity and fruit of Maghrabi Banana under different rates of phosphorus. World J Agric Sci 5:211–220

    CAS  Google Scholar 

  • Azziz G, Bajsa N, Haghjou T, Taulé C, Valverde A, Igual JM, Arias A (2011) Abundance, diversity and prospecting of culturable phosphate solubilizing bacteria on soils under crop–pasture rotations in a no-tillage regime in Uruguay. Appl Soil Ecol. doi:10.1016/j.apsoil.2011.10.004

  • Babana AH, Antoun H (2005) Biological system for improving the availability of Tilemsi phosphate rock for wheat (Triticum aestivum L.) cultivated in Mali. Nutr Cycl Agroecosyst 72:147–157

    Google Scholar 

  • Babana AH, Antoun H (2006) Effect of Tilemsi phosphate rock-solubilizing microorganisms on phosphorus uptake and yield of field grown wheat (Triticum aestivum L.) in Mali. Plant Soil 28:51–58

    Google Scholar 

  • Begum HH, Islam MT (2005) Role of synthesis and exudation of organic acids in phosphorus nutrition in plants in tropical soils. Biotechnology 4:333–340

    CAS  Google Scholar 

  • Begum HH, Osaki M, Shinano T, Miyatake H, Wasaki J, Yamamura T, Watanabe T (2005) The function of a maize-derived phosphoenolpyruvate carboxylase (PEPC) in phosphorus deficient transgenic rice. Soil Sci Plant Nutr 51:497–506

    CAS  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanovik VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652

    PubMed  CAS  Google Scholar 

  • Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296

    PubMed  Google Scholar 

  • Bianco C, Defez R (2010) Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 76:4626–4632

    PubMed  CAS  Google Scholar 

  • Botelho GR, Mendonça-Hagler LC (2006) Fluorescent pseudomonads associated with the rhizosphere of crops- an overview. Braz J Microbiol 37:401–416

    CAS  Google Scholar 

  • Brink J (1977) World resources of phosphorus. CIBA Found Symp 13–15:23–48

    Google Scholar 

  • Brown AE, Hamilton JTG (1993) Indole-3-ethanol produced by Zygorrhynchus moelleri, and indole-3-acetic acid analogue with antifungal activity. Mycol Res 96:71–74

    Google Scholar 

  • Busman L, Nalepa P, Dobryniewska M (2009) The nature of phosphorous in soils, University of Minnesota Extension (2009) WW-06795- 576

    Google Scholar 

  • Cakmakci R, Donmez MF, Erdogan U (2007) The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turk J Agric For 31:189–199

    CAS  Google Scholar 

  • Canbolat MY, Bilen S, Cakmakci R, Sahin F, Aydin A (2006) Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biol Fertil Soils 42:350–357

    CAS  Google Scholar 

  • Castagno LN, Estrella MJ, Sannazzaro AI, Grassano AE, Ruiz OA (2011) Phosphate-solubilization mechanism and in vitro plant growth promotion activity mediated by Pantoea eucalypti isolated from Lotus tenuis rhizosphere in the Salado River Basin (Argentina). J Appl Microbiol 110:1151–1165

    PubMed  CAS  Google Scholar 

  • Chabot R, Antoun H, Cescas PM (1996) Growth promotion of maize and lettuce by phosphate solubilizing Rhizobium leguminosarum biovar. phaseoli. Plant Soil 184:311–321

    CAS  Google Scholar 

  • Chaiharn M, Lumyong S (2009) Phosphate solubilization potential and stress tolerance of rhizobacteria from rice soil in Northern Thailand. World J Microbiol Biotechnol 25:305–314

    CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Google Scholar 

  • Compant S, Duffy B, Nowak J, Cle’ment C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    PubMed  CAS  Google Scholar 

  • Cunningham J, Kuiack C (1992) Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Appl Environ Microbiol 58:1451–1458

    PubMed  CAS  Google Scholar 

  • Datta M, Banish S, Dupta RK (1982) Studies on the efficacy of a phytohormone producing phosphate solubilizing Bacillus firmus in augmenting paddy yield in acid soils of Nagaland. Plant Soil 69:365–373

    CAS  Google Scholar 

  • De Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soil 24:358–364

    Google Scholar 

  • Deora A, Hashidoko Y, Islam MT, Aoyama Y, Ito T, Tahara S (2006) An antagonistic rhizoplane bacterium Pseudomonas sp. strain EC-S101 physiologically stresses a spinach root rot pathogen Aphanomyces cochlioides. J Gen Plant Pathol 72:57–74

