Skip to main content

Bacterial Inoculants for Field Applications Under Mountain Ecosystem: Present Initiatives and Future Prospects

  • Chapter
  • First Online:
Bacteria in Agrobiology: Plant Probiotics

Abstract

While microorganisms are ubiquitous in nature, their distribution is governed by environmental specificities. The use of biological fertilizers, in recent times, has received well deserved attention mainly due to increased global preference for natural “organic” products, as well as to reduce the load of chemical fertilizers on the environment. Two major benefits associated with this eco-friendly microbe-based technology are: (1) improved plant nutrition and (2) biocontrol of a wide range of pathogens. Success of this technology, however, depends on the availability of ecologically competent microbes in user friendly formulations. One of the prerequisites for developing this technology is proper understanding of the diversity of microorganisms in a given ecosystem, with particular reference to their functional efficiency. Isolation of microorganisms, screening for desirable characters, selection of efficient strains, pot and field trials, and finally the production of inoculum in easy to store formulations in a cost-effective manner are the main steps toward the development of this microbe-based technology. The present review highlights some of the initiatives taken up by various laboratories located in the Indian Himalayan Region, with particular attention to elucidate the potential of this technology in low temperature environments of the mountain ecosystem, with comments on the future prospects in this area of research with the introduction of modern molecular tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad ZI, Ansar M, Tariq M, Anjum MS (2008) Effect of different rhizobium inoculation methods on performance of lentil in Pothowar region. Int J Agric Biol 10:81–84

    Google Scholar 

  • Ajit NS, Verma R, Shanmugam V (2006) Extracellular chitinases of fluorescent pseudomonads antifungal to Fusarium oxysporum f. sp. dianthi causing carnation wilt. Curr Microbiol 52:310–316

    PubMed  CAS  Google Scholar 

  • Arshad M, Frankenberger WT Jr (2002) Ethylene: agricultural sources and applications. Kluwer, New York

    Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with plant growth promoting rhizobacteria containing ACC-deaminase partially eliminates the effects of water stress on growth, yield and ripening of Pisum sativum L. Pedosphere 18:611–620

    Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    CAS  Google Scholar 

  • Bashan Y, Levanony H (1990) Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can J Microbiol 36:591–608

    CAS  Google Scholar 

  • Bennett RA, Lynch JM (1981) Colonization potential of bacteria in the rhizosphere. Curr Microbiol 6:137–138

    Google Scholar 

  • Bestel-Corre G, Dumas-Gaudot E, Poinsot V, Dieu M, Dierick JF, van Tuinen D, Remacle J, Gianinazzi-Pearson V, Gianinazzi S (2002) Proteome analysis and identification of symbiosis-related proteins from Medicago truncatula Gaertn. by two-dimensional electrophoresis and mass spectrometry. Electrophoresis 23:122–137

    PubMed  CAS  Google Scholar 

  • Brodie EL, DeSantis TZ, Joyner DC, Baek SM, Larsen JT, Andersen GL et al (2006) Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl Environ Microbiol 72:6288–6298

    PubMed  CAS  Google Scholar 

  • Burr TJ, Schroth MN, Suslow T (1978) Increased potato yields by treatment of seed pieces with specific strains of Pseudomonas fluorescens and P. putida. Phytopathology 68:1377–1383

    Google Scholar 

  • Chanway CP, Nelson LM, Holl FB (1989) Cultivar-specific growth promotion of spring wheat (Triticum aestivum L. by co-existent Bacillus species. Can J Microbiol 34:925–929

    Google Scholar 

  • Chaurasia B, Pandey A, Palni LMS, Trivedi P, Kumar B, Colvin N (2005) Structural deformities in pathogenic fungi caused by diffusible and volatile compounds produced by an antagonist (Bacillus subtilis): in vitro studies. Microbiol Res 160:75–81

    PubMed  CAS  Google Scholar 

  • Curl EA, Truelove B (1986) The rhizosphere. Springer, New York

    Google Scholar 

  • Das K, Katiyar V, Goel R (2003) ‘P’ solubilization potential of plant growth promoting Pseudomonas mutants at low temperature. Microbiol Res 158:359–362

    PubMed  Google Scholar 

  • DeSantis T, Brodie EL, Moberg J, Zubieta I, Piceno Y, Andersen G (2007) High-density universal 16 S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53:371–383

    PubMed  CAS  Google Scholar 

  • Edwards RA, Rodriguez-Brito B, Wegley L, Haynes M, Breitbart M, Peterson DM (2006) Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7:57

    PubMed  Google Scholar 

  • Frankenberger WT Jr, Arshad M (1995) Phytohormones in soil: microbial production and function. Marcel Dekker, New York

    Google Scholar 

  • Garland JL (1996) Patterns of potential C source utilization by rhizosphere communities. Soil Biol Biochem 28:223–230

    CAS  Google Scholar 

  • Germida JJ, Siciliano SD, de Freitas JR, Seib AM (1998) Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum). FEMS Microbiol Ecol 26:43–50

    CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London

    Google Scholar 

  • Gloud WD (1990) Biological control of plant root diseases by bacteria. In: Nakas JP, Hagedorn C (eds) Biotechnology of plant-microbe interactions. McGraw Hill, New York, pp 287–309

    Google Scholar 

  • Gulati A, Rahi P, Vyas P (2008) Characterization of phosphate-solubilizing fluorescent pseudomonads from rhizosphere of seabuckthorn growing in cold deserts of Himalayas. Curr Microbiol 56:73–79

    PubMed  CAS  Google Scholar 

  • Gulati A, Vyas P, Rahi P, Kasana RC (2009) Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr Microbiol 58:371–377

    PubMed  CAS  Google Scholar 

  • Gulati A, Sharma N, Vyas P, Sood S, Rahi P, Pathania V, Prasad R (2010) Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizosphaerae strain BIHB 723 isolated from the cold deserts of the trans-Himalayas. Arch Microbiol 192:975–983

    PubMed  CAS  Google Scholar 

  • Harman GE (1992) Development and benefits of rhizosphere competent fungi for biological control of plant pathogens. J Plant Nutr 15:835–843

    Google Scholar 

  • Harris JM, Lucas JA, Davey MR, Lethbridge G, Powell KA (1989) Establishment of Azospirillum inoculation in the rhizosphere of winter wheat. Soil Biol Biochem 21:59–64

    Google Scholar 

  • He Z, Gentry TJ, Schadt CW, Wu L, Liebich J, Chong SC et al (2007) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 1:67–77

    PubMed  CAS  Google Scholar 

  • Hiltner L (1904) Uber neuere ergahrungen und probleme auf dem gebiet der bodenbakteriologie und unter besonderer beruckscichtigung der grundungung und brache. Arb Dtsch Landwirt Ges 98:59–78

    Google Scholar 

  • Johri BN, Sharma A, Virdi JS (2003) Rhizobacterial diversity in India and its influence on soil and plant health. Adv Biochem Eng Biotechnol 84:49–89

    PubMed  CAS  Google Scholar 

  • Josey DP, Beynon JL, Johnston AWB, Beringer JE (1979) Strain identification in Rhizobium using intrinsic antibiotic resistance. J Appl Bacteriol 46:333–350

    Google Scholar 

  • Katiyar V, Goel R (2004) Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regul 42:239–244

    CAS  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    PubMed  CAS  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2006) Phytohormones: microbial production and applications. In: Uphoff N, Ball AS, Fernandes E, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds) Biological approaches to sustainable soil systems. Taylor & Francis, Boca Raton, FL, pp 207–220

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth promoting rhizobacteria on radishes. In: Station de Pathologie Vegetal et Phytobacteriologie (ed) Proceedings of the 4th international conference on plant pathogenic bacteria. Angers, France, pp 879–882

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Google Scholar 

  • Kluepfel DA (1993) The behaviour and tracking of bacteria in the rhizosphere. Annu Rev Phytopathol 31:441–472