    CAS  Google Scholar 

  • Dey KB (1988) Phosphate solubilizing organisms in improving fertility status. In: Sen SP, Palit P (eds) Biofertilizers: potentialities and problems. Plant Physiology Forum, Naya Prokash, Calcutta, pp 237–248

    Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth promoting rhizobacteria. Microbiol Res 159:371–394

    PubMed  CAS  Google Scholar 

  • Duarah I, Deka M, Saikia N, Deka Boruah HP (2011) Phosphate solubilizers enhance NPK fertilizer use efficiency in rice and legume cultivation. Biotech. doi:10.1007/s13205-011-0028-2

  • EcoSanRes (2003) Closing the loop on phosphorus. Stockholm Environment Institute (SEI) funded by SIDA Stockholm

    Google Scholar 

  • Egamberdiyeva D, Juraeva D, Poberejskaya S, Myachina O, Teryuhova P, Seydalieva L, Aliev A (2003) Improvement of wheat and cotton growth and nutrient uptake by phosphate solubilizing bacteria. 26th Southern Conservation Tillage Conference

    Google Scholar 

  • Eisen JA (1995) The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J Mol Evol 41:1105–1123

    PubMed  CAS  Google Scholar 

  • Elkoca E, Kantar F, Sahin F (2008) Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. J Plant Nutr 31:157–171

    CAS  Google Scholar 

  • Elser J, Bennette E (2011) Phosphorus cycle: a broken biogeochemical cycle. Nature 478:29–31

    PubMed  CAS  Google Scholar 

  • Espinosa-Victoria D, López-Reyes L, De La Cruz-Benítez A (2009) Use of 16s rrna gene for characterization of phosphate-solubilizing bacteria associated with corn. Rev Fitotec Mex 32:31–37

    Google Scholar 

  • European Fertilizer Manufacturers Association (2000) Phosphorus: essential element for food production. European Fertilizer Manufacturers Association (EFMA), Brussels

    Google Scholar 

  • Fincher GB (1989) Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Ann Rev Plant Physiol Plant Mol Biol 40:305–345

    CAS  Google Scholar 

  • Flowers TJ, Flowers SA (2005) Why does salinity pose such a difficult problem for plant breeders. Agric Water Manag 78:15–24

    Google Scholar 

  • Food and Agriculture Organization/World Health Organization Expert Consultation Report (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. (http://www.who.int/SaburoMatsuifoodsafety/publications/fsmanagement/en/probiotics.Pdf). Accessed 4 Nov 2009

  • Gaind S, Gaur AC (1991) Thermotolerant phosphate solubilizing microorganisms and their interaction with mung bean. Plant Soil 133:141–149

    CAS  Google Scholar 

  • Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185–192

    PubMed  Google Scholar 

  • Gerretsen FC (1948) The influence of microorganisms on the phosphate intake by the plant. Plant Soil 1:51–81

    CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant-growth by free-living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Glick BR, Karaturovic DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting pseudomonas. Can J Microbiol 41:533–536

    CAS  Google Scholar 

  • Goldstein AH (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram negative bacteria. Biol Agric Hortic 12:185–193

    Google Scholar 

  • Gulati A, Rahi P, Vyas P (2008) Characterization of phosphate-solubilizing fluorescent pseudomonads from the rhizosphere of sea-buckthorn growing in the cold deserts of Himalayas. Curr Microbiol 56:73–79

    PubMed  CAS  Google Scholar 

  • Gull FY, Hafeez I, Saleem M, Malik KA (2004) Phosphorus uptake and growth promotion of chickpea by co-inoculation of mineral phosphate solubilizing bacteria and a mixed rhizobial culture. Aust J Exp Agric 44:623–628

    CAS  Google Scholar 

  • Gunes A, Atatoglu N, Turan M, Esitken A, Ketterings QM (2009) Effects of phosphate-solubilizing microorganisms on strawberry yield and nutrient concentrations. J Plant Nutr Soil Sci 172:385–392

    CAS  Google Scholar 

  • Gunther F (2005) A solution to the heap problem: the doubly balanced agriculture: integration with population. http://www.holon.se/folke/kurs/Distans/Ekofys/Recirk/Eng/balanced.shtml