    Google Scholar 

  • Kommedahl T, Windels CE (1981) Root-, stalk-, and ear-infecting Fusarium species on corn in the USA. In: Nelson PE, Toussoun TA, Cook RJ (eds) Fusarium: diseases, biology and taxonomy. Pennsylvania State University Press, University Park, PA, pp 94–103

    Google Scholar 

  • Kumar B, Trivedi P, Pandey A (2007) Pseudomonas corrugata: a suitable bioinoculant for maize grown under rainfed conditions of Himalayan region. Soil Biol Biochem 39:3093–3100

    CAS  Google Scholar 

  • Leeman M, Den Ouden FM, Van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149–155

    CAS  Google Scholar 

  • Lethbridge G (1989) An industrial view of microbial inoculants for crop plants. In: Campbell R, Macdonald RM (eds) Microbial inoculation of crop plants. IRL Press, Oxford, pp 1–10

    Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 38:461–490

    Google Scholar 

  • Lynch JM (1990) Beneficial interactions between micro-organisms and roots. Biotechnol Adv 8:335–346

    PubMed  CAS  Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Bisht SC, Kundu S, Bisht JK, Gupta HS (2008) Characterization of a psychrotrophic plant growth promoting Pseudomonas PGERs17 (MTCC 9000) isolated from North Western Indian Himalayas. Ann Microbiol 58:1–8

    Google Scholar 

  • Mishra PK, Mishra S, Bisht SC, Selvakumar G, Kundu S, Bisht JK, Gupta HS (2009a) Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacterium Pseudomonas sp. NARs9 (MTCC9002) from the Indian Himalayas. Biol Res 42:305–313

    PubMed  CAS  Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Bisht JK, Kundu S, Gupta HS (2009b) Coinoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World J Microbiol Biotechnol 25:753–761

    Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Joshi GK, Singh G, Bisht JK, Bhatt JC (2011) Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum-PR1 on iron acquisition, nutrient uptake and growth of lentil (Lens culinaris L.). Eur J Soil Sci 47:35–43

    CAS  Google Scholar 

  • Morris AC, Djordjevic MA (2006) The Rhizobium leguminosarum biovar trifolii ANU794 induces novel developmental responses on the subterranean clover cultivar Woogenellup. Mol Plant Microbe Interact 19:471–479

    PubMed  CAS  Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomics driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153

    PubMed  CAS  Google Scholar 

  • Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296

    PubMed  CAS  Google Scholar 

  • Negi YK, Garg SK, Kumar J (2005) Cold tolerant fluorescent Pseudomonas isolates from Garhwal Himalayas as potential plant growth promoting and biocontrol agents in pea. Curr Sci 89:2151–2156

    Google Scholar 

  • Nelson LM (2004) Plant growth promoting rhizobacteria (PGPR): prospects for new inoculants. Crop Manage. doi: 10.1094/CM-2004-0301-05-RV

    Google Scholar 

  • Nowak J (1998) Review- benefits of in vitro bacterization of plant tissue cultures with microbial inoculants. In Vitro Cell Dev Biol Plant 34:122–130

    Google Scholar 

  • O’Sullivan JD, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogen. Microbiol Rev 56:662–676

    PubMed  Google Scholar 

  • Pal SS (1998) Interaction of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil 198:169–177

    CAS  Google Scholar 

  • Pandey A, Kumar S (1989) Potential of Azotobacters and Azospirilla as biofertilizers for upland agriculture: a review. J Sci Ind Res 48:134–144

    Google Scholar 

  • Pandey A, Palni LMS, Coulomb N (1997) Antifungal activity of bacteria isolated from the rhizosphere of established tea bushes. Microbiol Res 152:105–112

    CAS  Google Scholar 

  • Pandey A, Sharma E, Palni LMS (1998) Influence of bacterial inoculation on maize in upland farming systems of the Sikkim Himalaya. Soil Biol Biochem 30:379–384

    CAS  Google Scholar 

  • Pandey A, Durgapal A, Joshi M, Palni LMS (1999) Influence of Pseudomonas corrugata inoculation on root colonization and growth promotion of two important hill crops. Microbiol Res 154:259–266