  • Gupta SC, Namdeo SL (1997) Effect of Rhizobium, phosphate solubilizing bacteria and FYM on nodulation, grain yield and quality of chickpea. Indian J Pulses Res 10:171–174

    Google Scholar 

  • Gupta R, Singal R, Shankar A, Kuhad RC, Saxena RK (1994) A modified plate assay for screening phosphate solubilizing microorganisms. J Gen Appl Microbiol 40:255–260

    CAS  Google Scholar 

  • Gyaneshwar P, Naresh Kumar G, Parekh LJ (1998) Effect of buffering on the phosphate solubilizing ability of microorganisms. World J Microbiol Biotechnol 14:669–673

    CAS  Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    CAS  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    PubMed  CAS  Google Scholar 

  • Halder AK, Mishra AK, Chakrabartty PK (1991) Solubilization of inorganic phosphate by Bradyrhizobium. Indian J Exp Biol 29:223–229

    Google Scholar 

  • Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008) Rock phosphate-solubilizing Actinomycetes: screening for plant growth-promoting activities. World J Microbiol Biotechnol 24:2565–2575

    CAS  Google Scholar 

  • Hameeda B, Reddy YHK, Rupela OP, Kumar GN, Reddy G (2006) Effect of carbon substrates on rock phosphate solubilization by bacteria for composts and microfauna. Curr Microbial 53:298–302

    CAS  Google Scholar 

  • Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G (2008) Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol Res 163:234–242

    PubMed  CAS  Google Scholar 

  • Hamilton-Miller JMT, Gibson GR, Bruck W (2003) Some insights into the derivation and early uses of the word ‘probiotic’. Br J Nutr 90:845

    PubMed  CAS  Google Scholar 

  • Haq-Ikram-ul AH, Qadeer MA, Iqbal J (2005) Pearl millet, a source of alpha amylase production by Bacillus licheniformis. Bioresour Technol 96:1201–1206

    Google Scholar 

  • Harris JN, New PB, Martin PM (2006) Laboratory tests can predict beneficial effects of phosphate-solubilising bacteria on plants. Soil Biol Biochem 38:1521–1526

    CAS  Google Scholar 

  • Harvey PR, Warren RA, Wakelin S (2009) Potential to improve root access to phosphorus: the role of non-symbiotic microbial inoculants in the rhizosphere. Crop Pasture Sci 60:144–151

    CAS  Google Scholar 

  • Hill JE, Richardson A (2006) Isolation and assessment of microorganisms that utilize phytate. In: Turner B, Richardson A, Mullaney E (eds) Inositol phosphates linking agriculture and the environment. CABI, Oxford, UK. ISBN: 1845931521

    Google Scholar 

  • Hwangbo H, Park RD, Kim YW, Rim YS, Park KH, Kim TH, Suh JS, Kim KY (2003) 2-ketogluconic acid production and phosphate solubilization by Enterobacter intermedium. Curr Microbiol 47:87–92

    PubMed  CAS  Google Scholar 

  • Igual JM, Valverde A, Cervantes E, Velázquez E (2001) Phosphate-solubilizing bacteria as inoculants for agriculture: use updated molecular techniques in their study. Agronomie 21:561–568

    Google Scholar 

  • Illmer P, Schiner F (1992) Solubilization of inorganic phosphate by microorganisms isolated from forest soil. Soil Biol Biochem 24:389–395

    Google Scholar 

  • Illmer P, Schinner F (1995) Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biol Biochem 27:257–263

    CAS  Google Scholar 

  • Islam MT (2011) Potentials for biological control of plant diseases by Lysobacter spp., with special reference to strain SB-K88. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 335–364

    Google Scholar 

  • Islam MT, Hossain MM (2012) Biological control of peronosporomycete phytopathogens by bacterial antagonists. In: Maheshwari DK (ed) Bacteria in agrobiology: plant disease management. Springer, Berlin (in press)

    Google Scholar 

  • Islam MT, Deora A, Hashidoko Y, Tahara S (2004a) Morphological studies on beneficial rhizoplane bacteria and their interactions with host plants and soilborne phytopathogens. In: Proceedings of the JSBBA Regional (Hokkaido-Kyushu Branch) Conference, Fukuoka, Japan, 8–9 Oct 2004, Abstract No. A1a11, p 29

    Google Scholar 

  • Islam MT, Deora A, Hashidoko Y, Rahman A, Tahara S (2004b) Studies on some phosphate solubilizing bacteria isolated from the rhizoplane of field grown rice (cv. BR29) in Bangladesh. In: Proceedings of the World Rice Research Conference 2004, Tokyo and Tsukuba, Japan, 4–7 Nov 2004

    Google Scholar 

  • Islam MT, Hashidoko Y, Deora A, Ito T, Satoshi Tahara S (2005) Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Appl Environ Microbiol 71:3786–3796

    PubMed  CAS  Google Scholar 

  • Islam MT, Deora A, Hashidokoa Y, Rahmana A, Itoa T, Tahara S (2007a) Isolation and identification of potential phosphate solubilizing bacteria from the rhizoplane of Oryza sativa L. cv. BR29 of Bangladesh. Z Naturforsch 62c:103–110

    Google Scholar 

  • Islam MT, Deora A, Hashidoko Y, Ito T, Tahara S (2007b) Evaluation and characterization of some phosphate solubilizing bacteria from the rhizoplane of rice, wheat and tomato grown in Bangladesh. In: Singh DP, Tomar VS, Behl RK, Upadhyaya SD, Bhale MS, Khare D (eds) Crop production in stress environments: genetic and management options. Agrobios International, Jodhpur, India, pp 128–134

    Google Scholar 

  • Islam MT, Selim ASM, Alam MS (2010) Environment safe and low input sustainable food production by the application of natural resources. A project (ES-10) report submitted to Ministry of Science and ICT, Govt People’s Repub Bangladesh, Bangladesh Secretariat, Dhaka-1000

    Google Scholar 

  • Jackson ML (1973) Soil chemical analysis. Prentice Hall of India (P) Ltd, New Delhi

    Google Scholar 

  • Jain PC, Kushawaha PS, Dhakal US, Khan H, Trivedi SM (1999) Response of chickpea (Cicer arietinum L.) to phosphorus and biofertilzier. Legume Res 22:241–244

    Google Scholar 

  • Jeon JS, Lee SS, Kim HY, Ahn TS, Song HG (2003) Plant growth promotion in soil by some inoculated microorganisms. J Microbiol 41:271–276

    CAS  Google Scholar 

  • Kaneko M, Itoh H, Miyako UT, Ashikari M, Matsuka M (2002) The α-amylase induction in endosperm during rice seed germination is caused by gibberellin synthesized in epithelium. Plant Physiol 128:1264–1270

    PubMed  CAS  Google Scholar 

  • Kennedy IR, Choudhury ATMA, Kecskes ML (2004) Non-symbiotic bacteria diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem 36:1229–1244

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27:29–43

    Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi—current perspective. Arch Agron Soil Sci 56:73–98

    CAS  Google Scholar 

  • Kim KY, Jordan D, Krishnan HB (1997) Rahnella aqualitis, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiol Lett 153:273–277

    CAS  Google Scholar 

  • Kloepper JW, Schroth MN (1981) Development of powder formulation of rhizobacteria for inoculation of potato seed pieces. Phytopathology 71:590–592

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44

    Google Scholar 

  • Korhonen TK, Parkkinen J, Hacker J, Finne J, Pere A, Rhen M, Holthöfer H (1986) Binding of Escherichia coli S fimbriae to human kindey epithelium. Infect Immun 54:322–327

    PubMed  CAS  Google Scholar 

  • Kpomblekou K, Tabatabai MA (1994) Effect of organic acids on release of phosphorus from phosphate rocks. Soil Sci 158:442–451

    Google Scholar 

  • Krishnaraj PU, Goldstein AH (2001) Cloning of Serratia marcescens DNA fragment that induces quinoprotein glucose dehydrogenase-mediated gluconic acid production in Escherichia coli in the presence of stationary phase Serratia marcescens. FEMS Microbiol Lett 205:215–220

    PubMed  CAS  Google Scholar 

  • Kucey RMN (1983) Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Can J Soil Sci 63:671–678

    CAS  Google Scholar 

  • Kucey RMN, Jenzen HH, Leggett ME (1989) Microbially mediated increases in plant available phosphorus. Adv Agron 42:199–228

    CAS  Google Scholar 

  • Kumar V, Behl RK, Narula N (2001) Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions. Microbiol Res 156:87–93

    PubMed  CAS  Google Scholar 

  • Kumar H, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Prot 29:591–598

    Google Scholar 

  • Kundu BS, Gaur AC (1984) Rice response to inoculation with N2-fixing and P-solubilizing microorganisms. Plant Soil 79:227–234