    Google Scholar 

  • Pandey A, Palni LMS, Bag N (2000) Biological hardening of tissue culture raised tea plants. Biotechnol Lett 22:1087–1091

    CAS  Google Scholar 

  • Pandey A, Palni LMS, Hebbar KP (2001) Suppression of damping-off in maize seedlings by Pseudomonas corrugata. Microbiol Res 156:191–194

    PubMed  CAS  Google Scholar 

  • Pandey A, Bag N, Chandra B, Palni LMS (2002a) Biological hardening: a promising technology for tissue culture industry. In: Nandi SK, Palni LMS, Kumar A (eds) Role of plant tissue culture in biodiversity conservation and development. Gyanodaya Prakashan, Nainital, India, pp 565–577

    Google Scholar 

  • Pandey A, Palni LMS, Mulkalwar P, Nadeem M (2002b) Effect of temperature on solubilization of tricalcium phosphate by Pseudomonas corrugata. J Sci Ind Res 61:457–460

    CAS  Google Scholar 

  • Pandey A, Trivedi P, Kumar B, Chaurasia B, Singh S, Palni LMS (2004) Development of microbial inoculants for enhancing plant performance in the mountains. In: Reddy MS, Kumar S (eds) Biotechnological approaches for sustainable development. Allied Publishers, New Delhi, India, pp 13–20

    Google Scholar 

  • Pandey A, Trivedi P, Kumar B, Chaurasia B, Palni LMS (2006a) Soil microbial diversity from the Himalaya: need for documentation and conservation. NBA Scientific Bulletin No. 5, National Biodivesity Authority Chennai, Tamil Nadu, India

    Google Scholar 

  • Pandey A, Trivedi P, Kumar B, Palni LMS (2006b) Characteristics of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian central Himalaya. Curr Microbiol 53:102–107

    PubMed  CAS  Google Scholar 

  • Pandey A, Chaudhry S, Sharma A, Choudhary VS, Malviya MK, Chamoli S, Rinu K, Trivedi P, Palni LMS (2011) Recovery of Bacillus and Pseudomonas spp from the ‘Fired Plots’ under Shifting Cultivation in Northeast India. Current Microbiology 62 (1):273–280. doi: 10.1007/s00284-010-9702-6

    PubMed  CAS  Google Scholar 

  • Paroda RS (1997) Foreword. In: Dhadarwal KR (ed) Biotechnological approaches in soil microorganisms for sustainable crop production. Scientific Publishers, Jodhpur, India

    Google Scholar 

  • Peck SC, Nühse TS, Hess D, Iglesias A, Meins F, Boller T (2001) Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell 13:1467–1475

    PubMed  CAS  Google Scholar 

  • Persello-Cartieaux F, Nussaunme L, Robaglia C (2003) Tales from underground: molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189–199

    CAS  Google Scholar 

  • Poi SC, Kabi MC (1979) Effect of Azotobacter inoculation on growth and yield of jute and wheat. Ind J Agric Sci 49:478–480

    Google Scholar 

  • Purohit AN (1995) The murmuring man: man in search of environmentally sound development. Bisen Singh Mahendra Pal Singh Publishers, Dehradun, India

    Google Scholar 

  • Rainey PB (1999) Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1:243–257

    PubMed  CAS  Google Scholar 

  • Rinu K, Pandey A (2009) Bacillus subtilis NRRL B-30408 inoculation enhances the symbiotic efficiency of Lens esculenta Moench at a Himalayan location. J Plant Nutr Soil Sci 172:134–139

    CAS  Google Scholar 

  • Roberts DP, Yucel I, Larkin RP (1998) Genetic approaches for analysis and manipulation of rhizosphere colonization by bacterial biocontrol agents. In: Boland GJ, Kuykendall LD (eds) Plant-microbe interactions and biological control. Marcel Dekker, New York, pp 415–431

    Google Scholar 

  • Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    PubMed  CAS  Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2007) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175