    CAS  Google Scholar 

  • Laheurte F, Berthelin J (1988) Effect of a phosphate solubilizing bacteria on maize growth and root exudation over four levels of labile phosphorus. Plant Soil 105:11–17

    CAS  Google Scholar 

  • Lai W-A, Rekha PD, Arun AB, Young CC (2008) Effect of mineral fertilizer, pig manure, and Azospirillum rugosum on growth and nutrient contents of Lactuca sativa L. Biol Fertil Soils 45:155–164

    Google Scholar 

  • Lim BL, Yeoung P, Cheng C, Hill JE (2007) Distribution and diversity of phytate-mineralizing bacteria. ISME J 1:321–330

    PubMed  CAS  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley, New York, p 449

    Google Scholar 

  • Lipton DS, Blanchar RW, Blevins DG (1987) Citrate, malate, and succinate concentration in P-sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiol 85:315–317

    PubMed  CAS  Google Scholar 

  • Liu ST, Lee LY, Taj CY, Hung CH, Chang YS, Wolfrang JH, Rogers R, Goldstein AH (1992) Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. J Bacteriol 174:5814–5819

    PubMed  CAS  Google Scholar 

  • Louw HA, Webley DM (1959) A study of soil bacteria dissolving certain phosphate fertilizers and related compounds. J Appl Bacteriol 22:227–233

    CAS  Google Scholar 

  • Ludwig W, Amann R, Martinez-Romero E, Schönhuber W, Bauer S, Neef A, Schleifer H (1998) rRNA base identification and detection systems for rhizobia and other bacteria. Plant Soil 204:1–19

    CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers LC (1999) What make Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1:9–13

    PubMed  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    PubMed  CAS  Google Scholar 

  • Mamta RP, Pathania V, Gulati A, Singh B, Bhanwra RK, Tewari R (2009) Stimulatory effect of phosphate solubilizing bacteria on plant growth, stevioside and rebaudioside-A contents of Stevia rebaudiana Bertoni. Appl Soil Ecol 46:222–229

    Google Scholar 

  • MÃ¥rald E (1998) I mötet mellan jordbruk och kemi: agrikulturkemins framväxt pÃ¥ Lantbruksakademiens experimentalfält 1850–1907. Institutionen för idéhistoria, Univ UmeÃ¥

    Google Scholar 

  • Martinez Noel GMA, Madrid EA, Botín R, Lamattina L (2001) Indole acetic acid attenuates disease severity in potato-Phytophthora infestans interaction and inhibits the pathogen growth in vitro. Plant Physiol Biochem 39:815–823

    CAS  Google Scholar 

  • Marx J (2004) The roots of plant-microbe collaborations. Science 304:234–236

    PubMed  Google Scholar 

  • Mehta S, Nautiyal CS (2001) An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol 43:51–56

    PubMed  CAS  Google Scholar 

  • Mehrvarz S, Chaichi MR, Alikhani HA (2008) Effect of Phosphate solubilizing microorganisms and phosphorus chemical fertilizer on yield and yield components of barley (Hordeum vulgare L). American Eurasian J Agric Environ Sci 3: 822–828

    Google Scholar 

  • Menaka V, Alagwadi AR (2007) Enhanced survival and performance of phosphate solubilizing bacterium in maize through carrier enrichment. Karnataka J Agric Sci 20:170–172

    Google Scholar 

  • Mishra PK, Mishra S, Bisht SC, Selvakumar G, Kundu S, Bisht JK, Gupta HS (2009) Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacterium Pseudomonas sp. NARs9 (MTCC9002) from the Indian Himalayas. Biol Res 42:305–313

    PubMed  CAS  Google Scholar 

  • Nagaraju AP, Shambulingappa KG, Sridhara S (1995) Efficiency of levels and sources of fertilizer phosphorus and organic manure on growth and yield of cowpea (Vigna unguiculata L.) Walp. Crop Res 9:241–245

    Google Scholar 

  • Nagpal ML, Fox KF, Fox A (1998) Utility of 16S–23S rRNA spacer region methodology: how similar are interspace regions within a genome and between strains for closely related organisms? J Microbiol Methods 33:211–219

    CAS  Google Scholar 

  • Naik PR, Raman G, Narayanan KB, Sakthivel N (2008) Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol 8:230–243

    PubMed  Google Scholar 

  • Nain ML, Yadav RC, Saxena J (2012) Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi arid deserts. Appl Soil Ecol (http://dx.doi.org/10.1016/j.apsoil.2011.08.001)