    PubMed  Google Scholar 

  • Selvakumar G, Kundu S, Gupta AD, Shouche YS, Gupta HS (2008a) Isolation and characterization of nonrhizobial plant growth promoting bacteria from nodules of Kudzu (Pueraria thunbergiana) and their effect on wheat seedling growth. Curr Microbiol 56:134–139

    PubMed  CAS  Google Scholar 

  • Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Mishra PK, Gupta HS (2008b) Characterization of a cold-tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J Microbiol Biotechnol 24:955–960

    CAS  Google Scholar 

  • Selvakumar G, Joshi P, Nazim S, Mishra PK, Bisht JK, Gupta HS (2009a) Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984) a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia 64:239–245

    CAS  Google Scholar 

  • Selvakumar G, Joshi P, Nazim S, Mishra PK, Kundu S, Gupta HS (2009b) Exiguobacterium acetylicum strain 1P (MTCC 8707) a novel bacterial antagonist from the North Western Indian Himalayas. World J Microbiol Biotechnol 25:131–137

    Google Scholar 

  • Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2010) Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol. doi:10.1007/s11274-010-0559-4

  • Shanmugam V, Ajit NA, Verma R, Sharma V (2008) Diversity and differentiation among fluorescent pseudomonads in crop rhizospheres with whole-cell protein profiles. Microbiol Res 163:571–578

    PubMed  CAS  Google Scholar 

  • Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron depriving conditions. Microbiol Res 158:243–248

    PubMed  CAS  Google Scholar 

  • Sharma A, Wray V, Johri BN (2007) Molecular characterization of plant growth promoting rhizobacteria that enhance peroxidase and phenylalanine ammonia lyase activities in chile (Capsicum annuum L.) and tomato (Lycopersicon esculentum Mill.). Arch Microbiol 188:483–494

    PubMed  CAS  Google Scholar 

  • Sinha SK (1997) Global change scenario: current and future with reference to land cover changes and sustainable agriculture- South and South-East Asian context. Curr Sci 72:846–854

    Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    PubMed  CAS  Google Scholar 

  • Smit E, Leeflang P, Gommans S, van den Broek J, van Mil S, Wernars K (2001) Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl Environ Microbiol 67:2284–2291

    PubMed  CAS  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc Natl Acad Sci USA 103:12115–12120

    PubMed  CAS  Google Scholar 

  • Sorensen J, Jensen LE, Nybroe O (2001) Soil and rhizosphere as habitats for Pseudomonas inoculants: new knowledge on distribution, activity and physiological state derived from micro-scale and single-cell studies. Plant Soil 232:97–108

    CAS  Google Scholar 

  • Suslow TV, Schroth MN (1982) Rhizobacteria of sugar beets: effect of seed application and root colonization on yield. Phytopathology 72:199–206

    Google Scholar 

  • Swaminathan MS (1999) I predict: a century of hope harmony with nature and freedom from hunger. East West Books (Madras), Chennai

    Google Scholar 

  • Sylvia DM, Chellemi DO (2001) Interactions among root inhabiting fungi and their implications for biological control of root pathogens. Adv Agron 73:1–33

    Google Scholar 

  • Thomashow LS, Weller DM (1988) Role of phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508

    PubMed  CAS  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, De R, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 84:136–150

    Google Scholar 

  • Tripathi M, Johri BN, Sharma A (2005a) Plant growth-promoting Pseudomonas sp. strains reduce natural occurrence of Anthracnose in Soybean (Glycine max L.) in Central Himalayan region. Curr Microbiol 52:390–394

    Google Scholar 

  • Tripathi M, Munot HP, Shouche Y, Meyer JM, Goel R (2005b) Isolation and functional characterization of siderophore producing lead- and cadmium-resistant Pseudomonas putida KNP9. Curr Microbiol 50:233–237

    PubMed  CAS  Google Scholar 

  • Trivedi P, Pandey A, Palni LMS (2005a) Carrier based formulations of plant growth promoting bacteria suitable for use in the colder regions. World J Microbiol Biotechnol 21:941–945

    Google Scholar 

  • Trivedi P, Pandey A, Palni LMS, Bag N, Tamang MB (2005b) Colonization of rhizosphere of tea by growth promoting bacteria. Int J Tea Sci 4:19–25