  • Nautiyal C (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    PubMed  CAS  Google Scholar 

  • Oehl F, Oberson M, Probst A, Fliessbach H, Roth R, Frossard E (2001) Kinetics of microbial phosphorus uptake in cultivated soils. Biol Fertil Soil 34:31–41

    Google Scholar 

  • Ogut M, Er F, Kandemir N (2010) Phosphate solubilization potentials of soil Acinetobacter strains. Biol Fertil Soils 46:707–715

    CAS  Google Scholar 

  • Oliveira CA, Alves VMC, Marriel IE, Gomes EA, Scotti MR, Carneiro NP, Guimarães CT, Schaffert RE, Sá NMH (2009) Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biol Biochem 41:1782–1787

    CAS  Google Scholar 

  • Pal SS (1998) Interactions of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil 198:169–177

    CAS  Google Scholar 

  • Pandey A, Sharma E, Palni LMS (1998) Influence of bacterial inoculation on maize in upland farming systems of the Sikkim Himalaya. Soil Biol Biochem 30:379–384

    CAS  Google Scholar 

  • Pandey A, Trivedi P, Kumar B, Palni LMS (2006) Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian central Himalaya. Curr Microbiol 53:102–107

    PubMed  CAS  Google Scholar 

  • Panhwar QA, Othman R, Zaharah AR, Sariah M, Naher UA (2011a) Contribution of phosphate-solubilizing bacteria in phosphorus bioavailability and growth enhancement of aerobic rice. Span J Agric Res 3:810–820

    Google Scholar 

  • Panhwar QA, Othman R, Zaharah AR, Sariah M, Razi IM (2011b) Role of phosphate solubilizing bacteria on rock phosphate solubility and growth of aerobic rice. J Environ Biol 32:607–612

    PubMed  CAS  Google Scholar 

  • Panhwar QA, Othman R, Zaharah AR, Sariah M, Razi IM (2011c) Effect of phosphatic fertilizer on root colonization of aerobic rice by phosphate-solubilizing bacteria. IPCBEE, vol 9

    Google Scholar 

  • Park J, Bolan N, Megharaj M, Naidu R (2010) Isolation of phosphate-solubilizing bacteria and characterization of their effects on lead immobilization. Pedologist 53:67–75

    CAS  Google Scholar 

  • Patel DK, Archana G, Naresh Kumar G (2008) Variation in the nature of organic acid secretion and mineral phosphate solubilization by Citrobacter sp. DHRSS in the presence of different sugars. Curr Microbiol 56:168–174

    PubMed  CAS  Google Scholar 

  • Peix A, Martinez-Molina E (2002) Molecular methods for biodiversity analysis of PSB. In: First meeting on microbial phosphate solubilization. Salamanca, Spain, 16–19 July

    Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF, Rodriguez-Barrueco C, Martinez-Molina E, Velazquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110

    CAS  Google Scholar 

  • Peix A, Rivas R, Mateos PF, Martínez-Molina E, Rodríguez-Barrueco C, Velázquez E (2003) Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro. Int J Syst Evol Microbiol 53:2067–2072

    PubMed  CAS  Google Scholar 

  • Peix A, Rivas R, Santa-Regina I, Mateos P, Martínez-Molina E, Rodriguez-Barrueco C, Velázquez E (2004) Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses. Int J Syst Evol Microbiol 54:847–850

    PubMed  CAS  Google Scholar 

  • Peix A, Lang E, Verbarg S, Spröer C, Rivas R, Santa-Regina I, Matoes RF, Martínez-Molina E, Rodríguez-Barrueco C, Velázquez E (2009) Acinetobacter strains IH9 and OCI1, two rhizospheric phosphate solubilizing isolates able to promote plant growth, constitute a new genomovar of Acinetobacter calcoaceticus. Syst Appl Microbiol 32:334–341

    PubMed  CAS  Google Scholar 

  • Pengnoo A, Hashidoko Y, Onthong J, Gimsanguan S, Sae-ong M, Watanabe T, Osaki M, Shinano T (2007) Screening of phosphate- solubilizing microorganisms in rhizosphere and rhizoplane of adverse soil-adapting plants in Southern Thailand. Tropics 16:1–7

    Google Scholar 

  • Pérez E, Sulbarán M, Ball MM, Yarzábal LA (2007) Isolation and characterization of mineral phosphate solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biol Biochem 39:2905–2914

    Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiologiya 17:362–370

    CAS  Google Scholar 

  • Prijambada ID, Widada J, Kabirun S, Widianto D (2009) Secretion of organic acids by phosphate solubilizing bacteria isolated from Oxisols. J Tanah Trop 14:245–251

    Google Scholar 

  • Rahman A, Talukder NM, Islam MT (2006) Screening phosphate solubilizing bacteria from rhizoplane of tomato. Bangladesh J Progress Sci Technol 4:1–6

    Google Scholar 

  • Raj J, Bagyaraj DJ, Manjunath A (1981) Influence of soil inoculation with vesicular-arbuscular mycorrhiza and a phosphate-dissolving bacterium on plant growth and 32P-uptake. Soil Biol Biochem 13:105–108

    CAS  Google Scholar 

  • Rengel Z, Marschner P (2005) Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol 168:305–312

    PubMed  CAS  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996

    PubMed  CAS  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    CAS  Google Scholar 

  • Rivas R, Trujillo ME, Sánchez M, Mateos PF, Martínez-Molina E, Velásquez E (2004) Microbacterium ulmi sp. Nov. a xylanolytic, phosphate-solubilizing bacterium isolated from sawdust of Ulmus nigra. Int J Syst Evol Microbiol 54:513–517

    PubMed  CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    PubMed  CAS  Google Scholar 

  • Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by the plant growth promoting bacterium Azospirillum spp. Naturwissenschaften 91:552–555

    PubMed  CAS  Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    CAS  Google Scholar 

  • Runge-Metzger A (1995) Closing the cycle: obstacles to efficient P management for improved global food security. SCOPE 54 – phosphorus in the global environment – transfers, cycles and management

    Google Scholar 

  • Sahin F, Çakmakçi R, Kantar F (2004) Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil 265:123–129

    CAS  Google Scholar 

  • Sahu SN, Jana BB (2000) Enhancement of the fertilizer value of rock phosphate engineered through phosphate-solubilizing bacteria. Ecol Eng 15:27–39

    Google Scholar 

  • Sangeeta M, Nautiyal CS (2001) An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol 43:51–56

    Google Scholar 

  • Sapsirisopa S, Chookietwattana K, Maneewan K, Khaengkhan P (2009) Effect of salt-tolerant Bacillus inoculum on rice KDML 105 cultivated in saline soil. As J Food Ag-Ind Special Issue S69–S74

    Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    PubMed  CAS  Google Scholar 

  • Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol 27:1129–1135

    CAS  Google Scholar 

  • Sharma K, Dak G, Agrawal A, Bhatnagar M, Sharma R (2007) Effect of phosphate solubilizing bacteria on the germination of Cicer arietinum seeds and seedling growth. J Herb Med Toxicol 1:61–63

    Google Scholar 

  • Smil V (2000a) Feeding the world: a challenge for the 21st century. The MIT Press, Cambridge

    Google Scholar 

  • Smil V (2000b) Phosphorus in the environment: natural flows and human interferences. Annu Rev Energy Environ 25:53–88

    Google Scholar 

  • Sperber JI (1957) Solution of mineral phosphates by soil bacteria. Nature 180:994–995

    PubMed  CAS  Google Scholar 

  • Sridhar V, Brahmaprakash GP, Hegde SV (2004) Development of a liquid inoculant using osmoprotectants for phosphate solubilizing bacterium (Bacillus megaterium). Karnataka J Agric Sci 17:251–257

    Google Scholar 

  • Steen I (1998) Phosphorus availability in the 21st century: management of a nonrenewable resource. Phosphorus Potassium 217:25–31

    Google Scholar 

  • Strittmatter HK (1994) Pathogen-defence gene prp1-1 from potato encodes an auxin-responsive glutathione-s-transferase. Eur J Biochem 226:619–626

    PubMed  Google Scholar 

  • Sundara B, Natarajan V, Hari K (2002) Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Res 77:43–49

    Google Scholar 

  • Syers JK, Johnston AE, Curtin D (2008) Efficiency of soil and fertilizer phosphorus use: reconciling changing concepts of soil phosphorus behaviour with agronomic information. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Thakuria D, Talukdar NC, Goswami C, Hazarika S, Boro RC, Khan MR (2004) Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Curr Sci 86:978–985

    Google Scholar 

  • Theodorou ME, Plaxton WC (1993) Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol 101:339–344