    Google Scholar 

  • Trivedi P, Pandey A (2007a) Application of immobilized cells of Pseudomonas putida to solubilize insoluble phosphate in broth and soil conditions. J Plant Nutr Soil Sci 170:629–631

    CAS  Google Scholar 

  • Trivedi P, Pandey A (2007b) Biological hardening of micropropagated Picrorhiza kurrooa Royel ex Benth- an endangered species of medical importance. World J Microbiol Biotechnol 23:877–878

    Google Scholar 

  • Trivedi P, Pandey A (2008a) Plant growth promotion abilities and formulation of Bacillus megaterium strain B 388 isolated from a temperate Himalayan location. Ind J Microbiol 48:342–347

    Google Scholar 

  • Trivedi P, Pandey A (2008b) Recovery of plant growth promoting rhizobacteria from sodium alginate beads after three years following storage at 4°C. J Indus Microbiol Biotechnol 35:205–209

    CAS  Google Scholar 

  • Trivedi P, Sa T (2008) Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production and plant growth at lower temperatures. Curr Microbiol 56:140–144

    PubMed  CAS  Google Scholar 

  • Trivedi P, Kumar B, Pandey A, Palni LMS (2007a) Growth promotion of rice by phosphate solubilizing bioinoculants in a Himalayan location. In: Velazquez E, Rodriguez-Barrueco C (eds) Proceedings books of first international meeting on microbial phosphate solubilization. Kluwer, Netherlands, pp 291–299

    Google Scholar 

  • Trivedi P, Pandey A, Sa T (2007b) Chromate reducing and plant growth promoting activities of psychrotrophic Rhodococcus erythropolis MTCC 7905. J Basic Microbiol 47:513–517

    PubMed  CAS  Google Scholar 

  • Trivedi P, Pandey A, Palni LMS (2008) In vitro evaluation of antagonistic properties of Pseudomonas corrugata. Microbiol Res 163:329–336

    PubMed  Google Scholar 

  • Trivedi P, Wang N (2012) Application of phylogenetic oligonuleotide microarray (POA) in microbial analysis. In: Frans J. de Bruijn (ed) Handbook of metagenomics. Wiley-Blackwell, New York (in press)

    Google Scholar 

  • Tunlid A, White D (1992) Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil. In: Stotzky G, Bollag JM (eds) Soil biochemistry. Marcel Dekker, New York, pp 229–262

    Google Scholar 

  • Van Peer R, Neimann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734

    Google Scholar 

  • Verma R, Naosekpam AS, Kumar S, Prasad R, Shanmugam V (2007) Influence of soil reaction on diversity and antifungal activity of fluorescent pseudomonads in crop rhizospheres. Bioresour Technol 98:1346–1352

    PubMed  CAS  Google Scholar 

  • Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9:174–181

    PubMed  Google Scholar 

  • Vyas P, Rahi P, Gulati A (2009) Stress tolerance and genetic variability of phosphate-solubilizing fluorescent Pseudomonas from the cold desert of the trans-Himalayas. Microb Ecol 58:425–434

    PubMed  CAS  Google Scholar 

  • Vyas P, Robin J, Sharma KC, Rahi P, Gulati A, Gulati A (2010) Cold-adapted and rhizosphere-competent strain of Rahnella sp. with broad-spectrum plant growth-promotion potential. J Microbiol Biotechnol 20:1724–1734

    PubMed  CAS  Google Scholar 

  • Weller DM (1988) Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Google Scholar 

Download references

Acknowledgments

Council of Scientific and Industrial Research, the Department of Biotechnology, and the Union Ministry of Environment and Forests, Government of India, New Delhi, and Uttarakhand State Council for Science and Technology, Government of Uttarakhand, Dehradun are thanked for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trivedi, P., Pandey, A., Palni, L.M.S. (2012). Bacterial Inoculants for Field Applications Under Mountain Ecosystem: Present Initiatives and Future Prospects. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Plant Probiotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27515-9_2

Download citation

Publish with us

Policies and ethics