    PubMed  CAS  Google Scholar 

  • Tilman D (1998) The greening of the green revolution. Nature 396:211–221

    CAS  Google Scholar 

  • Toro M, Azcón R, Barea JM (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412

    PubMed  CAS  Google Scholar 

  • Trivedi P, Sa T (2008) Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production, and plant growth at lower temperatures. Curr Microbiol 56:140–144

    PubMed  CAS  Google Scholar 

  • Turner BL, Haygarth PM (2001) Biogeochemistry: phosphorus solubilization in rewetted soils. Nature 411:258

    PubMed  CAS  Google Scholar 

  • Valverde A, Burgos A, Fiscella T, Rivas R, Quez EV et al (2006) Differential effects of co inoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. Plant Soil 287:43–50

    CAS  Google Scholar 

  • Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Mol Biol Rev 60:407–438

    CAS  Google Scholar 

  • Vassilev N, Vassileva M, Nicolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144

    PubMed  CAS  Google Scholar 

  • Velineni S, Brahmaprakash GP (2011) Survival and phosphate solubilizing ability of Bacillus megaterium in liquid inoculants under high temperature and desiccation stress. J Agric Sci Tech 13:795–802

    CAS  Google Scholar 

  • Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141

    PubMed  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    CAS  Google Scholar 

  • Viruel E, María E, Lucca ME, Siñeriz F (2011) Plant growth promotion traits of phosphobacteria isolated from Puna, Argentina. Arch Microbiol 193:489–496

    PubMed  CAS  Google Scholar 

  • Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9:174–188

    PubMed  Google Scholar 

  • Vyas P, Rahi P, Gulati A (2009) Stress tolerance and genetic variability of phosphate-solubilizing fluorescent Pseudomonas from the cold deserts of the trans-Himalayas. Microb Ecol 58:425–434

    PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpea. J Plant Nutr Soil Sci 170:283–287

    CAS  Google Scholar 

  • Welch RM (1981) The biological significance of nickel. J Plant Nutr 3:345–356

    CAS  Google Scholar 

  • Wenzel CL, Ashford AE, Summerell BA (1994) Phosphate solubilizing bacteria associated with protoid roots of seedings of waratoh (Telopea speciosissama). New Phytol 128:487–496

    Google Scholar 

  • Yadav KS, Dadarwal KR (1997) Phosphate solubilization and mobilization through soil microorganisms. In: Dadarwal RK (ed) Biotechnological approaches in soil microorganisms for sustainable crop production. Scientific Publishers, Jodhpur, India, pp 293–308

    Google Scholar 

  • Yahya A, Al-Azawi SK (1989) Occurrence of phosphate-solubilizing bacteria in some Iraqi soils. Plant Soil 117:135–141

    Google Scholar 

  • Yi Y, Huang W, Ge Y (2008) Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24:1059–1065

    CAS  Google Scholar 

  • Yildirim E, Karlidag H, Turan M, Dursun A, Goktepe F (2011) Growth, nutrient uptake, and yield promotion of broccoli by plant growth promoting rhizobacteria with manure. HortScience 46:932–936

    CAS  Google Scholar 

  • Young CC, Lai WA, Shen FT, Hung MH, Hung WS, Arun AB (2003) Exploring the microbial potentially to augment soil fertility in Taiwan. In: Proceeding of the 6th ESAFS international conference: soil management technology on low productivity and degraded soils, Taipei, Taiwan, pp 25–27

    Google Scholar 

  • Zaidi A, Khan MS, Amil M (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19:15–21

    Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    PubMed  CAS  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M, Wani PA (2009) Recent advances in plant growth promotion by phosphate-solubilizing microbes. In: Khan MS (ed) Microbial strategies for crop improvement. Springer, Berlin, p 23

    Google Scholar 

  • Zeng Q, Luo F, Zhang Z, Yan R, Zhu D (2012) Phosphate solubilizing rhizospherebacterial T21 isolated from Dongxian wild rice species promotes cultivated rice growth. Appl Mech Mater 108:167–175

    Google Scholar 

  • Zhao XR, Lin QM, Li BG (2002) The solubilization of four insoluble phosphates by some microorganisms (in Chinese). Acta Microbiol Sin 42:236–241

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Tofazzal Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Islam, M.T., Hossain, M.M. (2012). Plant Probiotics in Phosphorus Nutrition in Crops, with Special Reference to Rice. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Plant Probiotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27515-9_18

Download citation

Publish with us

Policies and ethics